
HAL Id: hal-04191025
https://hal.inrae.fr/hal-04191025

Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PESTIPOND: A descriptive model of pesticide fate in
artificial ponds: II. Model application and evaluation

Aya Bahi, Sabine Sauvage, Sylvain Payraudeau, Julien Tournebize

To cite this version:
Aya Bahi, Sabine Sauvage, Sylvain Payraudeau, Julien Tournebize. PESTIPOND: A descriptive model
of pesticide fate in artificial ponds: II. Model application and evaluation. Ecological Modelling, 2023,
484, pp.110472. �10.1016/j.ecolmodel.2023.110472�. �hal-04191025�

https://hal.inrae.fr/hal-04191025
https://hal.archives-ouvertes.fr


1 

 

PESTIPOND: A descriptive model of pesticide fate in artificial 1 

ponds: II. Model application and evaluation 2 

Aya Bahia*, Sabine Sauvageb, Sylvain Payraudeauc, Julien Tournebizea* 3 

a  INRAE, French National Research Institute for Agriculture, Food and the Environment, University of Paris-Saclay, CS 10030, 4 
F-92761 Antony, France 5 

b Laboratory of functional Ecology and Environment, University of Toulouse, CNRS, UPS, Toulouse INP, ENSAT campus, 6 
F-31326 Toulouse, France 7 

c ITES, Institut Terre et Environnement de Strasbourg (ITES), University of Strasbourg /ENGEES, CNRS UMR 7063, F-67084 8 
Strasbourg, France 9 

* Corresponding authors. 10 
E-mail addresses aya.bahi@inrae.fr; julien.tournebize@inrae.fr  11 

 12 

Abstract 13 

Some artificial ponds (APs) are designed to collect part of the agricultural water fluxes and 14 

dissipate their pesticide contamination through a synergy of physicochemical processes. APs 15 

act as buffer zones and mitigate pesticide transfer of farm plots to natural water resources. As 16 

part of a two-paper series, this paper addresses the application and validation of the 17 

PESTIPOND model. PESTIPOND is a process-based model developed to predict pesticides' 18 

behavior and distribution in APs located in drained agricultural catchments. The development 19 

and sensitivity analysis of the model are described in Paper I (Bahi et al., 2023a). PESTIPOND 20 

was applied on the Rampillon AP to characterize the fate of seven different pesticides and five 21 

monitoring periods while considering the key transfer and transformation processes. The model 22 

was assessed through various methods against the observed data in simulating pesticide 23 

dynamics. The statistical and graphical evaluation of PESTIPOND reflected a good 24 

performance except for boscalid. The sensitivity analysis and application of the model 25 

evidenced that adsorption-desorption and biotransformation in the pond water are major 26 

processes behind pesticide dissipation. Hydrophobic and lowly mobile pesticides are more 27 

likely to be bio-transformed at the water-sediment interface. This work highlights the link 28 

between the hydraulic residential time (HRT), temperature, and APs' efficiency in minimizing 29 

pesticide transfer into the environment. The model predicted that the actual efficiency of the 30 

AP covering 0.15% of the drained catchment would double if the pond's surface area covered 31 

at least 1% of the catchment. Moreover, the model's predictions evidenced that a temperature 32 

rise of 10°C will increase the dissipation of pesticides by only 8%. PESTIPOND provides key 33 

elements that are useful to design and manage ponds with optimal efficiency. Hence, these APs 34 

can be complementary solutions to pesticide use regulation to reduce the transfer of agricultural 35 

contamination into freshwater resources. 36 
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1 Introduction39 

Due to the broad-spectrum toxicity of pesticides, they are a non-point source of pollution for 40 

the ecosystem since they are transferred from agricultural plots to natural water resources 41 

through surface runoff and subsurface drainage. Pesticides are particularly pernicious for the 42 

ecosystem compared to other chemicals because they are specially manufactured to eliminate pests 43 

(Ippolito et al., 2015). As such, pesticides are a major risk for terrestrial and aquatic biodiversity 44 

(Messelink et al., 2021; Mineau and Whiteside, 2013) and the ecosystem's functioning (Brühl and 45 

Zaller, 2021). There is now compelling evidence that certain pesticides exhibit a serious hazard to 46 

humans and other life forms, as well as undesired side effects on the environment (Briggs, 2018; 47 

Edwards, 2013; Nagy et al., 2020). 48 

Hence, the need to reduce pesticide inputs into water resources, as they are substantial drinking 49 

water supplies and aquatic habitats (Leenhardt et al., 2022). Pesticides have been detected in 50 

groundwater (Baran et al., 2008; Hunter, 2012), rivers (Montiel-León et al., 2019; Xu et al., 51 

2020), and lakes (Bhardwaj et al., 2019; Kandie et al., 2020), as well as smaller wetlands 52 

(Lorenz et al., 2017; Ulrich et al., 2018), making pesticides a major cause for water quality 53 

impairment. As complements to pesticide use regulation and management practices, material 54 

solutions can be implemented to safeguard the quality of water resources and mitigate pesticide 55 

input into water bodies, such as edge-of-field and riparian buffer strips, vegetated ditches, 56 

wetlands, and artificial ponds (Vymazal and Brezinova, 2015).  57 

This study focuses on constructed wetlands, especially edge-of-field artificial ponds (APs) 58 

since they have the advantages of needing minimal operations and providing wildlife habitat 59 

(Sudarsan and Nithiyanantham, 2021). APs are also known for their cost-effectiveness and low 60 

energy consumption compared to other surface water treatment methods (e.g., coagulation, 61 

membrane filtration, ion exchange, photocatalytic degradation, and adsorption on black carbon 62 

and activated carbon) (Aungpradit et al., 2007; Fitch, 2014; Kearns et al., 2014; Trepel, 2010). 63 

In practice, edge-of-field APs can act as buffer zones since they are constructed downstream 64 

agricultural plots and upstream natural water resources. APs can intercept a part of agricultural 65 

water, and after important flow events, the water leaving APs can be less pesticide-loaded, and 66 

contamination transfer into the environment can be dissipated. Over the past years and in light 67 

of the worsening water shortage, the evaluation of APs environmental role has gained 68 

significant attention. The efficiency of APs in reducing pesticide transfer into the environment 69 

was widely reiterated in literature (Li et al., 2014; Tournebize et al., 2017; Vymazal and 70 

Brezinova, 2015; Zhang et al., 2014). APs provide an area for a series of physicochemical 71 

processes to dissipate pesticide water contamination. 72 

Modeling is a practical tool to assess the performance of APs and explore the physicochemical 73 

processes behind pesticide dissipation in APs. Modeling can be used to improve the efficiency 74 

of APs to safeguard water quality. Models of varying levels of complexity have been developed 75 

and applied to field data to gain insight into the performance of APs. However, many of these 76 

models were dedicated to simulating nutrient behavior (Kalin et al., 2013; Son et al., 2010; 77 

Sonavane and Munavalli, 2009), and fewer models were assigned to pesticides. Among 78 

pesticide fate models are the risk assessment models such as PRZM (Carsel, 1998) and 79 

MACRO (Larsbo and Jarvis, 2003; Larsbo et al., 2005), which simulate pesticide fate in the 80 

root zone and macro-porous field soils, respectively, and TOXSWA (Adriaanse, 1996) from 81 

the FOCUS group (Tooby, 1999), to model pesticide fate in ditches. These models provide 82 
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knowledge about pesticide behavior upstream APs. Nevertheless, little consideration has been 83 

devoted to studying pesticides at the pond scale. Existing models such as AGRO-2014 and 84 

TOXSWA are computationally costly because they require a significant number of inputs and 85 

parameters and depend on other models’ outputs (i.e., PRZM). In addition, AGRO-2014 only 86 

accounts for hydrophobic pesticides. The lake-pond module of the Soil and Water Assessment 87 

Tool (SWAT) can also simulate the fate of pesticides in APs. However, SWAT does not 88 

integrate the effect of temperature and desorption and does not consider the kinetic effect of 89 

adsorption-desorption, given that these factors are widely reported as key drivers of pesticides 90 

fate (Burrows et al., 2002; Cryder et al., 2021; Kadlec and Wallace, 2008; Kaur and Kaur, 2018; 91 

Papaevangelou et al., 2017; Vymazal and Brezinova, 2015). 92 

On this basis, a descriptive model of pesticide fate in APs “PESTIPOND” was developed. 93 

PESTIPOND is built upon simple mathematical formulation with a limited number of inputs 94 

and parameters. Contrarily to black-box models considering a single decay rate of pesticides, 95 

PESTIPOND is a process-based model integrating the key processes behind pesticide fate in 96 

APs. PESTIPOND simulates the fate of different pesticides (hydrophobic and hydrophilic) 97 

intercepted through agricultural water and distributed in the surface water and sediment 98 

compartments of the AP. The key processes considered by the model are adsorption-desorption, 99 

biotransformation in water and sediments, photolysis, hydrolysis, and volatilization. 100 

PESTIPOND is designed to be implemented in a landscape model in fine (e.g., SWAT model) 101 

to predict the transfer of pesticides at the watershed scale. 102 

The model program was coded using the R language. The input data consists of 10 parameters 103 

and 6 forcing variables listed in Table A.1. The model was previously tested on a test-case 104 

scenario and successfully simulated the mass in water and sediments of dissolved pesticides 105 

contained in agricultural drainage water, using arbitrary parameter values and observed data. 106 

The development, testing, and sensitivity analysis (SA) of PESTIPOND can be found in (Bahi 107 

et al., 2023, submitted). A module of PESTIPOND is dedicated to the reactive transport of 108 

adsorbed pesticides, but due to a lack of observed data, it still needs to be completely validated. 109 

The main hypotheses of the model are summarized hereafter: 110 

(1) Concentrations of pesticides are spatially uniform in water and sediments because the 111 

AP compartments are considered completely mixed reactors. Hence, once pesticides 112 

enter a specific compartment, they are instantly mixed with the entire content and 113 

distributed uniformly. In practice, after several hours, the pond water becomes perfectly 114 

mixed (Alvord and Kadlec, 1996; Pugliese et al., 2020). Besides, the pond 115 

heterogeneities responsible for the non-uniformity of concentrations are usually 116 

considered in hydraulics-based models (Henine et al., 2022) rather than chemical-based 117 

models, e.g., for pesticides (Bahi et al., submitted,(Watanabe and Takagi, 2000b) and 118 

nitrates (Hantush et al., 2013; Krone-Davis et al., 2013). 119 

(2) Vegetation is not considered by the PESTIPOND model. Prior investigations have 120 

evidenced that the fraction of pesticides collated in plants were often insignificant in 121 

APs (< 10%) (Butkovskyi et al., 2021; Pérez et al., 2022; Singh et al., 2021; Wang and 122 

Kelly, 2017). Not considering the vegetation implies neglecting its effect on the 123 

hydraulic flow (brakes, dead zones). Nonetheless, this choice of hypothesis was 124 

motivated by the environmental focus of the model rather than the hydraulic one, hence 125 

also the hypothesis (1). 126 
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(3) No advection or diffusion processes are considered by the model for the following 127 

reasons; (a) APs are often constructed on a compacted substrate where the infiltration 128 

(leaching) is not significant, and the water velocity at the water-sediment interface is 129 

too low resulting in a weak hydraulic gradient that limits advection in the sediment layer 130 

and the water-sediment interface. In addition, the water velocity in the water column of 131 

the evaluated APs is too low to induce advection of pesticides. (b) Several studies 132 

showed that the molecular diffusion of diverse pesticides is too low in the water (~10-9 133 

m2.s-1 at 25°C) (Chevillard et al., 2014; Fernández-Pascual et al., 2020; Sarraute et al., 134 

