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Uncertainty propagation in a modelling chain of climate change impact for a representative French drainage site

Introduction

The successive Intergovernmental Panel on Climate Change (IPCC) reports state that the large majority of hydrological systems will be significantly impacted by climate change [START_REF] Ipcc | Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects[END_REF][START_REF] Ipcc | Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF] in the 21 st century, which constitutes a real challenge for stakeholders and decisionsmakers involved in the management of water resources. Among the possible changes, scientists predict that both flood and drought events will increase in magnitude and frequency [START_REF] Garner | Hydroclimatology of extreme river flows[END_REF][START_REF] Kundzewicz | Flood risk and climate change: global and regional perspectives[END_REF][START_REF] Prudhomme | Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment[END_REF].

Subsurface drainage is a soil management technique that consists in introducing a network of perforated pipes into the ground to facilitate water infiltration, to evacuate excess water, and to reduce surface runoff [START_REF] Henine | Coupled modelling of the effect of overpressure on water discharge in a tile drainage system[END_REF][START_REF] Tuohy | The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate[END_REF]. This technique is particularly useful in soils affected by infiltration issues such as hydromorphic soils [START_REF] Baize | Guide pour la description des sols[END_REF][START_REF] Jamagne | Bases et techniques d'une cartographie des sols[END_REF][START_REF] Lange | Runoff-generating processes in hydromorphic soils on a plot scale: free gravity-driven versus pressure-controlled flow[END_REF]Thompson et al., 1997). Although subsurface drainage has been less studied than conventional hydrology, i.e., at the catchment or the regional scale [START_REF] Arnell | The impacts of climate change on river flood risk at the global scale[END_REF][START_REF] Khaliq | Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers[END_REF], the literature states that this system is also affected by climate change. According to published results, the annual drained water balance is expected to evolve in contrasting ways depending on the location studied [START_REF] Dayyani | Impact of Climate Change on the Hydrology and Nitrogen Pollution in a Tile-Drained Agricultural Watershed in Eastern Canada[END_REF][START_REF] Golmohammadi | Assessment of Impacts of Climate Change on Tile Discharge and Nitrogen Yield Using the DRAINMOD Model[END_REF][START_REF] Jiang | Assessing climate change impacts on greenhouse gas emissions, N losses in drainage and crop production in a subsurface drained field[END_REF][START_REF] Mehan | Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed[END_REF][START_REF] Pease | Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin[END_REF]Sojka et al., 2020). The sustainability of subsurface drainage systems, i.e., their capacity to correctly fulfil their purpose, is questioned [START_REF] Abd-Elaty | Effects of climate change on the design of subsurface drainage systems in coastal aquifers in arid/semi-arid regions: Case study of the Nile delta[END_REF][START_REF] Deelstra | Climate change and subsurface drainage design: results from a small fieldscale catchment in south-western Norway[END_REF]Sojka et al., 2020). If the design of drainage networks is not adapted to future climate conditions, current crops might be exposed to more harmful runoff events or to additional water requirements due to a growing demand for crop water, potentially leading to increasing irrigation needs [START_REF] Grusson | Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need[END_REF].

In France, subsurface drainage is used in almost 10% of arable soils (ICID, 2021) and it plays an important role in the environment and in the dynamics and quality of water resources [START_REF] Lebrun | Ecodynamics and bioavailability of metal contaminants in a constructed wetland within an agricultural drained catchment[END_REF]Tournebize et al., 2012[START_REF] Dairon | Long-term impact of reduced tillage on water and pesticide flow in a drained context[END_REF]. In order to improve subsurface drainage management in a sustainable manner, it is therefore essential to assess and understand its functioning under climate change.

In such a context, hydrological modelling is a necessary tool for predicting future drainage discharge. Hydrological models are included in modelling chains ranging from greenhouse gas emission scenarios to hydrological indicators. Today, it is recognized that the use of several elements for each step of these modelling chains is an efficient way to improve the robustness of the predictions and to account for uncertainty. This methodology is known as a "multimodel ensemble approach" (MME). Furthermore, an essential task in assessing the accuracy of these predictions is to estimate the contribution of each MME step to the total uncertainty [START_REF] Deser | Uncertainty in climate change projections: the role of internal variability[END_REF][START_REF] Hawkins | The Potential to Narrow Uncertainty in Regional Climate Predictions[END_REF], 2011;[START_REF] Kundzewick | The implications of projected climate change for freshwater resources and their management[END_REF][START_REF] Lafaysse | Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin[END_REF][START_REF] Vetter | Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins[END_REF]. This estimation constitutes vital information for the allocation of research and development resources [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF][START_REF] Northrop | Quantifying Sources of Uncertainty in Projections of Future Climate[END_REF] aimed at improving the predictions.

MME uncertainties are regularly estimated by methods based on analysis of variance (ANOVA) approaches, i.e., variance decomposition analyses [START_REF] Addor | Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments[END_REF][START_REF] Dallaire | Uncertainty of potential evapotranspiration modelling in climate change impact studies on low flows in North America[END_REF][START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF][START_REF] Kujawa | The hydrologic model as a source of nutrient loading uncertainty in a future climate[END_REF][START_REF] Lafaysse | Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin[END_REF][START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF]. ANOVA approaches enable the quantification of the relative contribution of each MME step to the total uncertainty. In climate impact studies, uncertainty is introduced at each modelling step by errors in the representation of the climate system, scenarios uncertainties, and natural variability. Thus, major sources arise from: (1) the representative concentration pathways (RCPs, van Vuuren et al. (2007)) corresponding to the greenhouse gas emission scenarios; (2) the general circulation models (GCMs, [START_REF] Mechoso | GENERAL CIRCULATION | Models[END_REF]; [START_REF] Phillips | The general circulation of the atmosphere: A numerical experiment[END_REF]; [START_REF] Randall | General Circulation Model Development: Past, Present, and Future[END_REF]) and the regional climate models (RCM, [START_REF] Liang | Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections[END_REF] for the climate projections (CPs); (3) the hydrological models (HM) and their parameters (XHMs); and (4) the internal variability of climate. In terms of relative contributions, the literature regularly states that GCMs and RCMs represent the two main sources of uncertainty in both climatic and hydrological indicators [START_REF] Engin | Assessing different sources of uncertainty in hydrological projections of high and low flows: case study for Omerli Basin, Istanbul, Turkey[END_REF][START_REF] Habets | Impact of climate change on the hydrogeology of two basins in northern France[END_REF][START_REF] Parajka | Uncertainty contributions to low-flow projections in Austria[END_REF]. The hydrological components play a significant role in the total uncertainty too, especially in low flows [START_REF] Dallaire | Uncertainty of potential evapotranspiration modelling in climate change impact studies on low flows in North America[END_REF][START_REF] Engin | Assessing different sources of uncertainty in hydrological projections of high and low flows: case study for Omerli Basin, Istanbul, Turkey[END_REF][START_REF] Vetter | Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins[END_REF], but with a lower contribution.

