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This literature review provides a focus on the potential of integrating the latest 
scientific and technological advances in the biological field to improve the 
status of the key steps of a food packaging life cycle: production, usage, post-
usage, and long-term fate. A case study of such multi-biological food packaging 
is demonstrated based on the use of PHAs (polyhydroxyalkanoates) polymer, 
a microbiologically produced polymer from non-food renewable resources, 
activated by the use of bioactive components to enhance its usage benefits by 
reducing food loss and waste, displaying potential for reusability, compostability as 
post-usage, and finally, being ultimately biodegradable in most common natural 
conditions to considerably reduce the negative impact that persistent plastics 
have on the environment. We discuss how designing safe and efficient multi “bio” 
food packaging implies finding a compromise between sometimes contradictory 
functional properties. For example, active antimicrobials help preserve food but 
can hamper the ultimate biodegradation rate of the polymer. This review presents 
such antagonisms as well as techniques (e.g., coatings, nanoencapsulation) and 
tools (e.g., release kinetic) that can help design optimized, safe, and efficient 
active food packaging.

KEYWORDS

sustainability, biodegradable, active food packaging, natural active components, usage 
benefit, post-usage fate

1. Introduction

Although packaging plays a crucial role in the food supply chain by maintaining the quality 
and safety of food for a certain period, environmental problems due to resource depletion and 
persistent plastic accumulation from food packaging are of increasing concern. Indeed, the 
world’s plastic production is expected to increase three-fold by 2060, and ⅓ of this production 
will be used for packaging development (1, 2). In the meantime, 90% of this plastic ends up in 
the environment (through littering, landfilling, mismanagement, etc.): 3% directly in the ocean 
and 87% on the terrestrial continent (in soil), where they are fragmented through physical 
abrasion into micro and nanoparticles that diffuse into all environmental compartments (air, 
soil, water, and living organisms), resulting in considerable environmental and biological 
damage (1, 3). In this context, the emergence of new materials allowing the overall packaging 
sustainability to be increased is paramount: it clearly means (1) minimizing overall resource 
use and process step impacts, (2) ensuring product preservation to reduce food loss and waste, 
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(3) reducing the burden of post-usage plastic waste management 
(e.g., by being compostable or recyclable) and, (4) paying special 
attention to the long-term outcome that can lead to the accumulation 
of plastic in the environment in the final stage of the materials life 
chain (3–5). One solution to address these multiple issues is to focus 
on materials that provide a biological solution at each stage: a 
biological resource, bioprocess transformation, bioactivity to better 
preserve food, and finally biological digestibility in the post-usage 
stages (Figure 1).

Therefore, to correctly use biobased resources for packaging 
development (e.g., plant or microbial polymers), it is necessary to 
use materials that are compatible with biomass temporal 
availability and the regeneration time and to avoid competition 
with food and feed uses. Moreover, bioprocess transformation 
refers to the use of biotechnologies to synthesize the material (e.g., 
microbial cells) with the net advantage that the range of resources 
to be  used is considerably enlarged. For instance, with 
biotechnologies, it is possible to use organic wastes and other 
residues (6, 7). Bioprocesses also appear to be good alternatives to 
conventional chemical synthesis, because they require less time 
and additives, which can result in health problems in living 
marine and terrestrial organisms (endocrine disruptors, etc.) 
(8–10). Bioactive packaging refers to the integration of active bio 
components in the polymer, such as natural antimicrobials or 
antioxidants which can increase the packaging usage benefit by 
preserving food from deterioration, which leads to food loss and 
waste (FLW) mitigation, as demonstrated by several authors (11–
13). Finally, biodegradable packaging means that the material 
could be disintegrated and then assimilated by microorganisms 
and digested into small unitary molecules (H2O, CO2, CH4) to 
produce a new microbial biomass. Ultimate biodegradation is 
currently the only solution to reduce conventional plastic 
accumulation in the environment (3).

Although several articles have already highlighted the importance 
of biodegradable packaging [see among others (14)], or the relevance 
of active, and smart biodegradable packaging for the food sector (15), 
or the applicability of biobased packaging for long-shelf-life foods 
(16), no publications to date have addressed all the four ‘bio’ aspects 

in a holistic approach to the packaging sustainability. It should 
be noted that in the web of sciences with the keywords “biodegradable, 
bioactive packaging” AND “biodegradable, bioactive, biobased 
packaging” AND “biodegradable, antimicrobial packaging” AND 
“biodegradable, biobased, antimicrobial packaging,” we obtained 90, 
5, 215, and 6 review articles, respectively (carried out in 
February 2023).

In this context, the aim of this paper is to discuss the relevance 
of developing active packaging materials combining the four “bio” 
aspects (biobased, bioprocessed, bioactive, and biodegradable) by 
highlighting their challenges and limitations. Examples will 
be provided from commercial products or polymers that are still 
in development (e.g., PHAs, a family of polymers that, promisingly, 
covers the four “bio” aspects). This review highlights the 
importance of a reasoned-integrated approach to develop 
bio-benign, biodegradable, efficient active food packaging starting 
from the food needs in terms of preservation without 
compromising the ultimate biodegradability of the material. The 
importance of the use of biobased, bioprocessed, and 
biodegradable material will be discussed first, with examples of 
different polymers more or less in accordance with these aspects. 
The importance of the strategy of bioactive molecule incorporation 
is then developed, with the presentation of cutting-edge ways for 
incorporating active ingredients into biopolymers. Finally, the 
post-usage fate of the bioactive, biodegradable packaging materials 
is discussed.

2. The importance of using biobased, 
bioprocessed, and biodegradable 
materials for food packaging

2.1. Definition of biobased, bioprocessed, 
and biodegradable materials

2.1.1. Biobased
The fear of a near future where oil-based resources are lacking and 

the societal demand for more ‘green’ materials have led to the 

FIGURE 1

The expected effect of substituting fossil-based plastic materials with BIO4 ones – in the life cycle of food packaging materials (BIO4  =  biobased, 
bioprocessed, bioactive, and biodegradable).
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development of polymers derived from renewable biological resources 
(‘biobased’).