2019).  135 

(4) PESTIPOND simulates the fate of pesticides in the first cm of sediments designated as 136 

the active sediment layer governing pesticide transformation and transport under 137 

flooded conditions. Previous in-situ measurements proffered that pesticide residues are 138 

not significant beyond 1cm of depth (Inao and Kitamura, 1999; Mahugija et al., 2018; 139 

Nyantakyi et al., 2022; Takagi et al., 2012). The pore water of the active sediment layer 140 

is included in the water column compartment.  141 

(5) Transformation and volatilization processes are corrected according to the temperature 142 

change during the simulation period.  143 

(6) Since the fate of metabolites is still poorly documented, PESTIPOND does not consider 144 

transformation products. 145 

The present paper addresses the application and validation of the PESTIPOND model regarding 146 

the prediction of pesticide fate in APs. The model application and validation were performed 147 

based on inputs from monitoring data in the Rampillon AP and parameter values calibrated or 148 

extracted from literature. The model was validated upon 19 scenarios, where each scenario 149 

corresponds to a specific pesticide and its corresponding monitoring period (Table A.8). 150 

2 Materials and methods151 

2.1 Study site 152 

 153 

Figure 1: Map visualizing the localization of the AP of Rampillon (Seine-et-Marne, France) within the Seine 154 
River basin. Circled numbers indicate the different cells separated by bunds and considered for the spatial sampling 155 
(Lebrun et al., 2019).The white arrows refer to the ditch from where the AP intercepts agricultural water. 156 

The experimental set-up is at the Rampillon AP (5270 m2), located in a 355-ha watershed 157 

upstream of the Ancoeur agricultural catchment (132.2 km2), 70 km southeast of Paris, France 158 
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(03◦03′ 37.300E, 48◦32′16.700 N) (Fig.1). The AP occupies a 0.15% area of the alimentation 159 

watershed and is situated on the Brie plateau subjected to intensive agriculture. The Rampillon 160 

AP was implemented in 2010 to address local environmental and health issues (Lebrun et al., 161 

2019; Tournebize et al., 2017; Tournebize et al., 2012). It was designed to collect runoff and 162 

drainage water sourcing from agricultural plots before being fed into the Champigny water 163 

table, which constitutes a major drinking water resource. Almost 60% of the Champigny water 164 

originates from direct infiltration of agricultural runoff through sinkholes (Fig.A.1). The 165 

Champigny water table provides drinking water for almost 1.5 million citizens, hence the 166 

priority to safeguard its quality by reducing pesticide transfer. 167 

A typical waterlogging French soil characterizes the Ancoeur catchment. Therefore, more than 168 

80% of the catchment and the whole Rampillon area have been subsurface drained since 1980 169 

to prevent frequent winter soil saturation (Tournebize et al., 2012). The drains are perforated 170 

pipes buried to a depth of 90 m and spaced 10 m apart. The 355-ha watershed receives an annual 171 

mean rainfall of 689mm, and the annual mean drained flow is 228 mm. Farmers mainly grow 172 

winter wheat, sugar beet, corn, beans, and rape. The Rampillon AP comprises sub-basins 173 

separated by bunds to enhance pesticide dissipation and accumulation by increasing the water 174 

residence time (HRT) (Tournebize et al., 2012). The first sedimentation basin is 100 cm deep 175 

and 300 m3 (Fig.1; i.e., cell 1). The 4000-m2 intermediate zone is a shallow sub-basin of a 176 

maximum of 50cm deep, including cells 2, 3, and 4 (i.e., 1680, 1450, and 870m2, respectively). 177 

About 20, 60, and 50% of the inlet and outlet of cells 2, 3, and 4, respectively, were covered by 178 

vegetation in 2015: reed (Phragmites australis), bulrush (Juncus spp.), and sedge (Carex spp.). 179 

A final 1000-m3 basin, 80 cm deep (i.e., cell 5), was implemented before the outlet. The total 180 

volume of the Rampillon pond is 2500 m3. Sediments of the AP are composed of coarse silt for 181 

32.8%, clay for 27.8%, fine sand for 7.7% (3.5%), coarse sand for 2.7% (2%) through a transect 182 

from inlet and outlet, and 2-2.8% for organic matter. The loamy texture of sediment is similar 183 

to the surrounding soil texture. In 10 years, 10 cm of sediments accumulated in the Rampillon 184 

AP. On average, the AP intercepts 40% of the collected drainage water with 30 000 m3 transited 185 

per year. 186 

2.2 Monitoring data 187 

The Rampillon AP was initially implemented to buffer nitrate, metals, and pesticides 188 

originating from intercepted agricultural water. Therefore, since 2012, the Rampillon AP is 189 

instrumented to continuously monitor nutrient and pesticide fluxes and major water 190 

physicochemical parameters (i.e., flowrate, temperature, and dominant ions) at the inlet and 191 

outlet of the site (Fig.1). The typical monitoring stations comprise a flowmeter based at the 192 

water level, a Doppler (Sigma 950, Hach), a multi-parameter spectrophotometer (Spectrolyser 193 

UV–vis, S::can) for hourly measurements of turbidity and nitrates, and an automatic sampler 194 

managed for bi-monthly flow-weight sampling strategies. IRIS (IRIS Instruments, Orleans, 195 

France) also measured water temperature and water level using a pressure transducer model 196 

Madofil close to the outlet. Rainfall data were obtained through a local pluviometer installed at 197 

the study site. The daily potential evapotranspiration (PET) data are available in the 198 

MétéoFrance SAFRAN database (Vidal et al., 2010). PET data values are calculated following 199 

the Penman-Monteith formula. The hydrology of the 355-ha watershed is summarized in 200 

Fig.A.2. It was chosen to validate the model upon the following five periods: 2014-2015, 2016-201 

2017, 2017-2018, 2018-2019, and 2019-2020 excluding monitoring periods with artifacts and 202 

pesticide re-mobilization that is detailed afterward. The selection of the pesticide molecules for 203 
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the model validation is motivated by the diversity of their chemical properties and their 204 

significant detection rate. The monitoring data of the 5270 m2 AP during the selected periods 205 

are summarized in Table A.8. 206 

  207 
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2.3 Input data 208 

Since 2011, outlet and inlet pesticide concentrations have been monitored in the Rampillon AP. 209 

The AP efficiency to mitigate pesticides is calculated from the mass fluxes using Eq.1. Note 210 

that the mass flux corresponds to the total mass of pesticide detected in the water with no 211 

distinction between the dissolved and particulate fraction. 212 

(1) 213 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) = (1 −
𝑜𝑢𝑡𝑙𝑒𝑡 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥

𝑖𝑛𝑙𝑒𝑡 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥
) ∗ 100 214 

Where the outlet and inlet mass fluxes (µg) are deduced from the concentrations (µg.L-1). 215 

Since the rate of pesticide mitigation varies with the type of pesticide, it is suitable to represent 216 

the AP performance by a mean efficiency. Fig.A.3 depicts the total efficiency of the Rampillon 217 

AP in dissipating each of the seven evaluated in this work. The main physicochemical 218 

properties of the evaluated pesticides are listed in Table 1. 219 

The monitoring data showed that, on average, the Rampillon AP dissipates 23% of the total 220 

intercepted flux of selected pesticides. The highest dissipation rate (48%) goes to boscalid 221 

during 2016-2017, followed by quinmerac (34%) and mesotrione (36%) during 2018-2019. 222 

Mesotrione was dissipated by 33% equally during its two years of monitoring, i.e., 2017-2018 223 

and 2018-2019. The mitigation of s-metolachlor varied sharply throughout the years, with a 224 

dissipation rate going from 30% during 2016-2017 to 5% during 2014-2015 and 2019-2020. A 225 

similar variation was noticed for quinmerac that was dissipated up to 36% during 2018-2019, 226 

while its inlet mass was barely reduced during 2014-2015. 227 

Compared to other periods, a significant efficiency was observed during 2016-2017 for 228 

bentazon, boscalid, and s-metolachlor. The higher dissipation could result from the high HRT 229 

(14 days), and temperature noticed back then (11°C). Similarly, mesotrione and quinmerac were 230 

significantly dissipated during 2018-2019, which had an average HRT of 9 days. In fact, a 231 

longer HRT provides time for accumulation and transformation processes behind pesticide 232 

dissipation, and a higher temperature stimulates the microbial activity behind pesticide 233 

biotransformation and is associated with significant solar radiation responsible for 234 

photodegradation. This observation ties in with other studies demonstrating that temperature 235 

and HRT are major drivers of pesticide behavior in AP (Bahi et al., 2023b; Imfeld et al., 2021; 236 

Materu et al., 2021; Pavlidis et al., 2022; Vallée, 2015). Interestingly, mesotrione had a mean 237 

dissipation of 50% during a lower mean temperature (9°C) and HRT (7 days). It could be 238 

explained by the high biodegradability of the molecule evidenced by short half-lives in both 239 

sediment and water, 5.3 and 5.2, respectively (Lewis et al., 2016). These observations underline 240 

the potential relationship between pesticide properties, hydro-climatic conditions, and APs 241 

performance. Therefore, this relationship will be evaluated using the PESTIPOND model 242 

(section 4). 243 

  244 
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Table 1: The physicochemical properties and the application season of the 7 studied pesticides. Koc (mg.L-1) is the 245 
organic carbon-water partition coefficient, representing the mobility of the molecule. Log Kow (-) is the octanol-246 
water partition coefficient, representing the hydrophobicity of the molecule. S (mg.L-1) is the water solubility of 247 
the molecule, and LOD (µg.L-1) is the detection limit of the molecule in water. The properties values were extracted 248 
from literature (Barchanska et al., 2012; Catalá-Icardo et al., 2015; Epa, 2001; Lewis et al., 2016; PubChem, 2021) 249 
and the application season was deduced from a follow-up of cultural practices in Rampillon. 250 

Pesticides Koc log Kow S LOD (ug,L-1) 

Bentazon 55 2.34 7112 0.005 

Boscalid 772 2.96 4.6 0.016 

Chlorotoluron 400 2.41 76 0.03 

Diflufenican 550 4.2 0.05 0.07 

Mesotrione 122 0.11 1500 0.04-0.61 

S-Metolachlor 120 2.9 480 0.02 

Quinmerac 86 2.7 107000 0.0006 
 251 

In terms of the detection frequency of each pesticide, bentazon was the most frequently detected 252 

pesticide, which may be due to its wide range of application periods, i.e., March, April, May, 253 

and June. Similarly, diflufenican was highly detected in the Rampillon AP because it was 254 

applied during three seasons, i.e., autumn (October and November), winter (January and 255 

February), and spring (March). A similar explanation can be accorded to quinmerac applied 256 

during autumn (September and October), spring (March, April, and May), and summer (June). 257 

On the other hand, Boscalid was only detected during 2014-2015 and 2016-2017. In fact, 258 

boscalid was always applied in April and once in May; therefore, if the application did not co-259 

occur with an important spring rainfall event, the pesticide in question would be unlikely to be 260 

detected in drainage water.Moreover, due to its Koc (772 L.kg-1) boscalid has a higher affinity 261 

to sediments, reducing its availability in the water reaching the pond. Likewise, mesotrione 262 

although being applied more frequently, it was only detected twice (2017-2018, 2018-2019). 263 