The number of components per MME step that is necessary or available is one of the strongest limitations of ANOVA approaches, because the larger the number, the more accurate the uncertainty estimates [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF][START_REF] Hingray | Uncertainty component estimates in transient climate projections[END_REF]. In the same way, having all the combinations between all the members from every step can substantially improve the accuracy of the estimates, but this is rarely the case. For example, if the projections are based on three GCMs and five RCMs, having all 3x5 = 15 GCM/RCM couples will improve uncertainty estimations; however, some of the possible combinations are generally missing due to calculation time. To tackle this issue, [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF] used a method based on Bayesian data augmentation techniques to fill incomplete ensembles, as part of the QUALYPSO method available in the "QUALYPSO" R package [START_REF] Evin | QUALYPSO: Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections[END_REF]. This method is recommended because it provides better results for estimates of uncertainty components [START_REF] Hingray | Uncertainty component estimates in transient climate projections[END_REF].

In their study, [START_REF] Jeantet | Effects of Climate Change on Hydrological Indicators of Subsurface Drainage for a Representative French Drainage Site[END_REF] assessed the future of subsurface drainage hydrology at the plot scale on the Jaillière site, which is representative of French subsurface drainage [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF]. However, they used a limited MME with only one hydrological model, and they did not provide a detailed evaluation of uncertainty propagation from the modelling chain used.

The present paper aims to complete the study by [START_REF] Jeantet | Effects of Climate Change on Hydrological Indicators of Subsurface Drainage for a Representative French Drainage Site[END_REF] by assessing the uncertainty propagation from the greenhouse gas emission scenarios to the hydrological indicators (HIs) through the use of a more exhaustive MME. The results will complete their conclusions and provide more accurate knowledge on the future of French subsurface drainage.

Moreover, because the literature has poor descriptions of uncertainty propagation from modelling chains simulating future subsurface drainage hydrology under climate change, we believe that this paper will provide additional knowledge on this topic.

Materials and methods

Study site

The La Jaillière site is an experimental station located in the Loire-Atlantique region in western France [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF]. It was managed by the Cemagref and ITCF institutes between 1987 and 1999, and has been under the management of the Arvalis-"Institut du végétal" (Institute of Plant Sciences in France) since 1999. The soil of La Jaillière is hydromorphic and brown and belongs to the Luvisol category [START_REF] Dairon | Long-term impact of reduced tillage on water and pesticide flow in a drained context[END_REF][START_REF] Micheli | World reference base for soil resources: 2006: a framework for international classification, correlation and communication[END_REF]. It is representative of approximately 80% of French drained areas [START_REF] Lagacherie | Synthèse générale sur les études de secteurs de référence drainage[END_REF]. The site is one of the EU agricultural experimental study sites for the assessment of the dynamics of active pesticide substances in drained soils [START_REF] Focus | FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC[END_REF]. Our study focused on plot T04 [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF], which covers 0.9 ha and is composed of four soil horizons (Table 1): two shallow horizons with a silty-sandy soil texture (16-20% clayey) and two deeper horizons with a silty-clayey texture (>30% clayey).

The climate in the study site is oceanic with an annual total precipitation and an annual total potential evapotranspiration, respectively, of 709 mm and 738 mm, and with an annual mean air temperature of approximately 11 °C [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF]. A subsurface drainage system composed of perforated polyvinyl chloride (PVC) pipes drains the plot, with an inter-drain spacing of 10 m at an average depth of 0.9 m. The water-holding capacity was estimated to be 104 mm [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF]. The crop system is a 2-year rotation of winter wheat and maize.

Winter wheat is cultivated from the second half of October to the second half of July, while maize is cultivated from late April / early May to September. Cover crops are used once every 2 years in the period included, from the harvest of winter wheat to the sowing of maize. The surface runoff is deemed negligible on this site [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF][START_REF] Kuzmanovski | Modeling water outflow from tile-drained agricultural fields[END_REF] and thus it was not studied here.

Input data

Three RCPs were considered in the present study: the very stringent pathway, RCP2.6 (van Vuuren et al., 2007); the intermediate pathway, RCP4.5 (Thomson et al., 2011); and the most severe "business-as-usual" pathway, RCP8.5 [START_REF] Riahi | RCP 8.5-A scenario of comparatively high greenhouse gas emissions[END_REF]. They were used to constrain six GCMs coupled with nine RCMs to obtain climate projections (CPs). Owing to the computation time limitations in generating the CPs, only 12 GCM/RCM couples were considered for every RCP (see other uses in [START_REF] Jeantet | Effects of Climate Change on Hydrological Indicators of Subsurface Drainage for a Representative French Drainage Site[END_REF]; [START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF]Soubeyroux et al. (2021)), accounting for a total of 30 CPs (Table 2). They were extracted from the CMIP5 Euro-Cordex project [START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF], and selected by Météo-France to ensure the representativeness of future conditions in France. Post-treatment through the ADAMONT method [START_REF] Verfaillie | The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models[END_REF] was carried out on the CPs, first to correct bias using the quantile-quantile mapping method [START_REF] Maurer | The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California[END_REF][START_REF] Navarro-Racines | High-resolution and bias-corrected CMIP5 projections for climate change impact assessments[END_REF][START_REF] Potter | Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections[END_REF], and second to downscale the CPs to a regular grid of 8 km × 8 km. CPs are available at a daily time step from August 1, 1975 to July 31, 2099 and were split into a historical period ) and a future period . This dataset belongs to the national Drias climate service (http://www.drias-climat.fr/) and is documented by Soubeyroux et al. (2021).

Because the year 2005 is the transitional year between the two periods, we excluded it from the analyses. The climatic variables considered in this study were precipitation (P), potential evapotranspiration (PE) based on the FAO-56 Penman-Monteith formulation [START_REF] Córdova | Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data[END_REF], and daily mean air temperature (T). As La Jaillière is under an oceanic temperate climate, and therefore barely faces snow falls, the solid and liquid parts of the precipitation were not distinguished.

Subsurface drainage hydrological modelling

Three hydrological models for subsurface drainage were used in this study: the SIDRA-RU model, specifically developed to simulate subsurface drainage in France [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF][START_REF] Jeantet | Robustness of a parsimonious subsurface drainage model at the French national scale[END_REF]; the DRAINMOD model, currently used in the United States for assessment of drainage systems [START_REF] Brown | Calibration and validation of DRAINMOD to model bioretention hydrology[END_REF]Skaggs, 1981;Skaggs et al., 2012); and the MACRO model, used in Europe by the "Forum for Co-ordination of Pesticide Fate Models and Their Use" to assess agrochemical leaching, e.g., pesticide, in drained areas (FOCUS) [START_REF] Adriaanse | Surface water models and EU registration of plant protection products[END_REF][START_REF] Beulke | Macro: A Preferential Flow Model to Simulate Pesticide Leaching and Movement to Drains[END_REF][START_REF] Jarvis | MACRO-DB: a decision-support tool for assessing pesticide fate and mobility in soils[END_REF]. These models, based on different concepts, use the principle of rainfall-discharge conversion and are fed by daily P(t) and PE(t) to predict daily drainage discharge Q(t) at the drainage network outlet.