For this purpose, research efforts have long focused on 
transforming plant or other non-fossil biogenic feedstocks into 
materials identical (e.g., bio-PET, bio-PE) or close to those 
derived from petroleum (e.g., PLA). At the same time, efforts 
have been made regarding the development of biodegradable 
solutions to solve the issue of plastic persistence in the 
environment, leading to the emergence, in the early 1990s, of the 
‘bioplastics’ market, which includes both biodegradable and 
biobased plastics, with unfortunately a high degree of confusion 
regarding the distinction between them (17, 18). “Biobased” 
means materials partially or fully produced from biomass 
resources (such as sugar cane, hydrolyzed maize, rice or potato 
starch, etc.), irrespective of the end-of-life fate of the material 
(17). As such, a biobased polymer may be  not biodegradable, 
such as bio-polyethylene (bio-PE), which is not more 
biodegradable than its oil-based counterpart. Several publications 
have sought to clarify this terminology and denounce the 
variations coming from the overall misinterpretation of the ‘bio’ 
prefix (17–19).

2.1.2. Bioprocessed
Two categories of biobased polymers can be considered (20): the 

first one consists of materials whereby the chemical structure of the 
biomass feedstock is not maintained. This is the case, for instance, 
when biomass is used to obtain soluble sugars, which are then 
fermented to produce monomers for the polymerization (e.g., lactic 
acid to produce poly(lactic acid) or ethylene to produce biobased 
polyethylene). This is the route followed to obtain polymers that are 
identical to those derived from petroleum (e.g., bio-PET, bio-PE). The 
second category corresponds to a group of polymers directly 
synthetized by living organisms (plants, algae, microorganisms, etc.) 
for which the initial chemical structure is preserved after extraction 
and purification and then used as such [e.g., polyhydroxyalkanoates 
(21)], polymalic acid (22) or only slightly modified [e.g., celluloses 
acetates (23)].

To manufacture compounds belonging to the first category, 
significant efforts must be placed on the plant transformation, with 
selective chemical processes required to remove chemical functionality 
afforded naturally by many biobased feedstocks (e.g., many natural 
molecules contain oxygen or nitrogen, while this is not the case for 
fossil-based hydrocarbons). Agricultural crops produce precursors: 
mostly starch and soluble sugars, that can be directly used to obtain 
biobased polymers, or building blocks derived from selective 
transformation used to extract, fractionate, and deconstruct plant cell-
wall polymers (cellulose, hemicellulose, pectin, lignin, etc.) (24). 
Additional chemical transformations are often needed to obtain the 
necessary functionality for polymerization of the biobased building 
blocks into polymers.

Beyond the economic and environmental cost of all this 
necessary chemistry, the use of dedicated agricultural crops for 
producing biobased polymers is highly controversial in a period 
of fears for worldwide food security (25). Most lifecycle analyses 
(LCA) show that biobased polymers are better than their 
oil-based equivalents in aspects such as GHG emissions and fossil 
fuel consumption but not for other indicators such as 

eutrophication, land occupation, etc., which leaves the question 
of environmental superiority of biobased polymers for further 
debate (26, 27).

In light of the questionable economic viability and environmental 
issues of biobased polymers chemically synthesized from biobased 
building blocks, a reasonable guideline would be  to focus on the 
second category of polymers, those directly synthetized by living 
organisms and used after extraction/purification with minimal 
chemical transformations. To not compete with the food chain, they 
should be  produced from agricultural or food by-products or 
residues. The use of residues and even organic wastes as feedstock to 
produce polymers is gaining more and more attention, especially in 
line with the development of circular economy schemes (7). They 
provide significant environmental benefit, provided that their 
collection, transport, and transformation are regionally-reasoned and 
do not necessitate expensive pre-treatments and transportation 
(28, 29).

2.1.3. Biodegradable
Biodegradability is the intrinsic property of a material to 

be  fully degraded by living microorganisms (e.g., soil 
microorganisms) into a new biomass and small non-toxic 
molecules such as water, carbon dioxide (CO2), and/or methane 
(CH4) in widespread natural environmental conditions and in a 
reasonable timeframe compatible with human life cycles (17). The 
term biodegradable is often and misleadingly applied to plastics 
that are biobased but not necessarily biodegradable, or that 
undergo degradation (e.g., lowering of the molar masses of 
macromolecules that form the material) but without complete, 
ultimate mineralization (30). The biodegradability of a polymer 
depends only on its chemical structure and not the carbon source. 
Polymers that are compostable are not necessarily biodegradable 
under ambient environmental conditions. For instance, PLA 
needs to reach a minimal temperature of approximately 60°C to 
be biodegraded, which can be achieved in industrial composting 
plants but not in soil for instance or even domestic compost (19). 
The risk of considering a polymer that turns out not to 
be biodegradable under ambient environmental conditions is the 
production of persistent micro and nano plastics with long-term 
adverse effects for the entire biosphere (3).

In light of the above, nonfood, nonfeed biobased, and minimally 
bioprocessed polymers appear to be the best compromise of biobased 
and bioprocessed polymers. In addition, care must be taken regarding 
the type of biodegradation that the material can achieve: ultimate 
biodegradation, e.g., complete degradation into mineral molecules, 
under common ambient environmental conditions, and in a 
reasonable timeframe are paramount.