Mesotrione was applied during spring and summer (March, April, and June), with a low 264 

incidence of flooding events explaining the molecule's infrequent detection. 265 

The AP efficiencies were calculated based solely on the pond inlet and outlet amount of 266 

pesticides. It is; therefore, unknown which processes are driving the dissipation of pesticides. 267 

Therefore, the purpose of the PESTIPOND model is to simulate the behavior of pesticides and 268 

quantify the contribution of each process to the pesticide fate in APs.  Hereafter are detailed the 269 

model inputs, i.e., forcing variables and parameters. 270 

2.3.1 Forcing variables 271 

The list of the forcing functions required by the model is provided in Table A.1. It is important 272 

to recall that inlet and outlet concentrations are observed bi-monthly at the study site. The 273 

concentrations collected each fortnight are the average intercepted concentrations during the 274 

past two weeks. Therefore, to have a close insight into pesticide behavior and the model 275 

simulations, the bi-monthly observed concentrations were transformed to daily concentrations 276 

using a water flow rate weighted interpolation. The transformation method is detailed in (Bahi 277 

et al., 2023a). The daily inflow and outflow rates (Qin, Qout) were calculated from the hourly 278 

water flow rates measured on-site. The water flow rates are used to compute the inlet and outlet 279 

daily mass fluxes from the corresponding concentrations. 280 

Min (µg.d-1) and Mout (µg.d-1) are the daily mass fluxes of the pesticide at the AP’s inlet and 281 

outlet. Cin (µg.l-1) and Cout (µg.l-1) are the daily concentrations at the inlet and outlet of the AP, 282 
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respectively. The water volume Vw was computed by the hydrological model detailed in (Bahi 283 

et al., 2023a). The hydrological model of PESTIPOND requires daily local rainfall and 284 

evaporation data, which were provided by SAFRAN (Vidal et al., 2010), along with the daily 285 

temperature T (°C), which corresponds to a measurement station nearby the Rampillon AP. The 286 

water depth hw (m) was deduced by Eq.2. 287 

(2) 288 

ℎ𝑤(𝑡) =
𝑉𝑤(𝑡)

𝐴
 289 

 290 

Vw (m
3) is the water volume in the AP, and A (m2) is the measured surface area of the AP.  291 

2.3.2 Parameters 292 

For the model validation, parameters were either extracted from the pesticide properties 293 

database (PPDB) (Lewis et al., 2016) or calibrated, and the AP properties were measured on-294 

site (i.e., (Surface A=5270 m2 and the bulk density ρb=0.9 g.cm-3). The temperature correction 295 

coefficient θ (see equation in (Bahi et al., 2023a)) is extracted from the literature (Sharifi et al., 296 

2013). The list of the model input parameters is available in Table A.1.  297 

The parameters related to the processes were extracted from the PPDB and calibrated if not 298 

available or if calibration would ameliorate the model performance. The calibration was 299 

performed manually and numerically using the hydroGOF R-package (Zambrano-Bigiarini, 300 

2020). The R-calibration function seeks the set of parameters leading to the best possible 301 

performance of the model according to an evaluation criterion (e.g., NSE and KGE (Eq.3 and 302 

Eq.4)).  303 

The model parameters are classified in terms of processes: adsorption-desorption (kads (d
-1) and 304 

kdes (d-1) for sediment layer) and transformation processes (DT50,w, DT50,s and DT50,p. A 305 

pesticide half-life (DT50) is the time required for the dissipation of 50% of the substance concerned 306 

(Gregoire et al., 2009) in water (DT50,w), sediments (DT50,s), and due to photolysis (DT50,p). 307 

The sensitivity analysis results (Bahi et al., 2023, submitted) evidenced that the PESTIPOND 308 

model is insensitive to volatilization and hydrolysis independently of the pesticide molecular 309 

properties. Therefore, based on literature values (Jacobs and Adriaanse, 2012; Rose et al., 310 

2006), volatilization and hydrolysis rate coefficients were given a fixed value for the rest of the 311 

study (kv =kh=10-6 d-1), leaving only 5 parameter values to determine (DT50,w, DT50,s, DT50,p, 312 

kads, and kdes). The parameter values used to assess the PESTIPOND model are to be found in 313 

the result section (section 3). 314 

 315 

2.4 Model validation strategy 316 

The validation of the PESTIPOND model is based on the assessment of the simulations of 317 

pesticide fluxes against the available observations using the 20 study cases (Table A.8). Other 318 

pesticide fate models (Kalin et al., 2013; Watanabe and Takagi, 2000a) were validated using a 319 

single pesticide molecule or a single period to evaluate the model performance. Alternatively, 320 

PESTIPOND was validated upon field monitoring data of 7 pesticides with contrasting 321 

molecular properties (i.e., solubility, hydrophilicity, and mobility) (Table 1) during the 5 322 
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evaluated periods. The split-simple test (SST1) (KlemeŠ, 1986) is a common evaluation method 323 

for this type of model. However, the SST requires sizeable observation data. Even though the 324 

monitoring database of the Rampillon AP is consistent (2011-2022), it includes periods of no 325 

application nor flooding events responsible for pesticide transfer, which restrains the database 326 

size for SST use. 327 

 The validation strategy of the PESTIPOND comprises two steps (i) and (ii): 328 

(i) Based on the observations of pesticide concentrations, the model parameters are 329 

optimized for each period (i.e., annual parameters) to assess their stability and 330 

consistency. The variability of parameters between periods indicates the degree of the 331 

model’s robustness. 332 

(ii) In order to survey the parameters’ variability and asses the model robustness, the 333 

performance of PESTIPOND is evaluated using a single set of parameters (inter-annual) 334 

for all periods (i.e., the mean value of the annual parameters).  335 

Note that for (i) and (ii), the model performance is assessed using both the transformed 336 

observations (daily observations) and the non-transformed observations (bi-monthly 337 

observations). When the model is validated for the bi-monthly observations, a bi-monthly flow-338 

weighted concentration is calculated from the daily simulation results to match the 339 

observations’ time scale. 340 

To quantitatively assess model performance, the well-known Nash Sutcliffe efficiency (NSE) 341 

objective criterion (Nash and Sutcliffe, 1970) (Eq.3) was adopted. An additional metric was 342 

used to assist the NSE criterion, i.e., Kling–Gupta efficiency (KGE) criteria (Gupta et al., 2009) 343 

(Eq.4). The two criteria are known for properly evaluating nutrients and chemical fate models 344 

(Moriasi et al., 2015). The NSE and KGE values range from –∞ to 1 and require data on both 345 

simulated and observed pesticide fluxes. NSE and KGE values close to 1 imply that the model 346 

simulations fit the observations owing to good model performance. 347 

The renowned t-test (the Student's statistical test) was used to evaluate the similarity between 348 

observed and simulated pesticide concentrations (Stokes et al., 2014). Then, a regression 349 

analysis was conducted to assess the correlation between the observed and simulated pesticide 350 

concentrations (Montgomery et al., 2021). The t-test is a hypothesis-based test to compare the 351 

means of two groups (e.g., observations and simulations). The test statistics are quantified by 352 

the t-value (Eq.5) and p-value. A low t-value indicates a slight difference between the means 353 

of both observations and simulations. A p-value higher than the significance level (α=0.05) 354 

means the null hypothesis cannot be rejected (Mishra et al., 2019). The test’s null hypothesis is 355 

that there is no significant difference between the two groups (Pieri et al., 2007; Serrano, 2012; 356 

Wright et al., 2017). To further asses the relationship between observations and simulations, a 357 

regression analysis was conducted and quantified by the R2 (Eq. 6), where R is the Bravais-358 

Pearson correlation coefficient (Pearson, 1895; Waldmann, 2019).  The higher the R2, the more 359 

pronounced the correlation between the observed and simulated pesticide concentration. This 360 

correlation is statistically significant when the p-value of the Pearson test is lower than 0.05. 361 

The normalized root means square error (NRMSE) (Eq.7) was also computed to describe the 362 

                                                 
1 The split sample test consists in splitting the observation data into two periods. The parameters are calibrated 

over the first period. Next, the model performance is evaluated by running the calibrated set of parameters obtained 

over the second period. 
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discrepancy between the observations and simulations. Since molecules have different 363 

concentration ranges, it is statistically more appropriate to compare the NRMSE than the regular 364 

RMSE (µg.L-1). Therefore, NRMSE was calculated by normalizing the RMSE according to the 365 

difference between the maximum and minimum concentrations for each pesticide (Kenney and 366 

Keeping, 1962; Sinsomboonthong, 2022). The statistical tests were performed using the “stats” 367 

R-package (Lüdecke et al., 2021). 368 

(3) 369 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑡 − 𝑋𝑡

∗)²𝑡=𝑇
𝑡=1

∑ (𝑡=𝑇
𝑡=1 𝑋𝑡

∗ − 𝑋𝑡
∗)²

 371 

(4)                                                              370 

𝐾𝐺𝐸 = 1 − √(
𝑐𝑜𝑣(𝑋𝑡

∗, 𝑋𝑡)

𝜎(𝑋𝑡
∗)2𝜎(𝑋𝑡)2

− 1)

2

+ (
𝑋𝑡

𝑋𝑡
∗

− 1)

2

+ (
𝜎(𝑋𝑡) 

𝜎(𝑋𝑡
∗)

− 1)

2

 373 

(5) 372 

𝑡 =
 𝑋𝑡 − 𝑋𝑡

∗

√𝜎(𝑋𝑡)
𝑛 +

𝜎(𝑋𝑡
∗)

𝑛

 374 

(6) 375 

 376 

𝑅2 = 1 −
∑  (𝑋𝑡 − 𝑋𝑡

∗)2

∑  (𝑋𝑡 − 𝑋𝑡)2
 377 

(7) 378 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑋𝑡 − 𝑋𝑡

∗)2

𝑇

𝑡=1

 379 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

max(𝑋𝑡) − min (𝑋𝑡)
 380 

Where, 𝑋𝑡
∗ and 𝑋𝑡 correspond to the observations and the simulations at the time step t, 381 

respectively. 𝑋𝑡
∗ and 𝑋𝑡 are the mean values of the observed and simulated pesticide fluxes, 382 

respectively, throughout the whole period of interest T. 𝑐𝑜𝑣(𝑋𝑡
∗, 𝑋𝑡) refers to the covariance 383 

between 𝑋𝑡
∗ and 𝑋𝑡 while σ indicates the standard deviation. n is the size of the 384 

observation/simulation sample.         385 

  386 
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                             387 

3 Results 388 

3.1 Model assessment based on the annual calibration 389 

An annual calibration of the model parameters according to pesticide fluxes is performed over 390 

the selected periods. The obtained parameter values are set out in Tables A.2 & A.3.  391 

A graphical and numerical comparison between simulations and observations of pesticide 392 

fluxes at the AP outlet were carried out. First, the model performance was assessed according 393 

to the daily observations, i.e., the transformed observations from the bi-monthly mean values 394 

to daily values (Fig.2). Then according to the bi-monthly observations, i.e., non-transformed 395 

observations, while using an annual calibration (Fig.A.5). 396 

For brevity and representability, we only exhibit the results of two pesticides during 2014-2015, 397 

i.e., the hydrophobic and slightly mobile diflufenican (Koc (L.kg-1) = 550, log Kow = 4.2) and 398 

the hydrophilic and highly mobile bentazon (Koc (L.kg-1) = 55, log Kow=2.34) (Lewis et al., 399 

2016) (Fig.2).  400 

 401 

Figure 2 Graphical comparison of the daily simulations (purple line) and transformed observations (dark points) 402 
of the bentazon and diflufenican concentrations in the outlet and the observed outflow rate (blue line). 403 