The SIDRA-RU model

The SIDRA-RU model is a four-parameter lumped and semi-conceptual model composed of two modules. First, the conceptual module RU (réserve utile, for water-holding capacity in French) converts the net precipitation 𝑃 𝑛𝑒𝑡 , i.e., the total P reduced by PE, into a daily recharge R(t) term, according to two main parameters 𝑆 𝑖𝑛𝑡𝑒𝑟 (mm) and 𝑆 𝑚𝑎𝑥 (mm), an approximate concept of the water-holding capacity. Second, the physically-based SIDRA module (simulation du drainage, for drainage simulation in French) converts R(t) into Q(t), following the Boussinesq equation [START_REF] Boussinesq | Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources[END_REF] mainly driven by two parameters: saturated hydraulic conductivity 𝐾 𝑠𝑎𝑡 (m.d -1 ) and drainage porosity µ (-). Compared with DRAINMOD and MACRO (see below), the SIDRA-RU model considers that the soil profile is approximated by one single block not distinguishing the soil layers (Table 1), lying on an impervious layer that prevents deep infiltration underneath. A detailed description of the model is provided in [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF] and [START_REF] Jeantet | Robustness of a parsimonious subsurface drainage model at the French national scale[END_REF].

The DRAINMOD model

DRAINMOD is a one-dimensional physically-based model running at different spatial scales [START_REF] Brown | Calibration and validation of DRAINMOD to model bioretention hydrology[END_REF][START_REF] Konyha | A Coupled, Field Hydrology -Open Channel Flow Model: Theory[END_REF] and distributed on the soil profile distinguishing each soil layer separately (Table 1). Several modules make up the DRAINMOD model, allowing users to choose the physical processes to be included in the simulation. Here, we only detail the modules required to simulate subsurface drainage discharge, as a more complete description is provided in Skaggs et al. (2012). First, the model solves the water balance using:

(1) the van Genuchten equations on each soil layer [START_REF] Van Genuchten | A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[END_REF]; (2) the Green-Ampt equation for the infiltration [START_REF] Green | Studies on Soil Physics: Part I[END_REF]and (3) the relations between water table height, drained water balance, and upward flux (Skaggs, 1981). These equations are provided in the Appendix A (Eq. ( A1), (A2), (A3), (A4) and (A5)). Second, the drained discharge is simulated following the saturation state of the soil. When the profile is saturated, the Kirkham equation (van Schilfgaarde et al., 1957) is used, considering that a large proportion of water is infiltrated into the soil by flow lines concentrated next to the drains. Otherwise, the Kirkham equation is no longer valid because the water table reaches the surface only next to the mid-drain, i.e., the midpoint between consecutive drains. Therefore, the water table shape is assumed to be elliptic and the drained discharge is calculated using the Hooghoudt equation [START_REF] Hooghoudt | General consideration of the problem of field drainage by parallel drains, ditches, watercourses, and channels. Contribution to the Knowledge of Some Physical Parameters of the Soil[END_REF].

The MACRO model

MACRO is a one-dimensional dual-permeability physically-based model used for water flow and solute transport in drained areas [START_REF] Larsbo | MACRO 5.0. A model of water flow and solute transport in macroporous soil[END_REF][START_REF] Larsbo | An Improved Dual-Permeability Model of Water Flow and Solute Transport in the Vadose Zone[END_REF]. Like DRAINMOD, the MACRO model is distributed on the soil profile distinguishing each soil layer separately (Table 1). A special feature of this model is that each soil layer is divided into digital sub-layers, from 60 to 200, to refine the vertical distribution of the soil profile. Due to computation time limitations in simulating each sub-layer, this number was fixed to 60. The MACRO model is also made up of several modules, allowing users to integrate various processes to be modelled. A more complete description is provided in [START_REF] Larsbo | An Improved Dual-Permeability Model of Water Flow and Solute Transport in the Vadose Zone[END_REF].

First, the water balance is solved using the van Genuchten equations (see the Appendix A, Eq. ( A1) and (A2)) as with DRAINMOD. Second, the soil is partitioned into two fields for water flow and solute transport, distinguishing the micropores and the macropores: (1) in the micropores, an equilibrium water flow is calculated with the Richards equation and the convection-dispersion equations [START_REF] Moeys | Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO[END_REF]; (2) the macropores are integrated using a kinetic waveform equation [START_REF] Alaoui | Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil[END_REF] where the water flow is not equilibrated due to gravity. Finally, the drained discharge is calculated with the Richards equation when the soil is saturated and with the Hooghoudt equation otherwise.

It should be noted that for the three models, two strong assumptions were made to simplify the description of the system:  Surface runoff and deep seepage were not integrated in the simulations, assuming that they have no impact on the water balance in plot T04 of La Jaillière [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF];  In the SIDRA-RU model, current crops are neglected, assuming that they have no significant influence on the water balance [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF], unlike in DRAINMOD and MACRO, which integrate crops to estimate the actual evapotranspiration. However, due to computation time limitations in integrating the crop rotation, we shortened the description of current cultures for these last two models to a simple system based on corn, similar to half of the crop rotation in plot T04 of La Jaillière from 1999 to 2009 [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF];

Parameter calibration

The MACRO and DRAINMOD models usually require no calibration. The MACRO parameters are estimated by the FOOTPRINT pedotransfer functions from the HYPRES database [START_REF] Moeys | Functional test of FOOTPRINT pedotransfer functions for the dual-permeability model MACRO[END_REF][START_REF] Wösten | Development and use of a database of hydraulic properties of European soils[END_REF]. Regarding DRAINMOD, if the parameters cannot be measured in the study field, they are currently estimated with the ROSETTA pedotransfer function [START_REF] Schaap | ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[END_REF]Singh et al., 2006). However, to be consistent with SIDRA-RU, and in order to account for model parameter uncertainty, we considered here that the parameters from the van Genuchten equations (see the Appendix A, Eq. ( A1) and (A2)), namely, 𝜃 𝑠 , 𝜃 𝑟 , 𝛼, 𝑛, and 𝐾 𝑠𝑎𝑡 , required calibration. We applied the same calibration procedure to the three models, extracted from the "airGR" R package [START_REF] Coron | The Suite of Lumped GR Hydrological Models in an R package[END_REF][START_REF] Coron | airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling[END_REF]. The values of the non-calibrated parameters of DRAINMOD and MACRO were extracted from [START_REF] Dairon | Identification des processus dominants de transfert des produits phytosanitaires dans le sol et évaluation de modèles numériques pour des contextes agro-pédo-climatiques variés[END_REF], who studied plot T04 of La Jaillière. The Kling-Gupta efficiency (KGE') criterion [START_REF] Gupta | Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling[END_REF][START_REF] Kling | Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios[END_REF] was used as an objective function (OF) for the calibration.