2.2. The various biobased and/or 
bioprocessed and/or biodegradable 
biopolymers

2.2.1. Overview of the various types of 
biopolymers

Table 1 summarizes the various types of biopolymers already 
marketed and commercially available and also those that are still 
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TABLE 1 The various biopolymers in development or available on the market.1

Biopolymer Global annual 
production in 
kilotons/year 
(2022 data)1

TRL achieved Resources: 
biobased (origin 
of material)

Usage benefit: 
advantages/
disadvantages

Post usage fate

Bio-sourced, non-biodegradable, and non-compostable biopolymers ➔ 1-bio

Bio-PET 93 −⑨−

Commonly 100% of 

biobased ethylene glycol 

(EG) and petroleum-

derived terephthalic acid 

(TA); 100% biobased EG, 

and PTA production is 

feasible

Very good processability, 

versatility, O2/CO2/H20 barrier

Recyclable, non-

biodegradable

Bio-PA 246 −⑨− 100% (vegetable biomass)
Very good processability, 

versatility, O2/CO2 barrier

Recyclable, non-

biodegradable

Bio-PE 329 −⑨−
100% (e.g., sugar cane, 

sugar beet)

Very good processability, 

extensibility, versatility, H20 

barrier

Recyclable, non-

biodegradable

Oil-based, biodegradable, and home-compostable biopolymers ➔ 1-bio

PBAT 100 −⑨− Fossil

Properties similar to LDPE, 

flexible (strain at break 

∼710%) and tough, PBAT is 

used primarily in combination 

with another polymer

Home compostable

PBSA 20 −⑨−
20–100% (corn, cane 

sugar, cassava, beets)

Sensitivity to humidity, 

temperature variations, and 

UV

Home compostable

Bio-sourced and compostable (industrial conditions) bio-polymers, conventional chemistry for polymerization ➔ 2-bio

PLA 460 −⑨−
100% (corn, cane sugar, 

cassava, beets)

Low- and high-temperature 

behavior to be improved

Industrially 

compostable

EN 13432 or NFT 

51–800

Biobased, biodegradable (in natural conditions), home-compostable, biosynthesized biopolymers ➔ 3-bio

Cellulose 273.31 million2 −⑨− > 90% (cellulose pulp)

Tear resistance at low 

temperatures, lack of barriers 

(oxygen, fat, etc.)

Home compostable

Starch-based materials 397 −⑨−

30–100% (maize, wheat, 

potato) Competition w/

food

Sensitivity to temperature 

variations, not water resistant

Industrially 

compostable

EN 13432 or NFT 

51–800 & Home 

compostable

PHB/coHV (from noble 

food resources)
50 −⑨− 100% (corn, sugars, beet)

Barrier properties similar to 

that of PP, brittle if low HV
Home compostable

PHB/coHV (from organic 

wastes and residues)
Still pilot-scale production −⑥−

100% (agricultural and 

food residues and wastes, 

urban wastes)

Barrier properties similar to 

that of PP, brittle if low HV
Home compostable

PHBH Undisclosed −⑨−
100% (pure oils, 

currently)
n/a Home compostable

mcl-PHA3
Still experimental 

production
−③−

100% (pure food 

resources, currently)
n/a Home compostable

1http://www.european-bioplastics.org/bioplastics/materials/. 2Global annual production: Paper and cardboard for packaging: « La demande mondiale des matériaux des emballages papier 
devrait atteindre 273,31 millions de tonnes en 2022 contre 195,72 millions en 2014 » (https://www.graphiline.com/article/21772/previsions-marche-mondial-emballages-papier). 3Medium-
chain-length PHA.
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in development. Clearly, currently marketed biopolymers are not 
fully “bio” from their resources nor their end-of-life, or present 
limited usage benefit. They are either derived from food resources 
(e.g., PLA, PBSA, starch-based blends, or commercial PHBV) or 
not fully biodegradable under natural conditions (e.g., PLA), or 
not water resistant (e.g., starch-based blends).

Only cellulose-based materials and PHAs obtained from non-food 
resources (such as PHBV) appear to fulfill all the criteria.

2.2.2. PHAs, an example of biobased, 
bioprocessed, and biodegradable polymers

PHAs comprise a family of polymers with very versatile properties 
(water-insoluble, hydrophobic, thermoplastic). They can be molded 
into rigid or semi-rigid items using thermomechanical processes, and 
in their final shape, they exhibit good oxygen barrier properties that 
make them promising for fresh and other processed food packaging 
applications (31).

Commercial PHAs are currently nearly exclusively the 
copolymer polyhydroxy(butyrate-co-valerate), P(HB-co-HV). 
P(HB-co-HV) is a copolymer, meaning that it is a combination of 
two monomers, namely hydroxy-butyrate and hydroxy-valerate. 
P(HB-co-HV) is currently produced using pure microbial cultures 
fed with high-purity substrates that require (1) sterility (2) high 
energy, and (3) pure glucose or corn steep liquor as feedstock (48% 
of the total production cost). This contributes to a prohibitive market 
price (5 €/kg) to be used as a commodity polymer.

To address this issue, and to create a virtuous cycle rather than 
depleting one by using organic residues instead of apure carbon 
source, researchers have developed bioconversion processes of agri-
food residues using optimized eco-efficient mixed microbial 
cultures (MMC). These processes decrease the investments and 
operating costs of the P(HB-co-HV) conversion with respect to 
pure culture and make it easier to use cheaper by-products such as 
feedstock (6, 32, 33). However, these processes are not yet available 
at an industrial scale.

Once produced, PHA macromolecules must be extracted and 
purified to remove all impurities (e.g., proteins, inorganic 
compounds) that can hamper its further use as a thermo-
mechanical processable polymer. To do this, after harvesting cells 
from the bioreactor, flocculation, centrifugation, or filtration is 
used to remove the aqueous phase from the sedimented biomass. 
After a thermal drying or lyophilization step, the PHA-rich 
biomass is ready for extraction and purification (34, 35). Most 
people utilize methods on a laboratory scale such as solvent-based 
extraction (using halogenated solvents or halogen-free solvents 
such as butanol, or acetone, etc.), enzymatic (Alcalase®, lysozyme) 
or mechanical techniques (ultrasonication, high-pressure 
homogenization, osmotic pressure), or combinations of these 
methods. These methods result in cell disruption, enabling 
polymer solubilization in the solvent used. The last steps are then 
washing and drying the polymer to obtain a powder that can 
be stored and subsequently used (36).

PHA granules are often damaged by random and chain-end 
scission during solvent-based extraction processes. The final PHA 
purity and quality (e.g., molecular weight and polydispersity 
index) are thus affected by the extraction method. The solvent 
extraction method (especially halogenated solvents) provides the 

highest recovery with the highest purity and molecular weight (up 
to 98% and 0.8 MDa, respectively) (33, 35–38). However, because 
of the cost and the environmental impact of solvents, their use 
remains possible only at the laboratory scale, for research 
purposes. Beyond extraction, purification is also very important 
and has been found to greatly impact the processability of the 
polymer and its final properties (39); it was observed that multiple 
purification steps lead to better P(HB-co-HV) mechanical 
properties after processing. Because considerable quantities of 
hazardous solvents and energy are necessary during the extraction 
and purification steps, PHA production is not fully bio-benign. 
Moreover, the halogenated solvents used for the extraction can 
cause severe health issues in living organisms as well as 
environmental problems (40).