From the graphical (Fig.2) and numerical outcomes (Table 3), it can be noted that the annual 404 

calibration results in proper model performance. The KGE and NSE values are >0.5, and the 405 

RMSE does not exceed 0.07. Considering how wide the goodness-of-fit-range of variations are 406 

(NSE (-∞, 1] and KGE (-∞, 1]), the model performance can be considered as “good” due to the 407 

annual calibration (Lee et al., 2021; Moriasi et al., 2007; Moriasi et al., 2015). 408 

 409 

The simulations of the daily concentrations and masses of bentazon and diflufenican align with 410 

the observations. The outlet concentrations increase after the pesticide application, i.e., during 411 

spring for bentazon and autumn for diflufenican (Fig.2). The model simulates the higher 412 

exportation of bentazon (40g) in the water compared to diflufenican (3.5g) during 2014-2015. 413 

During the same year, quinmerac was also exported significantly, with a total mass of 43g, 414 

while the exportation of the other pesticides (i.e., boscalid, chlorotoluron, and s-metolachlor) 415 

did not exceed 10g (Fig.A.4).  416 

 417 

However, the model underestimated almost equally the overall exportation of s-metolachlor 418 

and quinmerac with a discrepancy of 3g, which covers 5% and 22% of the total intercepted 419 

mass, respectively, during 2014-2015. The For the rest of the periods and pesticides, the model 420 
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managed to reproduce the observed mass exportation. Fig.A.4 displays that the model simulated 421 

the lower AP efficiency in dissipating the mass of mesotrione, s-metolachlor, and quinmerac 422 

during 2017-2018. During the same year, PESTIPOND also simulates the highest exportation 423 

for s-metolachlor (300g).  Globally, the simulation results reflect a lower performance at higher 424 

concentrations following pesticide applications compared to lower concentrations (Fig.2). 425 

 426 

The results underline that the simulations with the annually calibrated set of parameters also fit 427 

the non-transformed observations (bi-monthly) of pesticide concentrations (Fig.A.5). The 428 

simulated concentration of s-metolachlor was underestimated compared to the observations of 429 

two samplings (22/05/2017 and 19/05/2020). Similar underestimation was noted for s-430 

metolachlor mass exportation in Fig.A.4, which is also translated by its lower KGE (0.53) 431 

compared to other pesticides (Table 3). Conversely, the model overestimated the concentration 432 

of boscalid during 2014-2015 and 2016-2017. This overestimation also concerned the exported 433 

boscalid mass during 22/02/2017-20/03/2017 and 22/02/2017 (Fig.A.4). Accordingly, boscalid 434 

had the lowest KGE (0.44) (Table 3).  435 

 436 

On average, an annual parameter calibration induces a discrepancy between simulated and 437 

observed fluxes of 0.03g, all periods and pesticides included. Overall, the graphical comparison 438 

evidences the ability of the model to predict the dynamics of the outlet concentrations (Fig.2), 439 

and to simulate the concentrations observed in the field (Fig.A.5). The KGE and NSE criteria 440 

reflect a good performance of the PESTIPOND model according to the annual calibration, 441 

except for boscalid (Table 3). 442 

3.2 Model assessment based on the inter-annual calibration 443 

The adsorption-desorption parameter (kads, kdes) vary more pronouncedly over the years than 444 

transformation ones (DT50,w, DT50,s, and DT50,p) (Tables A.2 & A.3). In order to evaluate this 445 

variability, we ran the model using a generic set of parameters (Table 3), which is the mean 446 

value of the annual-calibrated parameters (Tables A.2 & A.3) and estimated the performance 447 

criteria (Table 3). Additionally, a graphical comparison between the simulations using the 448 

calibrated parameters and the non-transformed observations is provided (Fig.3). 449 

  450 
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Table 2: The mean value of the annual-calibrated parameters, and the PPDB values of transformation half-lives, 451 
i.e., (DT50,w, DT50,s, and DT50,p). The physicochemical properties were extracted from the PPDB or other pesticide 452 
databases if not available. 453 

 
Calibrated PPDB PPDB/Literature 

Pesticides  DT50,w DT50,s DT50,p kads  kdes  DT50,w DT50,s DT50,p Koc log Kow 

Bentazon 5 100 3 0.15 0.01 80 716 4 55 2.34 

Boscalid 500 500 stable 0.63 0 5 545 stable 772 3 

Chlorotoluron 44 300 30 0.42 0 44 308 30 400 2.5 

Diflufenican 200 175 133 0.51 0 2002 175 stable 550 4.2 

Mesotrione 5.3 5.2 89 0.69 0.05 5.3 5.2 89 122 0.11 

S-metolachlor 1.5 43 146 0.07 0.01 9 43 146 120 2.9 

Quinmerac 3.84 180 66 0.43 0.02 88 179 66 86 2.7 

 454 

Table 3: Statistical comparison of simulations and daily observations of pesticide fluxes. The left part of the 455 
table lists the KGE, NSE, and NRMSE values using an inter-annual set of parameters, i.e., the mean of the 456 
annual-calibrated parameter values, and the right part is for the annual calibration 457 

 Inter-annual calibration Annual calibration 

Pesticides  KGE NSE NRMSE KGE NSE NRMSE 

Bentazon 0.74 0.79 0.07 0.75 0.79 0.07 

Boscalid 0.44 0.64 0.06 0.68 0.68 0.06 

Chlorotoluron 0.74 0.87 0.01 0.83 0.82 0.05 

Diflufenican 0.76 0.78 0.07 0.74 0.73 0.05 

Mesotrione 0.63 0.93 0.03 0.69 0.87 0.04 

S-metolachlor 0.58 0.76 0.04 0.58 0.75 0.05 

Quinmerac 0.54 0.84 0.04 0.65 0.86 0.04 
 458 

High KGE (>0.5) and NSE (>0.6) values of the model outputs were observed when using the 459 

inter-annual set of parameters for all pesticides (Table 3). Boscalid made the exception with a 460 

KGE of 0.44. Given that the annual calibration was designed to find a proper set of parameters 461 

for each period (Tables A.2 & A.3), the performance was expected to decrease when running 462 

the model with a single set of parameters independently of the period (Table 2). Nonetheless, 463 

the criterion values reflect in aggregate a good model performance, i.e., NSE >0.35 and KGE 464 

>0.5, except for boscalid, which indicates a not satisfactory performance according to the 465 

commonly used thresholds (Knoben et al., 2019; Moriasi et al., 2015; Towner et al., 2019). 466 

 467 

                                                 
2 The biotransformation half-life in water of diflufenican was not available in the PPDB so it was extracted from EFSA (2008). Conclusion 

regarding the peer review of the pesticide risk assessment of the active substance diflufenican. EFSA Journal 6, 122r. 
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 468 

 469 

 470 

Figure 3:  Graphical comparison of the bi-monthly observations (y-axis) and simulations (x-axis) of all pesticide 471 

outlet concentrations (µg.L-1) and periods combined, using the inter-annual calibration. Each color points out a 472 

specific pesticide. The black line in the middle refers to simulations equal to observations (Y=X).  R2 is the R-473 
squared correlation coefficient between the observations and simulations. p-value3 is the p-value of the regression 474 
test. 475 

Using the inter-annual set of parameters results in a good fit between the simulations and the 476 

non-transformed observations of pesticide concentrations (Fig.3). The R2 values were >0.7 (p-477 

values <0.05), indicating a strong correlation between the observations and simulations, except 478 

during 2016-2017 (R2=0.41). The s-metolachlor simulated concentration (0.5µg.L-1) was 479 

underestimated compared to the observations (0.77µg.L-1) during 2019-2020. The 480 

underestimation was more accentuated during 2016-2017 when the simulated concentration of 481 

s-metolachlor (0.06 µg.L-1) was ten times lower than the observations (0.67 µg.L-1). The poor 482 

                                                 
3 A p-value <0.05 indicates that the correlation between the observations and simulations is statistically significant. 
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performance of the model evidenced by the low KGE value of boscalid is also noticed by the 483 

overestimation of the exported mass during 2016-2017 and the pronounced underestimation 484 

during 2014-2015 (Fig.A.6). On average, the relative error of boscalid discharge simulations is 485 

36% while it is <10% for other pesticides. The p-values of the t-test were >0.05, reflecting that 486 

the null hypothesis cannot be rejected (Table A.4). Hence, there is no significant difference 487 

between the observed and simulated pesticide concentration for all periods. The high R2 values 488 

indicate a strong correlation between the observed and simulated pesticide concentration, 489 

except for 2016-2017, manifesting a moderate correlation—the p-values of the regression 490 

analysis evidence the statistical significance of these correlations (Table A.4). 491 

Altogether, the graphical and statistical comparison of the observations and the simulations 492 

using the inter-annual set of parameters reflect a good model performance for all pesticides 493 

except for boscalid. After the quantitative evaluation of the model, the next section will describe 494 

the mass budget of pesticides within the AP and the contribution of each process to pesticide 495 

dissipation. 496 

3.3 Pesticide mass budget 497 

One of the PESTIPOND model's major aims is to quantify each process's contribution to the 498 

fate of pesticides. Accordingly, after running the model with the mean set of parameters, the 499 

mass budget of pesticides was assessed to illustrate the mass distribution in the pond and the 500 

contribution of each process to pesticide dissipation. Table A.5 summarizes the mass budget 501 

for all the pesticides and periods of the survey. Note that the PESTIPOND model checks 502 

whether the mass balances tally during the calculations. The mean mass balance error of the set 503 

of pesticides and periods is <1 % showing that the model conserves the mass properly.  504 

For succinctness, only mean values of the mass partition in the AP at the end of each period 505 

will be discussed in the following (Fig.4). Note that the transformation in water includes the 506 

biotransformation, photolysis, hydrolysis, and volatilization in the water column. 507 

 Overall, most intercepted pesticides are discharged from the pond with a mean out flux of 72%, 508 

followed by the mass remaining in the active sediment layer with a mean proportion of 12%, 509 

which leaves almost 2% pesticides in the water column. Therefore, the mean dissipated mass 510 

between the inlet and outlet of the AP accounts for 14% of the total intercepted mass.  511 

 512 
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 513 

 514 

 515 

Figure 4: Graphical representation of the proportion of pesticide masses to the total input mass.  516 

On average, boscalid, mesotrione, and quinmerac had the highest adsorption (Fig.4), which 517 

covers 35%, 36%, and 35% of the total input mass, respectively (Table A.5). Diflufenican, 518 

chlorotoluron, and bentazon come after with adsorption of 28%, 21%, and 14%, respectively. 519 

S-metolachlor had the lower adsorption (6%) but a significant transformation in water (24%), 520 

which is mostly due to biotransformation (23%), leaving only 1% to the other transformation 521 

processes (photolysis, hydrolysis, and volatilization). A significant transformation in the water 522 

column was also noted for bentazon (14%), which is mainly partitioned between photolysis 523 

(9%) and biotransformation (5%). On the other hand, biotransformation at the water-sediment 524 

interface had an important contribution to pesticide dissipation. For instance, 18% of the 525 

mesotrione intercepted mass was biodegraded on average in the active sediment layer. 526 
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Moreover, during 2014-2015, boscalid, chlorotoluron, and diflufenican were more transformed 527 

in the sediments than in water. The transformation in water and desorption rates for the same 528 

three pesticides are negligible (<1%). Conversely, the quinmerac desorption covers 20% of the 529 

inlet mass, followed by mesotrione (10%) and bentazon (7%). The photolysis contribution to 530 

dissipation was negligible for all pesticides except for the bentazon (8%). 531 

Temperature was the highest during 2016-2017, which overlapped with the highest, desorption 532 

and transformation of bentazon at the water-sediment interface. The same period exhibited the 533 

highest HRT. 534 

   535 
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 536 

Figure 5: Graphical representation of the percentage of each process to the total mass intercepted by the pond and, 537 
the average temperature T (°C) and HRT (d) of each period. 538 