The calibration algorithm is efficient but can become rather time-consuming if the number of parameters to calibrate is high. Therefore, we made assumptions about the soil system in both the DRAINMOD and MACRO models. Indeed, the van Genuchten parameters should initially be calibrated on the four soil layers of plot T04 (Table 1), i.e., 20 parameters per model. To speed up the calibration process, the soil system and the number of calibrated parameters were adjusted:

 In DRAINMOD: the number of soil layers was reduced to two, keeping the textural differentiation between the two top layers and the two bottom layers (Table 1).

Moreover, 𝜃 𝑟 and 𝛼 were fixed and their values were extracted from field data [START_REF] Dairon | Identification des processus dominants de transfert des produits phytosanitaires dans le sol et évaluation de modèles numériques pour des contextes agro-pédo-climatiques variés[END_REF], since they are not sensitive to the OF. The number of calibrated parameters in DRAINMOD was consequently reduced to six;  In MACRO: the number of soil layers was reduced to one and 𝜃 𝑟 was fixed and its value was also extracted from [START_REF] Dairon | Identification des processus dominants de transfert des produits phytosanitaires dans le sol et évaluation de modèles numériques pour des contextes agro-pédo-climatiques variés[END_REF]. The number of calibrated parameters in MACRO was reduced to four.

The calibrated parameters are available in the Appendix A, Table A1. The models were calibrated against observed drainage discharge using the SAFRAN climate reanalysis [START_REF] Vidal | A 50-year high-resolution atmospheric reanalysis over France with the Safran system[END_REF] as inputs over three periods -P1 [START_REF] Wösten | Development and use of a database of hydraulic properties of European soils[END_REF]( -2004( ), P2 (2005( -2009( ), and Ptot (1999( -2009) ) thus providing three parameter sets (X1, X2, and X3) per hydrological model. These parameter sets were used thereafter to analyse the uncertainty stemming from the calibration procedure. Observed discharge data measured by the ARVALIS Institute, which monitors the La Jaillière site, were used. The three models achieved high performance, according to classic hydrological criteria such as the KGE', Nash-Sutcliffe efficiency (NSE, [START_REF] Nash | River flow forecasting through conceptual models part I -A discussion of principles[END_REF]), root mean square error (RMSE, [START_REF] Chai | Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature[END_REF]), and according to graphical diagnostics (see the Appendix A, Figure A1). The split-sample test [START_REF] Klemeš | Operational testing of hydrological simulation models[END_REF] highlighted that despite the aforementioned assumptions, the models were deemed temporally robust (see the Appendix A, Figure A2).

Modelling chain and climatic and hydrological indicators

Once the hydrological models were calibrated, they were fed by CPs in order to simulate projected discharge series from 1975 to 2099. The modelling chain is illustrated in Figure 1; it comprises 30 CPs (Table 2) [START_REF] Golmohammadi | Assessment of Impacts of Climate Change on Tile Discharge and Nitrogen Yield Using the DRAINMOD Model[END_REF][START_REF] Jeantet | Effects of Climate Change on Hydrological Indicators of Subsurface Drainage for a Representative French Drainage Site[END_REF][START_REF] Mehan | Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed[END_REF][START_REF] Pease | Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin[END_REF]Sojka et al., 2020);  The length of the drainage season (LenDS, [START_REF] Jeantet | Effects of Climate Change on Hydrological Indicators of Subsurface Drainage for a Representative French Drainage Site[END_REF]). The beginning of the drainage season is set to day d following Eq. ( 1):

{ 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 𝑑 ∶ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ≥ 𝐶𝑢𝑚 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 [𝑑 + 1 : 𝑑 + 5] : 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ≥ 𝐶𝑢𝑚 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 + 𝐶𝑢𝑚 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 } (1) 
The 𝐶𝑢𝑚 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 threshold is set to 1.4 mm and the 𝐶𝑢𝑚 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 to 2.7 mm [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF], both corresponding to cumulative discharges from August 1, defined as the beginning of the hydrological year. The end of the drainage season is set on the first day (d) when the difference between the annual drained water balance on July 31, set as the end of the hydrological year, and the cumulative discharge at d is lower than the 𝐶𝑢𝑚 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 threshold (see Eq. ( 2)):

𝑜𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 𝑑 ∶ 𝐶𝑢𝑚 𝑡𝑜𝑡𝑎𝑙 -𝐶𝑢𝑚[𝑑] ≥ 𝐶𝑢𝑚 𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 (2) 
Then, the duration of the drainage season is defined as the number of days between the start and the end of the drainage season;

 The discharge used to describe yearly high flow, i.e., a threshold defined as the 95 th percentile (QQ95) of daily discharge, a streamflow value not exceeded 5% of the time [START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF].

Uncertainty analysis

In this study, we assessed six uncertainty sources: RCPs, GCMs, RCMs, HMs, XHMs, and the climate internal variability. It was not possible to assess the uncertainty stemming from the bias correction and downscaling method because the ADAMONT method was the only one applied in the national dataset we used (Figure 1). The QUALYPSO method [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF], taken from the "QUALYPSO" R package [START_REF] Evin | QUALYPSO: Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections[END_REF], was chosen to estimate the uncertainty ratio from the aforementioned sources. To obtain a robust estimation of uncertainty, the use of a complete multi-scenario MME of climate projections is a prerequisite [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF][START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF][START_REF] Sansom | Simple Uncertainty Frameworks for Selecting Weighting Schemes and Interpreting Multimodel Ensemble Climate Change Experiments[END_REF], and as described in section 2.2, the MME considered here was not complete. This problem was tackled with the QUALYPSO method, which uses a Bayesian data augmentation technique [START_REF] Gelman | Inference from Iterative Simulation Using Multiple Sequences[END_REF] to fill in the matrix shown in Table 1 and to estimate the missing combinations by Bayesian inferences.

The QUALYPSO algorithm was then applied on the completed MME. First, the anomaly of the climate response from a given modelling chain (MC) was simulated, i.e., each pathway from RCPs to hydrological simulations using only one model at each stage. Each MC was used to estimate the associated climatic and hydrological indicators. Then, the MC climate response was defined as the smoothing spline fitted to the 30-year rolling means of these raw indicators (see the Appendix B, Eq. ( B1)). Eventually, the MC climate response could be described as an absolute or relative anomaly between a climate response over a historic control period ) and a climate response over a future period . The internal variability variance of the MME was estimated as the mean value of the internal variability variances obtained for the different modelling chains (see the Appendix B, Eq. ( B3)).