Above all, PHAs are biodegradable under various composting 
conditions (including home-compositing) and other natural 
environments (e.g., soil), making them particularly suitable to 
fight pollution by persistent plastics. As a result of successful tests 
on the biodegradation of PHA in activated sludge, compost, 
aqueous environments, and soil, the biodegradation of PHA 
blends with natural fillers in composting conditions is faster than 
with pure PHAs (41–43). This high biodegradation rate is the 
result of the involvement of a wide range of microorganisms and 
fungi, similar to the ones used for PHA biosynthesis, that can 
biodegrade PHAs in anaerobic and aerobic conditions (37, 44–48). 
Environmental factors such as temperature, pH, moisture, oxygen 
concentration, sunlight, the number/amount of microorganisms, 
as well as the chemical structure of PHA such as the percentage of 
3 HV, are known to affect the rate of biodegradation of these 
polymers (49).

In summary, PHAs can be synthesized from agri-food wastes 
and residues using bioprocessed (microbial synthesis) and they 
are biodegradable under natural conditions and ambient 
temperature. They are thus promising candidates to turn the 
current linear plastic chain into a more sustainable cycle. 
Moreover, PHAs exhibit good usage benefits, with high gas/water 
barrier properties as well as good crystallization and mechanical 
properties; making them good candidates to prolong the shelf-life 
of food products. PHAs can also be  converted into bioactive 
materials to increase their packaging usage benefit of reducing 
food losses.

3. The importance of bioactive 
functionality in food packaging

3.1. Bioactive packaging to better preserve 
food from deterioration

Commission Regulation [EC 450/2009 (50)] defined Active 
Packaging (AP) materials as follows “Materials and articles that 
are intended to extend the shelf-life, or to maintain or improve 
the condition, of packaged food; they are designed to deliberately 
incorporate components that would release or absorb substances 
into or from the packaged food or the environment surrounding 
the food.” As described in Table  2, various scavenging and 
releasing systems have been developed, aimed at decreasing the 
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deterioration processes in food, such as microorganism growth, 
oxidation, etc. (61).

For example (62), showed that 0.5% of gallic acid in PHBV 
trays of meat, fish, or cheese packaging can induce the absorption 
of 7.7% of oxygen in 10 days (derived from food desorption or 
oxygen entrance through the packaging), thus limiting oxidation 
and microbial aerobic growth. Similarly, several authors have 
shown that the inclusion of different essential oils such as buriti oil 
(1.5 wt.%), orange leaf essential oil (2 wt.%), or thymol (6 or 8 wt.%) 
in chitosan, gelatin, or PLA films exhibited antimicrobial activity 
against E. coli, P. aeruginosa, S. aureus, and B. subtilis, as well as 
C. albicans and A. niger, making them suitable strategies to increase 
food shelf-lives in different sectors (63–66). Going beyond these 
studies demonstrating antimicrobial effects on only a single 
microbial species Alparslan et al. (67) tried to quantify the shelf-life 
gain obtained on fresh shrimp packed in gelatin film containing 2% 
orange leaf essential oil: the shelf-life increased from 8 days with 
gelatin film to 14 days with the active film. With the same objective 
of benefit quantification Suwanamornlert et al. (66) reported that 
the shelf-life of bread increased from 6 days (control with PLA 
packaging) to 9 days with PLA film containing 6 wt.% thymol.

It should be  noted that essential oils extracted from natural 
aromatic plants (e.g., oregano, thyme, eucalyptus, rosemary, clove, 
cinnamon etc.) is often used as natural antioxidant, antimicrobial, and 
antifungal compounds for AP (68–70). Indeed, consumer demand for 
food products without synthetic chemical preservatives has promoted 
EO usage in the food packaging industry in recent years (68). As for 
all AP, the use of active components directly in the packaging material 
instead of in the food allow reduction of the use of preservatives, as 
the active component is slowly released toward the surface where it is 
needed (on the food surface).

To obtain safe and efficient active materials, the quantity of active 
compounds added in the formulation of active systems is defined by 

the expected efficiency but also regulatory needs and sensory aspects 
(e.g., active compounds that are also flavoring agents). Indeed, a 
specific admissible daily intake (ADI = the quantity of this specific 
compound that can be eaten without a negative impact on the health) 
is defined by regulations for all potential active substances (71). The 
use of the active molecules is possible only if the natural exposure of 
consumers to those substances from other (natural) sources (natural 
occurrence in food products due to their composition) does not 
exceed the ADI (Figure  2). The natural exposure depends on the 
country, food consumption habits, and the consumer’s age. This 
knowledge allows determination of the maximal quantity of the AC 
that can be  used for active packaging (ADI minus the natural 
exposure) (Figure 2).

The choice of the best molecule to develop an active antimicrobial 
packaging also depends on the capacity of the molecules to act on the 
targeting of specific microorganisms. Consequently, the appropriate 
AC can differ from one product to another, depending on the 
microorganisms prone to growth on the product. To correctly design 
the active packaging, it is necessary to confirm that the quantity that 
can be  used for the active packaging, while remaining below the 
difference between the ADI and natural exposure, is enough to reach 
the minimal inhibitory concentration (MIC) of the targeted 
microorganisms [EC 450/2009 (50)] (Figure 2). The use of modeling 
tools, taking into account the release and migration (for volatile 
molecules) or diffusion characteristics (for non-volatile molecules) of 
the AC in defined storage conditions (temperature, duration) of the 
product, as well as MIC for the targeted microorganisms allows 
precise determination of the quantities of antimicrobial agents to use 
in packaging to preserve the food product from deterioration (13, 72). 
For some molecules with high odor or taste, such as essential oils, the 
quantity of AC to use should be below the odor threshold and avoid 
organoleptic modifications (Figure 2), as stipulated in the European 
regulations [1935/2004 EC (73)] and [EC 450/2009 (50)].