3.4 Model extrapolation: Efficiency abacus 539 

For further exploitation of the model outputs, PESTIPOND was run with the inter-annual 540 

parameter set described in section 3.3 and the same inputs presented in Section 2.3 but using 541 

different AP sizes in ascending order, equivalent to higher nominal HRT. For each simulation 542 

assigned to a specific AP area A (and HRT), the mean pesticide dissipation efficiency was 543 

computed (Eq.1). For the different simulations, only the AP area was modified, and the rest of 544 

input data were kept the same (e.g., the water flow rates, water depth, and temperature). 545 

Note that a mean efficiency, including all pesticides, is computed for each period, and then a 546 

mean value for all periods is deduced (Fig.6, Table. A.7).. For this extrapolation study, , 547 

boscalid was excluded because it yielded poor model performance (section 3.2). 548 
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 549 

Figure 6: The mean efficiency of the Rampillon AP to dissipate pesticides from the inlet to the outlet according 550 
to the different sizes of the pond. The x-axis represents the percentage (%) of the area occupied by the AP in the 551 
total catchment area (355ha). The y-axis corresponds to the mean efficiency of the studied periods. The upper and 552 
lower grey areas refer to the discrepancy between the mean and the maximum and minimum efficiencies, 553 
respectively. 554 

For the actual Rampillon area (5270m2), which covers 0.15% of the drained catchment area 555 

(355ha), the mean AP efficiency is 40% for all pesticides combined. By increasing the surface 556 

area by 10 000 m2, the HRT is tripled, and the efficiency rises sharply to 63%. From an area 557 

that covers 0.7% of the watershed, the efficiency increases less steeply and attains about 82% 558 

(Fig.6). 559 

An annual variation of the simulated pond efficiency independently of the area was noticed 560 

(Fig.A.8). However, the variation degree decreased with increasing pond areas, as well as the 561 

efficiency itself, as observed in Fig.6. For the actual AP size (i.e., 0.15% of the catchment area), 562 

the efficiency doubled from 2014-2015 (30%) to 2016-2017 (62%). Afterward, the dissipation 563 

potential of the pond decreased sharply to 36% during 2017-2018 and remained around 38% 564 

for the following years. Similar behavior will be noticed in the pond’s efficiency if the surface 565 

increases to 0.5%-0.7% of the catchment area, with higher minimum and (55%-66%) and 566 

maximum values (80%-87%), respectively. For a ratio of 0.15%-0.7%, the mean pond 567 

dissipation is 17% lower than the mean maximum and 10% higher than the minimum. 568 

Conversely, once the AP area covers >1% of the catchment, the discrepancy between the mean 569 

efficiencies and the minimum and maximum values decreases to ~8% and ~6%, respectively 570 

(Fig.6). 571 

In addition, similar extrapolation was performed on different temperatures representing a 572 

geographical temperature gradient (Fig.A.9). Pesticide dissipation increases linearly according 573 

to ascending temperature. On average, the current temperature of the surveyed periods is 9°C, 574 

which results in a 40% efficiency of the Rampillon AP.. In aggregate, a temperature rise of 5°C 575 

will boost the mean efficiency by 4%. Overheating the current temperature by 10°C will 576 

improve the mean dissipation of pesticides by almost 13 %. A temperature rise of 5°C will 577 

result in a maximal mean efficiency of 67%, compared to the actual maximal dissipation rate 578 

(61%). A lower variation is noticed in the minimum pond efficiency with ascending 579 

temperatures. On average, the actual minimal dissipation rate of the AP is 30%, which is also 580 
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expected to rise by 4% due to a temperature increment of 5°C. On the other hand, reducing the 581 

temperature by -5°C can decrease the actual efficiency by 2%. 582 

4 Discussion  583 

4.1 Conceptual model 584 

PESTIPOND is a time-dependent model (daily-step) developed to predict the fate of pesticides 585 

at the ponds’ scale before being transferred to the water resources of the agricultural catchment. 586 

The model is designed to be implemented in a landscape-modeling tool (e.g., SWAT (Neitsch 587 

et al., 2011)) to predict pesticide behavior at the catchment scale. PESTIPOND can be 588 

integrated into landscape modeling by replacing the equations of the pesticide fate sub-model 589 

with PESTIPOND’s formulations. Otherwise, the pesticide concentrations simulated by 590 

PESTIPOND could be directly implemented as simulated data in landscape models.  The 591 

PESTIPOND modeling approach is built upon the mass balance of pesticides in the two main 592 

compartments of AP, i.e., the water column and the active sediment layer, also designated as 593 

the water-sediment interface, while considering the key physicochemical processes behind 594 

pesticide behavior. PESTIPOND requires hydro-climatic input data (i.e., rainfall, PET, 595 

temperature, inflow, and outflow rates) and monitoring data of the intercepted pesticides (inlet 596 

concentrations). 597 

The originality of the model lies in integrating and exploring the key physicochemical processes 598 

to predict the export of pesticides from AP contrarily to black-box models using a single generic 599 

decay coefficient. Besides, PESTIPOND uses the simplest form of mathematical formulations 600 

when compared to more complex and computationally costly environmental fate models such 601 

as TOXSWA and AGRO-2014 (Adriaanse, 1996; Gobas et al., 2018). Contrarily to other 602 

pesticide fate models (i.e., the pond/lake module of SWAT (Neitsch et al., 2011)), PESTIPOND 603 

integrates the effect of temperature and HRT as they are widely recognized as governing factors 604 

of pesticide behavior in AP. Each temperature-dependent process coefficient is adjusted to the 605 

actual site temperature. Plus, the processes are integrated into the model by kinetics; thus, the 606 

more extended the HRT, the longer the process will have time to dissipate the molecule. In 607 

contrast to SWAT, PESTIPOND integrates desorption, a considerable process for mobile and 608 

hydrophilic pesticides, as underlined by the SA and mass budget results discussed afterward. 609 

4.2 Sensitivity analysis 610 

A global sensitivity analysis was performed and documented in (Bahi et al., 2023, submitted). 611 

SA outcomes evidenced the insensitivity of the PESTIPOND model to hydrolysis and 612 

volatilization processes. By contrast, adsorption and desorption showed the most significant 613 

influence on pesticide behavior independently of their molecular properties. Similar SA 614 

assumptions were made by Boulange et al. (2012) and Desmarteau and Ritter (2014) for other 615 

environmental fate models. In addition, SA evidenced that the biotransformation at the water-616 

sediment interface is more effective on hydrophobic and lowly mobile pesticides, while 617 

biotransformation in water is more effective on hydrophilic and highly mobile pesticides. The 618 

variation of the AP efficiency with time (Fig.A. 7) can be translated by the seasonal change of 619 

the impact of processes on pesticide fate. This observation fortifies the SA assumption outlining 620 

that (1) the sensitivity of hydrophilic pesticides to sorption and transformation processes varies 621 

with time according to the hydraulic conditions of the AP and (2) that temperature has a major 622 

effect on the set of processes, particularly enhancing pesticide transformation. Afterward, the 623 

model was calibrated and validated using monitoring data of 7 pesticides with contrasted 624 
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properties (i.e., hydrophobicity and mobility) during five periods. PESTIPOND performance 625 

was graphically and statistically evaluated. 626 

4.3 Model performance  627 

For the model performance assessment, we adopted the following strategy. The performance of 628 

PESTIPOND was first (i) evaluated using an annual calibration (i.e., a set of parameters proper 629 

to each year (Tables A.2 & A.3) and then (ii) a generic set of parameters for all years (i.e., the 630 

mean value of the annual-calibrated parameters (Table 2). Since the daily observations of 631 

pesticide concentrations are not available, transformed observation data was created from bi-632 

monthly monitoring to illustrate pesticide dynamics closely. Therefore, the model performance 633 

was assessed for both transformed and non-transformed observations for each step (i) and (ii). 634 

Firstly, the results of steps (i) and (ii) of the performance assessment (section 5.2) proffered 635 

graphical (Fig.2, Fig.3) and statistical (Tables 3 & A.4) agreements between simulations and 636 

observations except for boscalid according to non-transformed observations. Given the half-637 

lives of boscalid reported in the literature (PPDB), it is biodegradable in water. Whereas 638 

boscalid was stable based on the observations in the Rampillon AP (Fig A.5), which means that 639 

the conditions in which the PPDB half-lives were estimated may be different from those of an 640 

AP.  641 

Lower KGE and NSE values were noted for step (ii) compared to (i). The drop in the 642 

performance (ii) was expected since the annual calibration uses an adapted set of parameters 643 

for each year (Tables A.2 & A.3), whilst a single set of parameters was used for all years 644 

combined in the performance assessment (i) (Table 3).  645 

Secondly, a lower KGE was noticed for all pesticides compared to the NSE values. The 646 

difference between the KGE and NSE values may originate from the definition of the KGE 647 

(Eq.3) based on the mean difference between simulations and observations, which puts more 648 

weight on extreme values. Alternatively, the NSE (Eq.4) estimates the discrepancy between 649 

observations and simulations evenly during the whole period. Given that a spike following their 650 

application in the agricultural plots characterizes all the pesticide chronicles, it is anticipated 651 

that the KGE will have lower values than the NSE. Notwithstanding, it is recommended to 652 

evaluate model performance with more than one criterion (NSE), thus using the KGE and 653 

NRMSE. Based on commonly used thresholds (Knoben et al., 2019; Moriasi et al., 2015; 654 

Towner et al., 2019), the KGE and NSE values indicate a “good” model performance, except 655 

boscalid, for which the model performance is considered as “not satisfactory” according to both 656 

transformed and non-transformed observations. The low model performance on boscalid is also 657 

portrayed by a significant discrepancy between the observed and simulated exported mass and 658 

outlet concentration during 2014-2015 (Fig.A.6). Furthermore, boscalid simulations induce a 659 

model relative error (36%) higher than other pesticides (<10%). Moreover, the average NRMSE 660 

translates to a slight discrepancy between the observed concentrations and simulations for the 661 

other pesticides. 662 

Note that using the transformed observations (daily) evaluates the model's ability to simulate 663 

pesticide dynamics. The non-transformed observations (bi-monthly) assess the model's capacity 664 

to predict the exported fluxes and concentrations of pesticides from the AP. Therefore, based 665 

on the graphical and statistical comparisons between the model outputs and both the 666 

transformed and non-transformed observations while using a single set of parameters (inter-667 
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annual), we assume that the PESTIPOND model is robust and able to predict the dynamics and 668 

exported fluxes and concentrations of pesticides, except for boscalid, at the AP scale. 669 

4.4 Hierarchization of pesticide dissipation processes 670 

To further explore the model outcomes and confirm the SA assumptions, we closely analyzed 671 

the mass budget of pesticides in the AP. We quantified the contribution of each process to 672 

pesticide fate. The quantification of the mass partition of pesticides revealed that most of the 673 

intercepted mass is discharged from the pond for a mean residence time of 16 days and 9 °C 674 

temperature. The remaining mass is dissipated or stored in sediments and in the water column. 675 