Second, the uncertainty components of the MME were estimated by the ANOVA model, assuming that for a specific period the climate change response from a given MC might be the sum of the main effects of the different scenarios/models considered in the chain. In practical terms, each component of the MME induced its own effect, defined as the mean deviation of the component from the climate response of the given MC [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF]. This means that the uncertainty from an MME step, e.g., GCMs, was estimated as the variance of the dispersion between the mean climate change responses obtained for the different models of this step over all hydroclimatic combinations (see Eq. Note that the ANOVA method in QUALYPSO assumes that the CP transient states are quasiergodic (QE-ANOVA), i.e., that for a given CP the statistical distribution over the whole period is similar to the one over an extracted sub-period [START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF]. Note also that a part of the total dispersion from the ANOVA decomposition cannot be explained by the additive uncertainty decomposition of each step of the MME. There is a residual variance, which cannot be attributed to a specific component of the MME.

𝜎 2 𝑡𝑜𝑡 (𝑦) = 𝜎 2 𝑅𝐶𝑃 (𝑦) + 𝜎 2 𝐺𝐶𝑀 (𝑦) + 𝜎 2 𝑅𝐶𝑀 (𝑦) + 𝜎 2 𝐻𝑀 (𝑦) + 𝜎 2 𝑋 𝐻𝑀 (𝑦) + 𝜎 2 𝑖𝑛𝑡.𝑣𝑎𝑟 (𝑦) + 𝜎 2 𝑟𝑒𝑠 (𝑦) (3) 
With:

 𝜎 2 𝑡𝑜𝑡 : the total variance in the year y;

 𝜎 2 𝑅𝐶𝑃 : the variance associated with RCPs;

 𝜎 2 𝐺𝐶𝑀 : the variance associated with GCMs;

 𝜎 2 𝑅𝐶𝑀 : the variance associated with RCMs;

 𝜎 2 𝐻𝑀 : the variance associated with HMs;

 𝜎 2 𝑋 𝐻𝑀 : the variance associated with XHMs;

 𝜎 2 𝑖𝑛𝑡.𝑣𝑎𝑟 : the variance associated with internal variability;

 𝜎 2 𝑟𝑒𝑠 : the residual variance.

Results

Uncertainty propagation in the CIs

Before analysing hydrological indicators, it is necessary to analyse the uncertainty propagation in climate indicators, as climate is the main driver of hydrological projections. Here, we analyse the wet season and dry season precipitation, as well as the wet season and dry season temperature.

The mean trends showed that the wet season (October-March) precipitation gradually increases in the future, up to +11% by 2085, i.e., +43 mm.6months -1 from ≈ 400 mm.6months -1 in the historical period (Figure 2 To sum up, the main sources of CI uncertainty are the GCMs and the RCMs, whose combined ratio accounted for at least half of the total uncertainty for all CIs from 2020.

Uncertainty propagation in the HIs

Here we analyse the wet season and dry season drained water balance (WDWB and DDWB, respectively), as well as the length of the drainage season (LenDS) and the 95 th percentile of daily discharge (QQ95).

The mean trends showed that three HIs increase by the end of the 21 st century (Figure 3, (a), (c), and (g)): by 19 % for the WDWB (+25.7 mm.6months -1 from the historical 144 mm.6months -1 ); by +5 % for the DDWB (+1.2 mm.6months -1 from the historical 24 mm.6months -1 ); and by 13 % for the high flows (+0.32 mm.d -1 from the historical 2.5 mm.d -1 ).

Conversely, the length of the drainage season decreases by 2 % (4 days from the historical 156 days) by 2080 (Figure 3, (e)). The DDWD has the mean trend with the largest uncertainty range, with a relative anomaly from -100 % to +100 % (-20 mm.6months -1 to +20 mm.6months -1 ).

The range for WDWB, LenDS, and QQ95 is smaller, from -40 % to +60 % depending on the HI considered.

Similar to the CIs, the GCMs and the RCMs are the two main sources of uncertainty for the four HIs. The ratios for these two sources have almost identical values throughout the future period, with a cumulated ratio from 25 % to 40 % in 2000, gradually increasing to 70 %-90 % by 2080 depending on the HI (Figure 3, (b), (d), (f) and (h)). Unlike the CIs, the RCP ratios are almost negligible for the four HIs, with a maximal partitioning of 5 % for the LenDS by 2080.

Moreover, the hydrological components of the MME also represent a negligible part of the total uncertainty for the four HIs. The HMs showed a maximal impact of 5 % of the total uncertainty for the DDWB, and mean values ranged from 0.4 % to 1.7 % of the total uncertainty for the four HIs. The uncertainty ratios from the XHMs are always close to 0 %.

Main effects on CIs and HIs

Figure 4 shows the main effects of the RCPs, GCMs, RCMs, HMs, and XHMs on the relative anomalies for the four HIs: WDWB, DDWB, LenDS, and QQ95. For each HI, the purpose is to highlight the specific effect of each component from the MME on the mean anomaly value of the HI in the projected future. For all HIs, the results showed that the members of the RCPs, HMs, and XHMs do not diverge significantly from each other and that their contribution to the range from -30 % to +40% and from -20 % to +36 % for the GCMs and the RCMs, respectively.

Moreover, no specific GCM or RCM emerges with an effect distinguishing it from the rest that would be shared by all the HIs.

The same analyses were performed on the CIs (P and daily mean T in the wet and dry seasons) and are presented in the Appendix C, Figure C1. The results were quite similar to those observed for the HIs, as the GCMs and the RCMs are the two sources showing the largest deviations.

The divergences between the RCP effects are larger for the CIs than they were for the HIs, specifically for the daily mean T. Similarly, the divergences from RCP effects are slightly larger for dry season CIs than for wet season CIs. However, the effect of the GCMs and the RCMs are still clearly dominant, which is consistent with the results presented in Figure 2.

Discussion

Effects of the climate components of the MME on the total uncertainty

The distribution of the uncertainties is not constant over time for any HI or CI. The first source of uncertainty is the climate internal variability, ranging from 30 % to 60 % of the total uncertainty by 2005, until 2020 when it represents less than 20 % of the uncertainty for all indicators. This dominant contribution varies according to the indicator studied [START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF] and to the statistical post-treatment used for the studied indicator in the QUALYPSO method. Indeed, the use of 30-year rolling means on the indicators in this study instead of raw indicators explain the rapid decrease in the contribution of the internal variability after 2005 until finally being below 10 % by 2085 for almost all of the indicators [START_REF] Vidal | Hierarchy of climate and hydrological uncertainties in transient low-flow projections[END_REF][START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF]. This decreasing contribution also stems from the fact that the total uncertainty of all the indicators grows as the time gets closer to 2100, while the climate internal variability does not evolve significantly over the study period [START_REF] Lafaysse | Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin[END_REF].