TABLE 2 The various scavenger and releasing systems developed for food applications (51, 52).

Type of system Absorbed or released 
molecules

Potential uses of the 
active packaging

Shelf-life gain 
examples

References

Scavenger Oxygen Prevent aerobic microbial and 

mould spoilage, oxidation, 

rancidity, color change, vitamin 

loss

3–9 days (bakery products) (53)

Carbon dioxide Absorb the excess CO2 produced 

by fermented and respired 

products

Up to 14 days (strawberries) (54)

Moisture Prevent microbial and mold 

growth, maintain low humidity 

for dry and respired products

Up to 60 days (Portuguese 

cheese)

(55)

Ethylene Reduce ripeness and senescence 

for F&V

Up to 14 days (bananas) (56)

Releasing Carbon dioxide Prevent microbial and mold 

growth

2 days (cod fillets) (57)

Ethanol 16 days (bread) (58)

Antimicrobial compounds Up to 14–15 days (beef meat) (59)

Antioxidant compounds Prevent lipid and vitamin 

oxidation

4 weeks (corn oil) (60)
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3.2. Strategies for active functionality 
incorporation

The impact of antimicrobial compounds, such as essential oil, on 
microorganism inhibition in food is dependent on the release and 
migration capacity of the molecules, and as a consequence on (1) the 
strategy of AC incorporation in the polymer material, (2) the 
volatility of the AC, and (3) the interactions and bonds between the 
component and the polymer material (74, 75). Indeed, different 
authors have shown that a film containing a homogenous 
concentration of AC throughout generated a slower and more 
sustained release than a film with an active coating concentrating the 
entire quantity of AC on the film surface (Figure 3) (76–78). This 
structure of AP and strategy of AC incorporation impact the 
preservative action of the AC on the food (Figure 4). For example, 
Wicochea-Rodríguez et  al. (79) showed a four-fold lower release 
constant for carvacrol included in soy protein isolate film compared 
with the equivalent solution (carvacrol in soy protein isolate) coated 
on paper. Moreover, the authors also showed that the production of 
the same films with eugenol instead of carvacrol considerably 
increased the release of the molecule (release rate constant 100 times 
higher) due to the higher volatility of the molecule and lower 
retention by polymer, thereby inducing a different mechanism 
of release.

The choice to integrate AC throughout versus on the surface of 
polymers can also generate different degrees of loss of the molecules, 
depending on the production processing. Indeed, integration of AC 
directly in the polymer usually implies that the AC is subjected to 
thermal processes, such as extrusion or compression molding, 
meaning that highly sensitive molecules can be  degraded, thus 
reducing their antimicrobial activity. By contrast, integration of AC on 
the surface of the polymer usually implies no thermal coating process, 
such as a bar, knife, spray coaters, or electrospinning, which preserves 
AC and its antimicrobial activity. The main principle of both of these 
physical incorporation methods is that the active components are 
physically contained or dispersed within the packaging material. 
These methods do not involve any chemical reactions or modifications 
of the active components, unlike sol–gel processes, surface 

immobilization, cross-linking, and covalent binding methods that 
involve chemical reactions (covalent and non-covalent bonds) 
between antimicrobial molecules and the film surface (77, 78, 80). The 
advantages and disadvantages of these incorporation methods are 
listed in Table 3.

To overcome the issue of thermal degradation during 
thermomechanical shaping processes, attention has been given in the 
past two decades to different encapsulation strategies. Beyond 
mitigation and protection of AC from thermal degradation during 
packaging production, encapsulation may also help to control the 
release of the active molecules, especially if they are volatiles, and it is 
also used for that purpose (86). The term “encapsulation” was defined 
by Becerril et al. (87) and Stoleru and Brebu (88) as the technique that 
permits a substance (the active agent) to be  encapsulated within 
another, resulting in tiny particles, the contents of which are gradually 
released under certain conditions. Hence, encapsulation strategies 
permit savings in regard to some active components as it is no longer 
necessary to compensate for the AC thermal degradation by spiking 
the initial load of AC in the material. In the same way, it allows 
minimization of the negative impact of the EOs on odors and 
organoleptic characteristics of the food products (89–91). Finally, 
encapsulation allows AC losses during storage (e.g., AC trapped into 
a polymer capsule) to be avoided and to trigger the release only when 
it is necessary, e.g., in food contact by action of humidity for instance 
as is the case for cyclodextrin-based capsules (92). Various carriers 
have been tested to develop encapsulation strategies, such as 
cyclodextrins, (nano)clays, nanofibers, and nanoparticles, all of which 
exhibit some advantages and disadvantages, as listed in Table  4 
(87, 94).

4. How to reach the right balance of 
antimicrobial properties during the 
usage stage and biodegradation in the 
post-usage stage

To design bioactive and biodegradable packaging, it is crucial to 
consider the impact of natural antimicrobial components in polymers 

FIGURE 2

Principle of antimicrobial compound dimensioning.
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on the degradation capabilities of the entire packaging. Thus, it is 
necessary to achieve the right balance between the antimicrobial 
characteristics of packaging materials to increase the food shelf-life 
during the usage phase and the biodegradation of packaging during 
the post-usage phase. The influences of the incorporated bioactive 
components on the biodegradation properties of active biobased 
materials are reviewed in Table 5.

All studies (Table 5) showed that the impact of active components 
on polymer biodegradation was due to either (1) the antimicrobial 
activities of the AC or (2) modification of polymer properties owing 
to the presence of AC (132, 133).

In the first case, essential oils and natural bioactive components have 
a high probability to hamper the biodegradation of biopolymers, as they 
are per se antimicrobial compounds and poorly biodegradable due to the 

FIGURE 4

The various film structures and active volatile compound incorporation strategy (Active Compound Throughout and Active Compound in a surface 
coating) in packaging.