The pesticides that were mostly stored in the sediment layer are boscalid (Koc (L.kg-1) = 772, 676 

log Kow=3), chlorotoluron (Koc (L.kg-1) = 400, log Kow=2.5), and diflufenican (Koc (L.kg-1) = 677 

550, log Kow=4.2). According to their Koc and Kow, these three molecules are hydrophobic (log 678 

Kow ≥ 3) and lowly mobile (Koc >500) (Lewis et al., 2016). Therefore, they are likely to be 679 

adsorbed on sediments, which agrees with the mass budget results (Fig.5). Alternatively, the 680 

pesticides manifesting a higher presence in water are mesotrione (Koc (L.kg-1) = 122. log 681 

Kow=0.11), s-metolachlor (Koc (L.kg-1) = 120, log Kow=2.9), bentazon (Koc (L.kg-1) = 55. log 682 

Kow=2.34), and quinmerac (Koc (L.kg-1) = 86. log Kow=2.7), which are hydrophilic and highly 683 

mobile (Lewis et al., 2016). The results purport that PESTIPOND simulates a pesticide behavior 684 

in agreement with the one expected based on their properties. 685 

The PESTIPOND model was initially built to hierarchize the processes behind pesticide 686 

dissipation. This hierarchization is useful for identifying the key elements to be managed in 687 

order to optimize the environmental efficiency of ponds. Thus, the mass attributed to each 688 

process was quantified and confronted with temperature and HRT. For all pesticides, adsorption 689 

is the most significant process in pesticide behavior, except for s-metolachlor (4), which was 690 

more distinguished by the transformation in the water column. By relating this result to the 691 

hydrophilic and mobile properties of the pesticide, it is expected that s-metolachlor undergoes 692 

limited adsorption, which increases its bioavailability for transformation in the water column 693 

than the sediment layer. A similar observation was made for s-metolachlor by (Droz et al., 694 

2021) based on laboratory experiments. By contrast, more significant adsorption was detected 695 

for the hydrophobic boscalid, chlorotoluron, and diflufenican (Fig.5), followed by a 696 

transformation in the sediment layer. In fact, the significant adsorption of hydrophobic 697 

pesticides was heavily evidenced in the literature (Hand et al., 2001; Tang et al., 2017; Vagi 698 

and Petsas, 2022) based on their high affinity to the organic carbon of sediments and 699 

hydrophobicity translated by a high Koc and log Kow, respectively. Boscalid, chlorotoluron, 700 

and diflufenican are more likely to be adsorbed on sediments and thus are more bioavailable 701 

for biotransformation at the water-sediment layer, contrarily to more hydrophilic and mobile 702 

pesticides. For instance, bentazon, s-metolachlor, and quinmerac being hydrophilic and highly 703 

mobile, are more likely to be transformed in water (Table A.6). This result underlines the link 704 

between adsorption and pesticide bioavailability for biotransformation as suggested by previous 705 

experimental studies (Ahmad et al., 2004; Budd et al., 2011; Chaumet et al., 2021; Lee et al., 706 

2004; Mulligan et al., 2016).  The low log Kow (<3) of bentazon, mesotrione, and quinmerac 707 

indicate that they are likely to be re-mobilized from the sediment, which was reflected by the 708 

mass budget detecting a desorption flux for all monitoring periods. For hydrophilic and highly 709 

mobile pesticides, desorption covered a non-negligible part of the intercepted mass.   710 
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On average, for all pesticides and periods combined, adsorption covers 22% of the input mass, 711 

followed by 10% for biotransformation in water and desorption with 6%, leaving 5% for 712 

biotransformation and the water-sediment interface. Photolysis covers a negligible part of the 713 

total transformation in water (< 1%), except for bentazon (≈8%). However, when looking at 714 

pesticides separately, hydrophobic and lowly mobile pesticides had higher biotransformation at 715 

the water-sediment interface than in the water. The mass budget results support the significance 716 

of adsorption, desorption, and biotransformation in the water for hydrophilic and mobile 717 

pesticides. Alternatively, biotransformation at the water-sediment interface is more pronounced 718 

and, desorption is limited for hydrophobic and lowly mobile pesticides. 719 

SA results contended that adsorption is the most influencing process of pesticide behavior, 720 

fortifying the mass budget results showing that an important fraction of the intercepted mass 721 

was adsorbed for most pesticides. The mass budget also exhibited a higher transformation in 722 

water and desorption effect on hydrophilic and mobile pesticides, explaining why these types 723 

of molecules were more sensitive to processes occurring in the water column. Conversely, 724 

hydrophobic and lowly mobile pesticides were distinguished by higher adsorption and 725 

transformation in the active sediment layer, which is in line with the SA outcomes displaying a 726 

higher sensitivity to processes occurring at the water-sediment interface for this kind of 727 

pesticides. Combining the model results and SA outcomes, we assume that adsorption-728 

desorption and biotransformation are major processes behind pesticide fate. Hydrophobic and 729 

lowly mobile pesticides are more likely to be biotransformed in the active sediment layer than 730 

in water. At last, volatilization and hydrolysis have a negligible contribution to pesticide 731 

dissipation. 732 

4.5 Dissipation efficiency and pond properties 733 

In addition, the PESTIPOND model enables the assessment of the link between pesticide 734 

dissipation and pond properties (i.e., temperature and HRT). The mass budget results (Fig.4) 735 

highlighted a higher transformation of bentazon, boscalid, and s-metolachlor 2016-2017, 736 

characterized by the highest mean temperature (12°C) and HRT (28 days). Also, bentazon, 737 

diflufenican, and s-metolachlor underwent higher adsorption during 2019-2020, having a 738 

higher HRT (27 days). The same pesticide had a lower transformation during 2018-2019, 739 

characterized by a lower mean temperature (8°C). Moreover, the desorption of bentazon and 740 

mesotrione was more significant during 2018-2019, when the HRT was only 8 days. 741 

These results support the link between temperature, HRT, and pesticide behavior. Higher 742 

temperatures enhance the microbial activity behind the biotransformation and are accompanied 743 

by important solar radiations, which favors photolysis (Kaur and Vishnu, 2022; Law et al., 744 

2014; Motoki et al., 2020; Rani and Sud, 2015). Therefore, significant pesticide transformation 745 

was noticed during periods of high temperature. In addition, higher HRT provides a longer time 746 

for pesticides to be adsorbed and transformed. Similarly, for some pesticides higher desorption 747 

was noted during low-HRT periods while it was the opposite for other pesticides. This result 748 

suggests that no direct link between desorption and HRT was noticed. 749 

The link between temperature, HRT, and pesticide dissipation raises concerns about the impact 750 

of pesticides’ application period. For instance, except for chlorotoluron, the set of pesticides is 751 

applied in spring, which tends to have significant rainfall events. Therefore, during spring, 752 

pesticides are more likely to be intercepted by the AP due to runoff following rainfall events 753 

and thus be dissipated by the synergy of the above-described processes. Moreover, spring-754 
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applied pesticides are more susceptible to transformation as the temperatures rise. Although 755 

this is also the case for summer-applied pesticides, it is unlikely that these chemicals will get to 756 

the pond due to limited rainfall events. Alternatively, pesticides applied during winter and 757 

autumn, such as chlorotoluron, even though intercepted by the AP, their transformation is less 758 

expected due to the weak microbial activity associated with cold temperatures. This assumption 759 

could explain the mass budget result illustrating a lower transformation of chlorotoluron, which 760 

is applied during autumn and winter in Rampillon. By contrast, spring and summer-applied 761 

pesticides (i.e., bentazon, mesotrione, and s-metolachlor) were more favorable to 762 

transformation in the water column (Table A. 6). The model extrapolation results evidenced 763 

that a temperature rise of 10°C will increase the mean dissipation potential of the AP by 13% 764 

(Fig.A.9). In comparison, a temperature drop of 5°C decreases the efficient by only 2%. These 765 

results provide insight into the geographical variation of AP efficiencies between warm and 766 

cold areas. 767 

Besides low temperatures, winter and autumn-applied pesticides face strong flows that reduce 768 

their residence time in the pond to undergo the different dissipation processes. Therefore, to 769 

remediate this issue, the surface area of the AP can be enlarged to increase the HRT and, thus 770 

the residence time of pesticides. Accordingly, an estimation of the AP efficiencies according to 771 

ascending surface areas (Fig.6) was performed. The results showed that once the AP covers 772 

>1% of the drained catchment area, the dissipation of pesticides reaches 84%, which is almost 773 

twice and a half of the actual efficiency of the Rampillon AP. Tournebize et al. (2012) reported 774 

that, based on a literature review of AP performances, scientists suggested allocating 1% of the 775 

catchment area to the pond. However, farmers rejected this proposal for different reasons (land 776 

occupation, cost, operational labor cost, and maintenance). Consequently, the farmers 777 

suggested a 0.15% area for the AP to meet their requirements or acceptability, which was 778 

expected to be a less efficient remediation solution for pesticide transfer. The PESTIPOND 779 

simulations, predicting a significantly higher efficiency of the AP if it covers 1% of the 780 

catchment, supported this expectation. In addition, the extrapolation results evidenced that the 781 

HRT has a significantly higher impact on the AP efficiency when compared to the temperature 782 

rise. This assertion was expected since the HRT drives the efficiency of all processes, namely 783 

adsorption, desorption, and transformation, while temperature only influences transformation 784 

processes. This assumption is supported by the mass budget results, indicating a higher 785 

transformation of pesticides during high-HRT periods (2016-2017) even though the 786 

temperature is low. In addition, adsorption is a major dissipation process occurring mainly at 787 

the water-sediment interface. Hence, increasing the HRT by increasing the AP area is 788 

equivalent to increasing the water-sediment interface where pesticide retention occurs. This 789 

explains the higher efficiency in larger ponds and the major role of the water-interface sediment 790 

in pesticide dissipation. 791 

From another viewpoint, adsorption can be a concern over the long term as it accumulates 792 

pesticides in the sediment. However, recent in-situ measurements of pesticide concentrations 793 

in the Rampillon AP sediments showed that after ten years, only a few amounts of pesticides 794 

were accumulated (<7ng.g-1). Moreover, another in-situ experiment was performed in 795 

mesocosms, evidenced that bentazon was the only pesticide sensitive to light, which supports 796 

the model result indicating a significant photolysis of the molecule in question. 797 
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4.6 Calibrated parameters and pesticide properties 798 

The parameter set used for this model validation was compared to literature values. Due to the 799 

non-availability of adsorption-desorption parameters, kads and kdes were calibrated. The 800 

obtained values were in the order of magnitude of similar studies’ calibrated parameters 801 

(Comoretto et al., 2008; Nakano et al., 2004; Watanabe et al., 2006; Yoshida and Nakano, 802 

2000). In addition, a strong correlation (R2=0.9) between kads and Koc was noticed, except for 803 

s-metolachlor (Fig.A.7). A first correlation equation was defined for mobile pesticides (Koc < 804 

120 L.kg-1) and a second one for lowly mobile pesticides (Koc > 300 L.kg-1). For mobile 805 

pesticides, the desorption parameter can be deduced from the adsorption kinetic and set to zero 806 

for lowly mobile molecules. Transformation parameters (DT50.w. DT50.s. and DT50.p) were 807 

extracted from the PPDB (Lewis et al., 2016), and some were calibrated to improve the model 808 

performance (Table 2). The calibrated parameters were DT50.w. and DT50.s for 4 pesticides out 809 

of 7. Globally, the calibrated half-lives were shorter than the PPDB values. In water, the 810 

dissipation was, on average, 75, 7, and 80 days faster for bentazon, s-metolachlor, and 811 

quinmerac, respectively, than in the laboratory (i.e., where the PPDB values are estimated). In 812 

the water-sediment interface, the dissipation was, on average, 600 and 8 days faster for bentazon 813 

and chlorotoluron, respectively. This result indicates a faster dissipation under field conditions 814 

than in laboratory experiments. The same assumption was made by Bahi et al. (2023b), 815 

suggesting that pesticides face a single process in laboratory experiments (PPDB). 816 