The influence of RCPs varies depending on the variable. They show a low contribution to precipitation, not exceeding 15 % in the entire period, while their contribution to the temperature reaches almost 40 % by 2085, which is in agreement with the current literature (e.g., [START_REF] Khoi | Uncertainty in climate change impacts on streamflow in Be River Catchment, Vietnam[END_REF]; [START_REF] Christensen | Partitioning uncertainty components of mean climate and climate change in a large ensemble of European regional climate model projections[END_REF]). The contribution of RCPs to the HI uncertainty is almost negligible compared to the GCM and RCM contributions. The lack of any influence of the RCPs on the QQ95 is quite surprising as they showed a significant contribution to the uncertainty of high flows in the literature [START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF][START_REF] Vetter | Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins[END_REF]. The difference with these studies might lie in the fact that we do not deal with conventional watershed hydrology in this paper. Comparing our results with subsurface drainage studies could be relevant; however, the few existing studies on subsurface drainage hydrology exploring uncertainty propagation in the modelling chain did not differentiate between the climate components (e.g., [START_REF] Kujawa | The hydrologic model as a source of nutrient loading uncertainty in a future climate[END_REF]; [START_REF] Salla | Controlled drainage under two climate change scenarios in a flat high-latitude field[END_REF]).

From 2020, the main sources of uncertainty for all the indicators are the GCMs and the RCMs, with similar contributions. Regarding the CIs, these contributions range from 50 % to 90 % of the total uncertainty, with the contributions being larger for precipitation. A direct consequence is the large range of CI anomalies, especially for dry season CIs. For instance, the future trend of dry season precipitation ranges from -40 % to +25 % by 2085, with 85 % of the related uncertainty being covered by the cumulated GCM and RCM contributions. This result is congruent with previous studies, which showed that GCMs induce different seasonal precipitation responses to the projections, and RCMs add an additional layer of variability [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF][START_REF] Fowler | Estimating change in extreme European precipitation using a multimodel ensemble[END_REF][START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF][START_REF] Tramblay | Future evolution of extreme precipitation in the Mediterranean[END_REF].

Specifically, these results are rather consistent with the findings from Lemaitre-Basset et al.

(2022), who also showed that GCMs and RCMs share the major part of uncertainty in PE projections over France, with a very similar dataset (no bias correction method was used in Lemaitre-Basset et al. ( 2022)), but the same GCM/RCM couples were used).

Regarding HIs, the results showed similar contributions from GCMs and RCMs, which were even larger: 70 % to 90 % of the total uncertainty from 2020 to 2085. This contribution is observed regardless of the specificities of each HI, whether cumulative such as the LenDS, DDWB, and WDWB or representative of the annual flow dynamics such as the QQ95, which is in agreement with the literature [START_REF] Habets | Impact of climate change on the hydrogeology of two basins in northern France[END_REF][START_REF] Najafi | Assessing the uncertainties of hydrologic model selection in climate change impact studies[END_REF][START_REF] Vetter | Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents[END_REF].

The dry season indicator DDWB is impacted by the uncertainty related to the GCMs and the RCM, with anomalies ranging from -100 % to +100 % by 2085. Consequently, an anomaly from a particular year may be opposite to the mean trend despite this trend being deemed significant. This reveals an increasing variability in the drainage season subject to more extreme events that move it away from a typical average hydrological year. More harmful consequences on crops and an increased burden of management for farmers can be expected, especially in the dry season.

Despite being in agreement with the literature, the GCM and RCM contributions to HI uncertainty are exacerbated when compared with previous studies. The difference might be due to the low spatial scale in subsurface drainage compared with watershed hydrology. The La Jaillière site (0.01 km²) is included in one pixel from the CPs used (64 km²), and therefore P and PE data that feed the HMs were extracted from only one pixel, while the aforementioned studies on watershed hydrology used tens of pixels, e.g., ≈ 20 pixels in the study by [START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF]. In an analysis not reported here, we assessed the impact of increasing the area of climatic influence around the study plot to 9 pixels and 25 pixels. The results of this analysis showed no difference to the CI uncertainties from the QUALYPSO analysis, which lead us to believe that the use of a single pixel had a low impact on our results and could not explain the over-representation of the GCMs and RCMs in the uncertainty share. Another factor explaining the low influence of RCPs might be that subsurface drainage hydrology is more seasonal than watershed hydrology, and is influenced more by precipitation than by air temperature. Therefore, similarly to precipitation, the HIs are more subject to the climate model uncertainty than to the uncertainty from the greenhouse gas emission scenarios.

Effects of the hydrological components of the MME on the total uncertainty

The current literature generally states that the hydrological components of an MME have almost no influence on the uncertainty related to mean and high flows in watershed hydrology [START_REF] Christierson | Using UKCP09 probabilistic climate information for UK water resource planning[END_REF][START_REF] Engin | Assessing different sources of uncertainty in hydrological projections of high and low flows: case study for Omerli Basin, Istanbul, Turkey[END_REF][START_REF] Her | Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions[END_REF][START_REF] Kujawa | The hydrologic model as a source of nutrient loading uncertainty in a future climate[END_REF][START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF][START_REF] Salla | Controlled drainage under two climate change scenarios in a flat high-latitude field[END_REF]. Similar conclusions can be drawn for the WDWB, the LenDS and QQ95 indicators, i.e., indicators that mainly depend on flows in the wet season. This reassures us about the accuracy of the assumptions made concerning the hydrological models (see section 2.3): neglecting current crops, neglecting surface runoff, and simplifying the soil profile description in both the DRAINMOD and MACRO models.

However, the literature also states that the contributions of HMs and XHMs to the total uncertainty in low flows are less negligible [START_REF] Dallaire | Uncertainty of potential evapotranspiration modelling in climate change impact studies on low flows in North America[END_REF][START_REF] Engin | Assessing different sources of uncertainty in hydrological projections of high and low flows: case study for Omerli Basin, Istanbul, Turkey[END_REF][START_REF] Habets | Impact of climate change on the hydrogeology of two basins in northern France[END_REF][START_REF] Vetter | Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins[END_REF], which is not in agreement with our results. We showed that hydrological modelling has a contribution not exceeding 5% to the DDWB, the indicator that describes low flows in our study. The aforementioned studies generally established their results

on temporal dynamic indicators such as the MAM7, i.e., the mean-annual minimal discharge during seven consecutive days [START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF], or the annual QQ10 (discharge not exceeded 10% of the time, Vetter et ( 2017)), whereas the DDWB is a cumulative indicator, thus making the comparison with the current literature less adequate. The seasonal aspect of drainage hydrology makes the use of these conventional hydrological indicators unsuitable because low flows mainly appear in summer when subsurface drainage is often null or marked by very episodic events. Other indicators must be used to describe the temporal aspect of subsurface drainage such as the length of the drainage or the length of the period with no flow [START_REF] Jeantet | Effects of Climate Change on Hydrological Indicators of Subsurface Drainage for a Representative French Drainage Site[END_REF].