FIGURE 3

Hypothetical dependence of the active functionality incorporation methods, meaning (1) in coated and (2) “Throughout” material on the migration of 
AC and biodegradation of the film.
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presence of quaternary carbon atoms and fused or bridged ring systems 
(134). Most of these AC are extracted from thyme, mint, sage, parsley 
seed, and spearmint oil, and they are toxic to microorganisms, including 

those involved in biodegradation (135, 136). Various effects can 
be expected: a delay in the biodegradation kinetics (time lag) without 
further impact on the biodegradation rate, a slowing down of the 

TABLE 3 Advantages and disadvantages of physical and chemical active functionality incorporation methods.

Methods Definition Advantages Disadvantages References

Physical

Extrusion Continuous production of material by 

melting polymer and pushing it through 

the rotating screw
Low cost, high-volume production, 

suitable for different types of 

polymers, obtaining of a homogenous 

material

AC can be degraded due to the applied 

temperature in the process
(77)

Compression 

molding

Production of the film by applying 

pressure on pre-positioned polymer in the 

mold between hot plates

Solution casting Casting a polymer-dissolved solution on 

support where it solidifies thanks to the 

volatility of the solvent

Non-thermal process suitable for 

throughout formulations and coating

Use of solvents potentially toxic, 

difficulty to obtain a homogeneous 

material

(77, 81)

Knife coating Spreading coating material on polymer 

support with a knife spreader
Simple, scalable, low cost

Use of solvents potentially toxic, flat 

surface requirement, difficulty to obtain 

a homogeneous material

(77)

Spray coating Deposition of atomized droplets fluid as a 

coating on a polymer support

Bar coating Spreading coating material on a polymer 

support with a Mayer bar spreader

Simple, low cost

Limited scalability, use of solvents 

potentially toxic, flat surface 

requirement, difficulty to obtain an 

homogeneous material

Dip coating Immersion of the film substrate into a 

bath containing coating material followed 

by dwelling, withdrawal, and drying steps

Limited thickness control, use of 

solvents potentially toxic, difficulty to 

obtain a homogeneous material

Layer by layer Deposition of alternating layers of 

oppositely charged materials with wash 

steps in between

Low cost, suitable for large surface 

areas

Limited thickness control, a long 

processing time

(77, 82)

Spin coating Application of coating materials on a flat 

support by using centrifugal force

Low cost, thin and uniform coating, 

quick drying

Not scalable, use of solvents potentially 

toxic, flat surface requirement

(77)

Electrospinning/

spraying

Production of continuous nanoscale 

fibers/particles from polymer solution 

with the aid of a high-voltage electric field 

by pumping through a spinneret

Low cost, scalable, suitable for 

different types of polymers and AC

Use of solvents potentially toxic, 

difficulties in processing due to various 

impacts

(C (83).)

Chemical

Sol–gel process Formation of a gelatinous three-

dimensional network (gel) from inorganic 

colloidal suspension (sol) (solution 

containing – antimicrobial and precursor 

of the inorganic phase) through hydrolysis 

and condensation

High-quality materials with 

homogeneity and purity

Long processing time (77, 84)

Surface 

immobilization

Immobilization of AC on the film surface 

with materials that have compatible 

functional groups (proteins, enzymes, 

peptides, etc.)

Better stability and control of the AC 

release rate

Additional action could be needed to 

immobilize AC on the film surface 

(spacer, crosslinker); antimicrobial 

activity may be reduced due to the 

formed strong bonds.

(77)

Cross-linking Formation of covalent bonds or ionic 

bonds to link the AC (with crosslinkers) 

to the polymer

Improvement of the thermal and 

mechanical stability of the material, 

modification of the release rate, and 

formation of a three-dimensional 

polymer network structure

Reduction of the bioactivity, increase 

the stiffness of the material, high cost

(85)
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biodegradation rate, or a decrease of the maximal biodegradation level, as 
shown in Figure 5. A combination of these three different impacts may 
also occur. An impact on the disintegration (the first step of the 
biodegradation process before assimilation by the microorganisms) has 
also been reported (108).

For instance, Tampau et al. (107), showed that biodegradation of 
a starch/PCL/starch multilayer containing carvacrol (15 wt.% PCL) in 

compost remained incomplete, with a maximum of 85%, after 45 days 
compared to the starch/PCL/starch film without carvacrol that is 
100% biodegraded in the same conditions and duration, while 
Piñeros-Hernandez et al. (104) showed that biodegradation of starch 
film containing between 5 and 20% rosemary extract (polyphenol) 
was retarded in compost conditions (Table  5) but that the final 
biodegradation level was not affected.

However, although a decrease in biodegradation because of 
antimicrobial activity of AC was often observed, the majority of 
studies cover only active packaging with a non-encapsulation AC 
throughout the entity (Table  5). Consequently, the impact of the 
incorporation strategies, i.e., encapsulation or not, coating vs. 
incorporation throughout, etc. is very absent from the literature. 
Indeed, the presence of the AC on the surface of the packaging instead 
of throughout the entity increases the release of the molecules during 
the usage stage (see Section 3.2). Therefore, biodegradation should 
be impacted less, as the concentration of AC is lower and the polymer 
is more available for microorganisms at the post-usage stage 
(Figure 3). In this vein, Mustapha et al. (64), showed that a decrease 
in the coating thickness of starch with turmeric oil induced an increase 
in biodegradation. Consequently, a high level of importance should 
be placed on the design of active packaging to find the best formulation 
allowing the shelf-life to be  increased without delaying the 

FIGURE 5

Different biodegradation scenarios for active biopolymers.

TABLE 4 Advantages and disadvantages of the various encapsulation strategies used for active packaging.

Type of carriers Definition Advantages Disadvantages References

Cyclodextrins The AC is trapped in cyclic 

oligosaccharides with a 

truncated cone shape, 

including an inner hydrophobic 

core and outer hydrophilic 

shell.

➔Highly effective control of the 

AC release, CDs are opened 

with high humidity

➔Suitable to encapsulate 

hydrophobic ACs

➔Stabilization of the volatile 

compounds

➔High price (76, 92–94)

Nanoclays The AC is trapped in a 

nanoparticle of mineral 

silicates (diameter size < 

100 nm) with varying chemical 

compositions and 

morphologies (e.g., halloysite, 

montmorillonite, etc.).