Contrastingly, pesticides undergo a synergy of on-site processes that enhance their dissipation 817 

owing to a shorter half-life. Boscalid was the only pesticide having a calibrated DT50.w (500 818 

days), a hundred times longer than the PPDB value (5 days), which may explain the low model 819 

performance according to this molecule. However, other sources substantiate the belief that 820 

boscalid is stable in water and sediments and is rather adsorbed on sediments (Keith and 821 

Walker, 1992; Mergia et al., 2022), assisting the mass budget results (Fig.4). 822 

4.7 PESTIPOND limitations 823 

The strong foundation on which this model is built  is  represented  by  the  numerous  results 824 

of pesticides with contrasting properties and application periods. However, the limitations of 825 

PESTIPOND should be recognized. First, the assumption of a completely mixed reactor is not 826 

always the case in APs, specifically those representing heterogeneities (i.e., significant 827 

vegetation cover. dikes. and dead zones). Therefore, the PESTIPOND model could be 828 

complemented if coupled with hydraulic-based models, such as 3D or 2D models (Lemaire et 829 

al. (2022), under review). 3D computational fluid dynamics models incorporate relevant pond 830 

compartments (plant/water and sediment/plant interfaces). However, these compartments may 831 

require excessive computation time (Tsavdaris et al., 2013). Therefore, 2D models are a better 832 

alternative, as they are less computationally costly and include explicitly the vegetation patches 833 

to estimate the water pathways and their transit times in ponds (Imfeld et al., 2021; Silva and 834 

Ginzburg, 2016). Secondly, considering microbial communities' acclimation and dynamics will 835 

undoubtedly improve the model’s performance. The model prediction could also be expounded 836 

by considering the fate of transformation products. Additionally, if the model integrates the 837 

dynamics of organic carbon content, the adsorption-desorption effect would be better 838 

expounded. 839 

The model was validated for bi-monthly observations of pesticides. Yet, the accuracy of 840 

PESTIPOND validation can be ameliorated if daily observations of pesticides were available. 841 

Notwithstanding, the model is robust and simulates a pesticide behavior close to observations 842 
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and the one expected based on molecular properties. In addition, PESTIPOND is a readily 843 

configurable model since the transformation parameters can be inspired from literature (PPDB) 844 

and adsorption-desorption parameters deduced from the pesticide property Koc. Furthermore, 845 

the originality of PESTIPOND lies in the ability to predict pesticide partition in AP and quantify 846 

the contribution of each physicochemical process to their overall behavior while integrating 847 

temperature and HRT effects. 848 

5 Conclusion 849 

PESTIPOND is a process-based model developed to predict the fate of pesticides in APs. The 850 

model is designed to be integrated into landscape agro-hydrological modeling tools to 851 

extrapolate the prediction to the catchment scale. 852 

The key assumptions to be drawn from this study are (i) that adsorption-desorption and 853 

transformation are governing processes in pesticide fate. (ii) Hydrophobic and lowly mobile 854 

pesticides are more likely to be transformed at the water-sediment interface. Although the fate 855 

of the transformation products is still unknown, the exported amount of mother pesticide 856 

molecules will be dissipated before reaching natural water resources. (iii) Hydrophilic 857 

pesticides, despite being less retained in APs, can be subjected to transformation in the water 858 

column, especially during summer and spring, when temperature arises. A higher HRT will 859 

increase the dissipation probability for both hydrophilic and hydrophobic pesticides in the water 860 

column. Longer HRT provides more time for pesticides to be adsorbed and transformed within 861 

the AP. Accordingly, the PESTIPOND model predicted that the actual efficiency of the AP 862 

covering 0.15% of the drained catchment would double if the pond's surface area covered at 863 

least 1% of the catchment. By contrast, the model’s predictions evidenced that a temperature 864 

rise of 10°C will increase the dissipation of pesticides by only 8%. It is noteworthy that a 865 

temperature rise entails a more significant transformation and hence more transformation 866 

products. However, the model does not consider these latter, which can be addressed later by 867 

adding a transformation products compartment to predict its fate in APs. 868 

Given that, we assume that PESTIPOND provides key elements that are useful to design and 869 

manage ponds with optimal efficiency. Hence, these ponds can be complementary solutions to 870 

pesticide use regulation to reduce the transfer of agricultural contamination into the 871 

environment. PESTIPOND can be implemented afterward in landscape modeling tools to 872 

extrapolate the prediction of pesticide behavior from the pond scale to the catchment scale.  873 
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6 Appendix 874 

6.1 Properties of the Rampillon AP 875 

       876 

Figure A.1: Aerial sight of the Rampillon watershed (355 ha) (A). The watershed comprises two arterial ditches 877 
(blue lines) and a buried ditch (dashed line). The red arrow points toward sinkholes. Fig.A.1 (B) displays one of 878 
the 42 sinkholes contained in the watershed. 879 

 880 

Figure A.2: Summary of hydrological inputs of the 355-ha watershed where the Rampillon AP is implemented. 881 
The blue bars represent the local rainfall, the brown bars represent the drained water in the watershed, the green 882 
bars represent the total intercepted water by the AP, and the gold bars display the local PET estimated by the Oudin 883 
formula (ref). The hydrological inputs (mm) are calculated from the total volume (m3), which is normalized by the 884 
watershed area (355 ha). 885 

  886 
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 887 

 888 

Figure A.3: Percentage of the mean efficiency of the Rampillon AP to reduce the concentration between the inlet 889 
and outlet (bars) of the studied pesticides. The red line represents the mean temperature T (°C) of each period and 890 
the blue line refers to the mean hydraulic residence time HRT (d) in the AP. The data is displayed according to the 891 
periods used for model validation. 892 
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6.2 Model inputs 894 

 895 

Table A.1: List of the PESTIPOND model variables and parameters. The details on how the input data is 896 
obtained are available in (Bahi et al. 2023. submitted). 897 

Values Parameters Symbol Units 

 

 

 

 

 

Literature/PPDB 

Biotransformation in the active 

sediment layer 

kbio,s T-1 

Photolysis kp T-1 

Hydrolysis kh T-1 

Henry constant H Pa.m3.mol-1 

Gas constant R Pa.m3.mol-1.K-1 

Mass transfer coefficient of CO2 in 

water 

kCO2 M.T-1 

Mass transfer coefficient of HO2 in 

water 

kH2O M.T-1 

Molecular weight of CO2 MWCO2 Mol 

Molecular weight of HO2 MWH2O  Mol 

Molecular weight of the pesticide MW Mol 

Temperature factor θ Unitless 

On-site measurements Surface area of the AP A L2 

Bulk density of the sediment layer ρb M.L-3 

Calibration Adsorption kinetic coefficient kads T-1 

Desorption kinetic coefficient kdes T-1 

PPDB/Calibration Biotransformation in water kbio.w T-1 

Forcing functions/External variables 

 

 

On-site measurements 

Inlet concentration of the pesticide Cin(t) M.L-3 

Inflow rate Qin(t) L3.T-1 

Water depth hw(t) L 

Temperature T(t) °C 

Rainfall P(t) L 

Evapotranspiration PET(t) L 

Outflow rate Qout(t) L3.T-1 

Hydrological model Water depth hw(t) L 

Water volume Vw(t) L3 

State variables 

 

Model outputs 

Pesticide mass in the water Mw(t) M 

Pesticide mass in the active sediment 

layer 

Ms(t) M 

 898 

899 
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Table A.2: Values of the model parameters related to adsorption and desorption for the 20 study cases. kads (d-1) 900 
and kdes (d-1) are the adsorption and desorption kinetic coefficients, respectively. These values are the result of the 901 
annual calibration of the parameters. The set of adsorption and desorption values for the selected pesticides were 902 
calibrated because no available data was found of the literature. The calibrated values fit in the range of other 903 
studies (Comoretto et al., 2008; Nakano et al., 2004; Watanabe et al., 2006; Yoshida et al., 2000). These values 904 
are the result of the annual calibration of the parameters. 905 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 PPDB 

Pesticides  kads  kdes  kads  kdes  kads  kdes  kads  kdes  kads  kdes  Koc log Kow 

Bentazone 0.19 0.015 0.2 0.015  -  - 0.11 0.015 0.11 0.015 55 2.34 

Boscalid 0.06 0 1.2 0  -  -  -  - -  -  772 3 

Chlorotoluron 0.15 0  -  -  - -  -  -  0.7 0 400 2.5 

Diflufenican 0.26 0  -  - 0.27 0  -  - 1 0 550 4.2 

Mesotrione  -  -  -  - 0.08 0.01 1.3 0.1  -  - 122 0.11 

S-Metolachlor 0.08 0.01 0.08 0.01 0.08 0.01 -   - 0.06 0.01 120 2.9 

Quinmerac 0.03 0.012 -  -  0.03 0.012 1.25 0.03  -  - 86 2.7 

 906 

Table A.3: Values of the model parameters related to transformation processes, i.e., DT50,w (d), DT50,s (d), and 907 
DT50,p (d), are the biotransformation in water, in the active sediment layer, and the photolysis half-lives, 908 
respectively. Most of transformation parameters were extracted from the PPDB and (*) are the calibrated values. 909 
Similarly to adsorption-desorption parameters, these values are the result of the annual calibration of the 910 
parameters.   911 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Pesticides  DT50,w DT50,s DT50,p DT50,w DT50,s DT50,p DT50,w DT50,s DT50,p DT50,w DT50,s DT50,p DT50,w DT50,s DT50,p 

Bentazon 5 100 3 5 100 3 - - - 5 100 3 5 100 3 

Boscalid 500* 500 stable 500* 500 stable - - - - - - - - - 

Chlorotoluron 44 300 30 - - - - - - - - - 1* 300 30 

Diflufenican 200 175 133 - - - 200 175 133 - - - 200 175 133 

Mesotrione - - - - - - 5,3 5,2 89 5,3 5,2 89 - - - 

S-Metolachlor 1,5 43 146 1,5 43 146 1,5 43 146 - - - 1,5 43 146 

Quinmerac 5 180 66 - - - 1,5* 180 66 5 180 66 - - - 

 912 

 913 
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6.3 Outputs of the periodic calibration 914 

 915 

 916 
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 917 

 918 
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 919 

Figure A.4: Graphical comparison of simulated (purple lines) and observed (dark points) cumulative masses of 920 
the pesticides monitored during 2019-2020 in the outlet and the corresponding cumulative influx mass (orange 921 
line). cum_obs cum_sim are the cumulative masses of the observations and simulations of pesticide mass at the 922 
AP outlet using annual calibration. cum_in is the cumulative mass of the observed pesticide mass at the AP inlet. 923 
The corresponding KGE, NSE, and NRMSE are listed in Table 3. 924 

  925 
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 926 

 927 

 928 

Figure A.5:  Graphical comparison of the bi-monthly observations (y-axis) and simulations (x-axis) of all pesticide 929 

outlet concentrations (µg.L-1) and periods combined, using the annual calibration. Each color points out a specific 930 
pesticide. The black line in the middle refers to simulations equal to observations (y=x). 931 
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6.4 Outputs of the calibration with the mean set of parameters 932 