Overall, this study shows that HMs do not significantly influence the total uncertainty.

However, this statement is restricted by: (1) the fact that the QUALYPSO method establishes the contribution of each source from the MME relative to the others, and thus if GCM, or RCM, contributions are too significant, the HM effects are reduced; (2) the choice of the HIs, as highlighted above. The last point is supported by Figure 5, which shows the comparison of the flow-duration curve (FDC) between observations and simulations obtained using the SAFRAN database during the calibration process (FDCREF) (a) and the simulations obtained from the CPs of the MME (FDCCP_MME) (b). For a specific HM, the FDCCP_MME(i) from each modelling chain i corresponding to the HM was calculated from the non-null discharges of the modelling chain i. Then, a unique FDCCP_MME per HM was extracted from the median of these FDCCP_MME. The analyses were conducted for the period 1999-2009 corresponding to the availability of the observed data for the Jaillière site [START_REF] Henine | Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start[END_REF].

The results showed that regarding FDCREF (a) the SIDRA-RU model is the closest to the observations on the high, average, and low flows, while MACRO and DRAINMOD overestimate the average and low flows. These results are consistent with the performance from the calibration process (see the section 2. Indeed, the choice of model is restricted to the needs of the study and therefore not all models are equal.

Limitations of the study

Another point to be discussed deals with the dependency of the aforementioned interpretations on the methodological choices and data involved in this study. First, the methodological choices made for both the DRAINMOD and the MACRO models (section 2.3.4) were efficient regarding the HIs we studied but they might certainly not be relevant if the HIs change. The DRAINMOD and MACRO models showed a slightly weaker performance than the SIDRA-RU, specifically for low flows (section 4.2). This might be due to the fact that crop rotation was neglected, whereas it plays a significant role in the calculation of the actual evapotranspiration (AE) from PE in these two models [START_REF] Larsbo | An Improved Dual-Permeability Model of Water Flow and Solute Transport in the Vadose Zone[END_REF]Skaggs et al., 2012). The assumption neglecting the current crops is suitable only in the conditions defined in this study.

Second, the ADAMONT method was the only downscaling and bias correction method used to process data from RCMs to the spatial resolution used (see section 2.2). However, it is known that this step contributes significantly to the total uncertainty [START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF][START_REF] Lafaysse | Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin[END_REF]. Using several downscaling and bias correction methods could improve the partitioning of uncertainty of this study. In the national Drias 2020 dataset used here, only one downscaling and bias correction method was available at the time of the study.

Finally, the ANOVA analysis from the QUALYPSO method may introduce some limitations in the analyses, especially on relative anomalies from hydrological extremes such as the QQ95 used here, "with the hypotheses not verified as the normal distribution and the homoscedasticity of residuals" [START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF]. One way to fix this issue could be to use absolute anomalies instead of relative ones for hydrological extremes.

Conclusions

The aim of this study was to assess the uncertainty propagation in a multimodel ensemble 
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  x 3 hydrological models (HMs) x 3 parameter sets per HM (XHMs) = 270 simulations. The uncertainty propagation was studied for both climate indicators (CIs) and hydrological indicators (HIs). The CIs were defined as seasonal volume of P and daily mean T, with a wet season (from October to March) and a dry season (from April to September). The subsurface drainage hydrology was studied according to four HIs:  The dry season drained water balance (DDWB), i.e., the drained water volume flowing between April 1 and September 30;  The wet season drained water balance (WDWB), i.e., the drained water volume flowing between October 1 and March 31. The DDWB and the WDWB are based on the annual drained water balance, which is currently used in the literature

  [START_REF] Kundzewicz | Flood risk and climate change: global and regional perspectives[END_REF],[START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF];[START_REF] Lemaitre-Basset | Climate change impact and uncertainty analysis on hydrological extremes in a French Mediterranean catchment[END_REF]).

  , (a)). The wet season daily mean air temperature also gradually increases up to +2.2 °C, i.e., 9.5 °C instead of 7.3 °C in the historical period (Figure2, (c)) by the end of the century. In both cases, the partitioning of uncertainty showed that before 2020, the main source of uncertainty is the climate internal variability, representing between 60 % and 70 % of the total uncertainty in 2000 (Figure2, (b) and (d)). Then, the uncertainties of the two climate variables are mainly affected by GCMs and RCMs: from 40% to 65% of the total uncertainty for the wet season precipitation and from 50% to 70% for the wet season daily mean air temperature. The main difference between the partitioning of these two climate variables concerns RCPs. Regarding daily mean air temperature, RCPs represent up to 35% of the total uncertainty by 2060, while the RCP contribution to the uncertainty related to the wet season precipitation reaches 15% by 2080.Moreover, results showed that the range of the dry season CIs was larger than the range of the wet season CIs. The mean trend of the dry season precipitation leads to a decrease of approximately 7 % by 2080, i.e., -20 mm.6months -1 from ≈ 280 mm.6months -1 in the historical period (Figure2, (e)). The dry season daily mean T increases by 2.6 °C, i.e., 18.6 °C instead of 16 °C in the historical period, higher than the increase of the wet season T (Figure2, (g)). Unlike for the wet season, the partitioning of uncertainty from the two climate variables is similar in the dry season (Figure2, (f) and (h)), except for the slightly larger contribution of the RCPs to the daily mean T of approximately 10 % by 2085. By 2085, the RCP contributions increase from 15 % to 25 %. In both cases, the GCMs and RCMs represent almost 80 % of the total uncertainty in 2020. Specifically, the GCM contributions to the daily mean T are slightly larger than the contributions to the precipitation from 2050 by 10 %, both for the dry and wet seasons.

  mean anomaly value is close to zero. The only minor exception concerns the effects of the HMs on the DDWB (Figure 4, (i)): the SIDRA-RU and the MACRO models tend to reduce the DDWB by -11 % and -1.5 % by 2080, respectively, while the DRAINMOD model tends to increase the DDWB by +12.5 % by 2080. The GCMs and the RCMs have the most divergent effects (Figure 4, (b), (c), (g), (h), (l), (m), (q) and (r)), gradually increasing by the end of the century, and they have the largest effect on the DDWB: The values of the main effects by 2080