➔Natural

➔Low price

➔Continuous release of the AC

➔Capacity to absorb volatile 

substances, such as off-flavors 

and off-odors

➔Migration capacity of clays: 

problematic for consumer safety

(95–97)

Nanofibers The AC is trapped in fibers 

(1 nm < diameter size < 1 μm) 

produced by electrospinning 

techniques (use of an electric 

field on polymer solutions) and 

can be coated on a substrate or 

interlayers of biopolymer films.

➔Effective for trapping and 

release of the AC

➔High loading capacity

➔Low price

➔Difficult process because 

dependent on polymer and solvent 

characteristics, as well as processing 

parameters and environmental 

conditions, to obtain fibers with 

relevant morphologies (size, shape)

(83, 98, 99)

Biopolymeric carriers: 

nanospheres, nanocapsules

The AC is directly trapped 

inside a nanocarrier core 

encased in a thin polymer layer.

➔Biodegradable

➔Non-toxic

➔Low price

➔Controlled release of AC

➔Improved functional 

properties of the AP

➔Stabilization of the volatile 

compounds

➔Utilization of toxic solutions in 

production

➔Well suited to lab scale, but 

difficult to upscale

(100, 101)
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TABLE 5 Effects of bioactive components on the antimicrobial/antioxidant activity and biodegradation of biopolymers.

Polymer/
Composite

Production 
method

Formulation 
strategy

Bioactive 
component

Antimicrobial/
Antioxidant effect

Biodegradation 
condition

Biodegradation rate AA or MP 
effect

Reference

Delayed and/or slowed down

Gliadin Casting Throughout Cinnamaldehyde - Compost Biodegradation rate decreased as the 

% of cinnamaldehyde increased

MP (102)

Starch-PVA Casting Throughout Neem EO, Oregano EO - Compost EOs slightly decreased the 

biodegradation rate, especially 

Oregano EO

MP (103)

Chitosan Casting Throughout Buriti oil S. aureus, E. coli, P. 

aeruginosa

Soil Biodegradation rate decreased with 

increasing Buriti oil content, 

explained by increasing 

hydrophobicity with EO

MP (63)

Starch Casting Throughout Rosemary extract Antioxidant activity Compost Biodegradation rate decreased by the 

presence of RE (time lag)

AA (104)

Starch/Cassava/

Sugarcane

Compression molding Throughout Oregano EO S. aureus, E. coli Soil Biodegradation rate decreased with 

increasing Oregano EO %, explained 

by increasing hydrophobicity with EO

AA (105)

Starch/PCL/Starch Compression molding/

Electrospinning

Throughout/Multilayer 

film

Carvacrol E. coli Compost Slower biodegradation rate AA (106, 107)

PHBV/PLA-PHB Electrospinning Throughout/Bilayer film Catechin Strong antioxidant activity Compost Slightly slower disintegration rate AA (108)

Cassava/CMC Casting Coating Turmeric A. niger Compost 15 μL TEO slowed the disintegration 

rate

(64)

PHB/PHA Casting Throughout Grape seed lignin Antioxidant activity Compost High % of lignin slowed the 

biodegradation rate

AA (109)

Chitosan/Pigskin 

gelatin and Chitosan

Casting Throughout Boldo-do-Chile extract Psychrotrophic 

microorganisms, antioxidant 

activity

Compost Disintegration time reduced MP (110–112)

PHB Casting Throughout Eugenol Salmonella sp., S. aureus, E. 

coli and A. niger

Agricultural, sandy, and 

landfill soil

Biodegradation in sandy soil was 

slower than in other soil types

(113)

Pectin Casting Nanoemulsions/

Throughout

Copaiba S. aureus, E. coli Soil Slower biodegradation rate AA (114)

Chitosan Casting Throughout Quercus extract B. subtilis, antioxidant 

activity

Industrial compost, 

vineyard soil, and 

garden soil

QE reduced the biodegradation rate 

in all soil types

AA (115)

Gelatin Casting Throughout Citrus lignocellulosic 

fibers

B. subtilis, S. aureus, E. coli, 

P. aeruginosa, C. albicans, 

strong antioxidant

Soil Increasing ratios of fibers decreased 

the biodegradation rate

MP (116)

(Continued)
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Polymer/
Composite

Production 
method

Formulation 
strategy

Bioactive 
component

Antimicrobial/
Antioxidant effect

Biodegradation 
condition

Biodegradation rate AA or MP 
effect

Reference

Chitosan/Cin/Chitosan Casting Coating/Multilayer film Cinnamon S. aureus, E. coli Soil Biodegradation rate of the films with 

0.5% Cinnamon EO reduced

MP (117)

PLA/PCL Casting Throughout Green tea extract Antioxidant activity Compost GTE with 30 wt.% decreased the 

biodegradation

MP (118)

Accelerated

PLA-PHB Compression molding Throughout D-Limonene - Compost D-limonene accelerated the 

disintegration of the PLA-PHB-D-

limonene blends

MP (119)

PLA/Ag Extrusion, injection 

molding

Throughout Thymol - Compost Thymol increased the biodegradation 

rate

MP (120)

PLA/Cellulose 

Nanocrystals

Extrusion Throughout Lignin Xhanthomonas axonopodis 

pv. vesicatoria and 

Xhantomonas arboricola pv. 

pruni

Compost Increased biodegradation rate of the 

composites with 3 wt.% lignin

(121)

Starch Casting Throughout Yerba mate extract - Compost YME increased the biodegradation rate MP (122)

Bean starch Casting Throughout Cocoa nibs extract Strong antioxidant Compost CNE increased the biodegradation rate MP (123)

PCL Extrusion Throughout Grape seed extract L. monocytogenes Soil GSE increased the biodegradation rate MP (124)

PLA/Organoclay Extrusion Supercritical 

impregnation of the ACs 

in PLA/Organoclay

Thymol, 

Cinnamaldehyde

S. aureus, E. coli Compost Both thymol and cinnamaldehyde 

increased the biodegradation rate

MP (125)

PLA Casting Throughout Cocoa bean shells Strong antioxidant Water CBS presence increased the 

biodegradation rate

MP (126)

PLA Casting Throughout Propolis E. coli, antioxidant activity Soil Propolis addition increased the 

biodegradation rate

(127)

PLA/Nanoclay Compression molding Throughout/Nanoclay Thymol S. aureus 8,325–4, E. coli Compost Nanoclay increased the 

biodegradation rate

MP (65)

PLA/Nanofibrillated 

cellulose

Casting Throughout/Nanoclay Thymol, Curry Fungal growth Soil Thymol and NFC increased the 

biodegradation rate

MP (128)

Non affected

Starch Casting Nanoemulsions/

Throughout

Lemongrass EO S. aureus, E. coli Compost LEO addition did not affect the 

biodegradation

- (129)

Bacterial cellulose Casting Throughout Lauric acid B. subtilis Compost Biodegradation was not affected by 

LA addition

- (130)

PLA/CNC/Chitosan Extrusion, 

Electrospinning, 

Coating

Throughout/Multilayer 

film

Ethyl lauroyl arginate L. innocua, S. enterica Compost LAE presence did not reduce the 

biodegradation rate

- (131)

AA, antimicrobial activity; MP, modified properties.

TABLE 5 (Continued)
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biodegradation of the material. For this, mathematical modeling could 
be developed, coupling the alteration of the microorganism’s growth 
in food and their impact on the product shelf-life, as well as the 
growth of the biodegradation microorganism and the impact on the 
end-of-life of the material.

In the second case, the addition of AC in polymers can either 
reduce or increase the polymer biodegradation due to modification 
of their properties. A decrease in biodegradation can be due to an 
increase in the molecular weight or hydrophobicity, or a decrease in 
flexibility, as has been observed with the presence of cinnamaldehyde 
(1.5 wt.% to 5 wt.%) in gliadin film during compost (102) or 
cinnamon (0.5 wt.%) in chitosan/starch film during biodegradation 
in soil (117). Indeed, EOs formed bonds with the polymer chains, and 
this cross-linking increased the glass transition temperature. It also 
restricted the entrance of water into the polymer matrix, which led 
to less swelling and lower water vapor diffusion coefficients. By 
contrast, the increase in biodegradation can be due to an increase in 
hydrophilicity, thermal stability, and chain mobility and a decrease in 
the molecular weight and crystallinity, as has been observed with the 
presence of green tea extract (from 10 to 30%) in PCL/PLA film in 
compost (118), or olive pomace (15%) in PHBV film during 
biodegradation in soil (137). It should be noted that AC encapsulated 
in nano clays, such as thymol in PLA-based nano-composites, 
cinnamaldehyde in PLA/organoclay, or curry/thymol in 
nanofibrillated cellulose/PLA, led to an increase in the film’s 
biodegradation owing to higher sensitivity to hydrolysis of the 
polymeric chains, which highlights the relevance of encapsulation of 
the AC (65, 125, 128). However, the impact of AC on the 
biodegradation of the polymer can differ due to the amount of the 
AC and reach a breaking point with an increase/or decrease of the 
AC quantity, whereby polymer biodegradation can decrease because 
of significant deterioration of the polymer properties. For example, 
the presence of 20 wt.% green tea extract in PCL/PLA accelerated the 
biodegradation of the entire material owing to increased 
hydrophilicity, but 30 wt.% green tea extract in PCL/PLA decreased 
the biodegradation of the entire material owing to an increase in 
crystallinity (118). By contrast, the integration of 3 wt.% lignin into a 
cellulose nanocrystals/PLA system resulted in acceleration of the 
disintegration of the film, but the presence of only 1 wt.% lignin in 
the system resulted in slower biodegradation due to a higher degree 
of crystallization of the material (121).

Finally, in some rare cases, the presence of AC in the polymer did 
not impact the biodegradation of the entire material, as observed with 
lemongrass EO and lauric acid in starch (129, 130), and ethyl lauroyl 
arginate (LAE) in a PLA/PLA-LAE/PLA-CNC/Chi structure (131).

Beyond AC incorporation that results in modification of the 
polymer properties, conditions met during biodegradation also 
affect the biodegradation rate (humidity, nature of the soil, etc.). 
Therefore, the type of active molecules, their incorporation strategy, 
their interaction with polymer, and on polymer properties, are 
among the many parameters that can affect (positively or negatively) 
the biodegradation of the bioactive material and should hence 
be  taken into account. Beyond these observations, the 
comprehension of the interactions of these different parameters still 
needs to be deepened to better design active packaging, allowing 
for an increase in food shelf-life by maintaining or even enhancing 
the biodegradation of the packaging.

5. Conclusion

The continuous increase in plastic accumulation and 
production worldwide, and the very substantial environmental 
impact of food loss and waste, are the main reasons for improving 
the overall sustainability of food packaging materials. Therefore, 
an appropriate choice of material is paramount to tailoring 
sustainable food packaging. The use of materials derived from 
biobased sources, which do not compete with food and feed 
resources, has resulted in bioprocessing for environmentally 
friendly production. They are fully biodegradable by ensuring 
their digestibility under natural conditions, as is the case for 
PHAs, and they are showing great promise to enhance 
sustainability. Furthermore, bioactive materials help preserve food 
by minimizing deterioration, such as microbial development or 
oxidation, consequently reducing food loss and waste and its 
negative environmental impact. However, to design efficient 
antimicrobial packaging, the AC has to be present in sufficient 
quantity to reach the minimal inhibitory concentration of target 
microorganisms without surpassing the admissible daily intake. 
To achieve this goal, various strategies for the incorporation of AC 
in film (coating or throughout the polymer) have been developed 
with different encapsulation options, thereby enabling control of 
the release of the AC. However, it is crucial to achieve a proper 
equilibrium between antimicrobial functions during usage and 
biodegradability in the post-usage phase. Yet, in the case of 
natural active components (EOs, plant extracts, etc.), it has been 
shown that the amount and type of added AC, its incorporation 
strategy into the polymers, and its impact on the polymer’s 
properties can either positively or negatively impact the 
biodegradation properties of the biopolymer. Consequently, in the 
future, better comprehension and prediction of the impact of AC 
on the shelf-life of products and biodegradation of the material 
should be considered as a whole, through the use of modeling 
tools, to better design sustainable packaging.
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