  3.4 and the Appendix A). However, the use of CPs in SIDRA-RU instead of observed climate (SAFRAN) changes the FDC, especially for discharges above 1 mm.d -1 while the use of CPs in the DRAINMOD and MACRO models affects their FDCs less (Figure5, (b)). This result is surprising as the HM effects on high flows are null (see QQ95 on Figure4, (s)). In low flows, the use of CPs does not affect the FDC of any model compared to SAFRAN. All these results highlight the fact that even if the climate models induce most of the uncertainties, the choice of the HM is crucial especially when only one is involved.

  approach (MME) simulating the future of subsurface drainage hydrology under climate change on a site representative of French subsurface drainage. The results showed that the anomalies of the study indicators vary, and are larger for indicators specific to the dry season, e.g., the drained water balance. The results also showed that, from 2020 and regarding CIs and HIs alike, GCMs and RCMs are the two main sources of uncertainty in the MME, with cumulated contributions ranging from 50 % to 90 % from 2020 to 2085. Despite having almost no influence on the HIs, the influence of the RCPs on the CIs reaches 40 % for the dry season temperature by 2085 but does not exceed 15 % for wet season precipitation. Furthermore, the hydrological models show almost no influence on the total uncertainty for any HIs, nor do their parameters, despite the strong assumptions made on their functional structure. Finally, this last point established that true to its purpose the SIDRA-RU model could confidently be used for the prediction of subsurface drainage discharge under climate change. However, the authors based their conclusions on four HIs to describe subsurface drainage hydrology. One way to generalize the conclusions of the study would be to use a more complete panel of HIs to better describe the uncertainty propagation in all aspects of subsurface drainage. Using the CPs from the new CMIP6 project, which is not yet available (i.e., regionalized) for local hydrological purposes, could also be interesting for evaluating the dependency of this study on the climate projections used, with the potential aim of decreasing the contribution of climate models to the total uncertainty.
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 1 Figure 1: Modelling chain inducing the cascade of uncertainties.

Figure 2 :

 2 Figure 2: Mean trends in the spline fitted to the 30-year rolling mean of wet season (a) and dry season (e) precipitation and of wet season (c) and dry season (g) daily mean air temperature. The mean trends are supported by 90 % confidence intervals. The graphics in the bottom row ((b), (d), (f) and (h)) correspond to the partitioning of the total uncertainty, each one corresponding to the associated indicator in the graphics in the top row. "Res. Var." refers to the residual variance and "Int. Variab" to the internal variability. Control period: 1975-2004. 

Figure 3 :

 3 Figure 3: Mean trends in the spline fitted to the 30-year rolling mean of the WDWB (a), the DDWB (c), the LenDS (e), and the QQ95 (g). The graphics in the bottom row ((b), (d), (f) and (h)) represent the partitioning of the total uncertainty, each one corresponding to the associated indicator in the top row. The mean trends are supported by 90 % confidence intervals. Res.Var." refers to the residual variance and "Int. Variab" to the internal variability. Control period: 1975-2004. 

Figure 4 :

 4 Figure 4: Main effects of the RCPs, GCMs, RCMs, HMs, and XHMs on the WDWB ((a), (b),(c), (d) and (e)), the DDWB ((f), (g), (h), (i) and (j)), the LenDS ((k), (l), (m), (n) and (o)), and the QQ95 ((p), (q), (r), (s) and (t)) projections. Solid lines represent the mean effect of each climate scenario or model; the 90 % confidence interval of QUALYPSO estimations is drawn in shaded color.

Figure 5 :

 5 Figure 5: Comparison of flow-duration curves on a logarithmic scale for drainage observations and calibrated simulation (a) and simulations from all the modelling chains of the MME (b), over the calibration period(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009). In all cases, only the non-null discharges were considered. Per HM (SIDRA-RU, DRAINMOD, MACRO), the curve from the MME (b) was calculated as the median of frequencies from each chain i. A 90 % confidence interval was defined from the 5 th to 95 th quantiles.
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Les nouvelles projections climatiques de référence DRIAS 2020 pour la métropole

-The Green-Ampt equation [START_REF] Green | Studies on Soil Physics: Part I[END_REF]:

-The relations between upward flux, water table, and drained water volume (Skaggs, 1981):

With:

ℎ: the water pressure (cm); -𝜃(ℎ): water content at ℎ (-); -𝜃 𝑟 : residual water content (-); -𝜃 𝑠 : saturation water content (-); -𝛼: Van Genuchten parameter (cm -1 ); -𝑛: Van Genuchten parameter (-); -𝐾(ℎ): hydraulic conductivity at ℎ (cm.h -1 );

-𝐾 𝑠𝑎𝑡 : saturation hydraulic conductivity (cm.h -1 ); -𝑓: infiltration (cm.h -1 ); -𝑀: available water content, i.e., difference between 𝜃 𝑠 and the initial water content 𝜃 𝑖 (-); -𝑆 𝑎𝑣 : suction head (cm); -𝐹: cumulated infiltration (cm); -𝐴 and 𝐵: Green-Ampt parameters, dependent on soil properties, 𝜃 𝑖 and surface conditions; -𝑉 𝑑 : drained water volume per surface unit (cm.h -1 ); -𝜃 0 ≈ 𝜃 𝑠 : water content before drainage (-); -𝑦 1 : water table depth (cm); -𝑞(ℎ): upward flux per surface unit (cm.h -1 ); -𝑧: location on the soil profile (cm).

Table A1: Model parameters of SIDRA-RU, DRAINMOD, and MACRO calibrated on three periods: P1 (1999-2004), P2 (2005-2009), and on the total calibration period Ptot (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009).

Model Time period

Soil layer period (1999-2009).

Figure A2: Results from the split-sample test on the three hydrological models for the periods P1 (1999-2004) and P2 (2005-2009). The letters U (unsatisfying), A (acceptable), G (good), and VG (very good) categorize the KGE' values [START_REF] Jeantet | Robustness of a parsimonious subsurface drainage model at the French national scale[END_REF].

Appendix B

Equations used in the QUALYPSO method to estimate the climate change response 𝑋, its anomaly over the future period, and its variance [START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF]: With:

-𝑋: the climate response at the time t from the modelling chain 𝑀𝐶 𝑖 ; -𝑁𝐹𝑆: the noise-free signal, i.e., the wanted value at time t, assuming the signal of the 𝑀𝐶 𝑖 is quasi-ergodic [START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF]; -𝜂: the residue at time t; -𝑛: the number of modelling chains in the MME, i.e., 𝑛 = 270; -𝜎 2 𝑖𝑛𝑡.𝑣𝑎𝑟 : the climate internal variability variance; -𝑁𝐹𝑆 ̂: absolute (Eq. (C4)) or relative (Eq. ( C5)) anomaly a climate response over a control period c and a future period t; Tables Table 1: Physical characteristics of the four soil horizons from plot T04 of La Jaillière.