 933 

 934 
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 935 
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 937 

Figure A.6: Graphical comparison of simulated (purple lines) and observed (dark points) cumulative masses of 938 
pesticides in the outlet and the corresponding cumulative influx mass (orange line) for all pesticides and periods 939 
combined. The corresponding KGE, NSE, and NRMSE are listed in Table 3. 940 

 941 

6.5 Statistical tests 942 

 943 

Table A.4: Results of the statistical tests. 944 

Test 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Student's test t-value : 0.40 t-value :  0.1 t-test  :  0.11 t-test  :  -0.30 t-test :  0.18 

p-value : 0.68 p-value : 0.76 p-value : 0.87 p-value : 0.72 p-value : 0.81 

Regression R2 :  0.76 R2 :  0.41 R2 :  0.78 R2 :  0.85 R2 :  0.87 

p-value  : 7.3E-04 p-value  : 0.01 p-value  : 1E-08 p-value  : 2.3E-03 p-value  : 2.7E-04 

 945 
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6.6 Sortpion coeffcients 946 

 947 

Figure A. 7 Linear correlation between the calibrated adsorption parameter (kads) and the mobility (Koc) of 948 
pesticides (extracted from the PPDB (Lewis et al., 2016)). The left graph illustrates the correlation for mobile 949 
pesticides (low Koc) and the right graph displays the correlation for lowly mobile pesticides (high Koc). 950 

 951 

 952 

  953 
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6.7 Pesticide mass budget 954 

Table A.5: Summary of the mass budget (g) for the studied pesticides. MT is the total mass of the pesticide at the 955 
end of each period. Mw and Ms are the pesticide masses in water and sediments at the end of each period. 956 
respectively. ∑ 𝑀𝑖𝑛 is the total intercepted mass. ∑ 𝑀𝑜𝑢𝑡 the total mass discharged from the pond and ∑ 𝑀𝑡𝑟 is the 957 
total transformed mass. ∑ 𝑀𝑡𝑟.𝑤 and ∑ 𝑀𝑡𝑟.𝑠 are total transformed mass in water and sediments, respectively. 958 
∑ 𝑀𝑎𝑑𝑠 and ∑ 𝑀𝑑𝑒𝑠  are the total adsorbed and desorbed mass, respectively. Err (%) is the mass balance error of 959 
each simulation. 960 

 961 

 2014-2015 

 Influx/Outflux Total mass Transformation Adsorption-Desorption MBE 

Pesticides  ∑ Min ∑ Mout Mw Ms ∑ Mtr.w ∑ Mtr.s ∑ Mads ∑ Mdes Err (%) 

Bentazon 51.51 38.55 0.11 3.48 8.95 1.06 8.56 4.02 1.25 

Boscalid 5.42 3.40 0.00 1.97 0.00 0.17 2.14 0.00 2.21 

Chlorotoluron 8.94 6.11 0.00 2.40 0.08 0.36 2.76 0.00 0.00 

Diflufenican 4.23 2.69 0.00 1.23 0.01 0.31 1.53 0.00 0.00 

Mesotrione - - - - - - - - - 

S-metolachlor 13.73 9.74 0.02 0.48 3.27 0.21 1.00 0.31 0.01 

Quinmerac 46.98 33.78 0.29 8.02 5.07 1.05 22.69 13.62 2.63 

Mean 21.80 15.71 0.07 2.93 2.90 0.53 6.45 2.99 1.02 

 962 

 2016-2017 

 Influx/Outflux Total mass Transformation Adsorption-Desorption MBE 

Pesticides  ∑ 𝑴𝒊𝒏 ∑ 𝑴𝒐𝒖𝒕 Mw Ms ∑ 𝑴𝒕𝒓.𝒘 ∑ 𝑴𝒕𝒓.𝒔 ∑ 𝑴𝒂𝒅𝒔 ∑ 𝑴𝒅𝒆𝒔 Err (%) 

Bentazon 14.42 11.52 0.00 0.18 2.11 0.60 2.33 1.55 0.00 

Boscalid 5.10 3.48 0.01 1.45 0.00 0.16 1.61 0.00 0.01 

Chlorotoluron - - - - - - - - - 

Diflufenican - - - - - - - - - 

Mesotrione - - - - - - - - - 

S-metolachlor 10.02 6.28 0.01 0.06 3.40 0.26 0.48 0.17 0.01 

Quinmerac - - - - - - - - - 

Mean 9.85 7.10 0.01 0.56 1.84 0.34 1.47 0.57 0.01 

 963 

 2017-2018 

 Influx/Outflux Total mass Transformation Adsorption-Desorption MBE 

Pesticides  ∑ 𝑴𝒊𝒏 ∑ 𝑴𝒐𝒖𝒕 Mw Ms ∑ 𝑴𝒕𝒓.𝒘 ∑ 𝑴𝒕𝒓.𝒔 ∑ 𝑴𝒂𝒅𝒔 ∑ 𝑴𝒅𝒆𝒔 Err (%) 

Bentazon - - - - - - - - - 

Boscalid - - - - - - - - - 

Chlorotoluron - - - - - - - - - 

Diflufenican 1.65 0.06 1.59 8.95 6.83 0.47 0.01 0.46 2.06 

Mesotrione 13.52 5.36 8.15 49.52 25.64 10.35 3.11 7.25 18.65 

S-metolachlor 53.88 45.97 7.92 295.85 190.05 51.91 51.30 0.61 9.11 

Quinmerac 5.86 1.96 3.90 26.19 17.86 2.47 2.16 0.31 8.09 

Mean - - - - - - - - - 
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 965 

 2018-2019 

 Influx/Outflux Total mass Transformation 
Adsorption-
Desorption MBE 

Pesticides  ∑ 𝑴𝒊𝒏 ∑ 𝑴𝒐𝒖𝒕 Mw Ms ∑ 𝑴𝒕𝒓.𝒘 ∑ 𝑴𝒕𝒓.𝒔 ∑ 𝑴𝒂𝒅𝒔 ∑ 𝑴𝒅𝒆𝒔 Err (%) 

Bentazon 0.64 0.01 0.63 25.64 23.02 1.98 1.66 0.33 2.24 

Boscalid - - - - - - - - - 

Chlorotoluron - - - - - - - - - 

Diflufenican - - - - - - - - - 

Mesotrione 0.32 0.02 0.29 68.18 49.84 18.02 2.67 15.35 26.17 

S-metolachlor - - - - - - - - - 

Quinmerac 14.97 0.47 14.50 123.35 97.95 10.42 8.24 2.18 35.31 

Mean 0.64 0.01 0.63 25.64 23.02 1.98 1.66 0.33 2.24 

 966 

 2019-2020 

 Influx/Outflux Total mass Transformation Adsorption-Desorption MBE 

Pesticides  ∑ 𝑴𝒊𝒏 ∑ 𝑴𝒐𝒖𝒕 Mw Ms ∑ 𝑴𝒕𝒓.𝒘 ∑ 𝑴𝒕𝒓.𝒔 ∑ 𝑴𝒂𝒅𝒔 ∑ 𝑴𝒅𝒆𝒔 Err (%) 

Bentazon 3.16 2.11 0.09 0.39 0.54 0.03 0.54 0.12 0.00 

Boscalid - - - - - - - - - 

Chlorotoluron 12.80 11.20 0.00 1.36 0.04 0.20 1.56 0.00 0.00 

Diflufenican 8.24 6.10 0.01 1.80 0.01 0.32 2.12 0.00 0.00 

Mesotrione - - - - - - - - - 

S-metolachlor 20.74 13.32 0.88 1.45 4.96 0.14 1.80 0.21 0.00 

Quinmerac - - - - - - - - - 

Mean 11.24 8.18 0.24 1.25 1.39 0.17 1.50 0.08 0.00 

 967 

Table A.6: The mean percentage (%) of each process to the total intercepted/INPUT mass of pesticides. 968 

 Photolysis 
Biotransformation 

in water 
Biotransformation 

in sediments Adsorption Desorption 

Bentazon 8.68 5.21 2.14 14.63 6.82 

Boscalid 0.00 0.04 3.18 35.49 0.00 

Chlorotoluron 0.35 0.24 2.82 21.53 0.00 

Diflufenican 0.09 0.06 5.45 28.27 0.00 

Mesotrione 0.27 4.52 17.86 36.19 10.68 

S-metolachlor 0.25 23.97 1.25 5.87 1.26 

Quinmerac 0.46 7.94 1.70 35.26 19.32 

 969 
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 971 

6.8 Extrapolation: Efficiency abacus 972 

Table A.7: The mean efficiency (%) of the Rampillon AP according to different pond areas. A is the real AP 973 
area (5270 m2). 974 

Surface area = A 975 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Bentazon 26.58 47.24 - 26.33 46.52 

Chlorotoluron 29.27 - - - 12.52 

Diflufenican 34.89 - 27.77 - 42.44 

Mesotrione - - 48.97 52.54 - 

S-metolachlor 31.42 75.19 36.59 - 50.17 

Quinmerac 30.40 - 33.17 44.71 - 

 976 

Surface area =A+10 000 m2 977 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Bentazon 50.06 71.32 - 49.49 68.90 

Chlorotoluron 54.70 - - - 52.96 

Diflufenican 60.73 - 51.86 - 67.24 

Mesotrione - - 72.80 77.01 - 

S-metolachlor 56.05 90.02 62.74 -   

Quinmerac 53.92 - 55.35 71.53 - 

 978 

Surface area = A+20 000 m2 979 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Bentazon 61.50 80.26 - 61.47 77.84 

Chlorotoluron 66.64 - - - 64.97 

Diflufenican 71.87 - 63.81 - 76.99 

Mesotrione - - 81.46 84.88 - 

S-metolachlor 67.13 93.75 73.65 - 79.43 

Quinmerac 64.13 - 65.78 80.92 - 
 980 

Surface area = A+30 000 m2 981 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Bentazon 68.35 84.95 - 68.85 82.77 

Chlorotoluron 73.58 - - - 72.09 

Diflufenican 78.07 - 70.99 - 82.25 

Mesotrione - - 85.94 88.74 - 

S-metolachlor 73.56 95.45 79.60 - 83.75 

Quinmerac 69.92 - 72.11 85.67 - 

 982 
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 984 

 985 

Surface area = A+40 000 m2 986 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Bentazon 72.95 87.83 - 73.85 85.89 

Chlorotoluron 78.12 - - - 76.81 

Diflufenican 82.03 - 75.80 - 85.54 

Mesotrione - - 88.68 91.03 - 

S-metolachlor 77.82 96.43 83.35 - 86.54 

Quinmerac 73.67 - 76.42 88.53 - 

 987 

Surface area = A+50 000 m2 988 

 2014-2015 2016-2017 2017-2018 2018-2019 2019-2020 

Bentazon 78.76 91.20 - 80.21 89.65 

Chlorotoluron 83.71 - - - 82.68 

Diflufenican 86.80 - 81.82 - 89.45 

Mesotrione - - 91.85 93.62 - 

S-metolachlor 83.16 97.50 87.81 - 89.95 

Quinmerac 78.27 - 81.95 91.80 - 
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 990 

Figure A.8: The annual efficiency of the Rampillon AP to dissipate pesticides from the inlet to the outlet according 991 
to different sizes of the pond. The x-axis represents the evaluated periods and each color refers to the percentage 992 
(%) of the area occupied by the AP in the total catchment area (355ha). The actual AP area is 0.15% (5270 m2). 993 

 994 

 995 

Figure A.9: The mean efficiency of the Rampillon AP to dissipate pesticides from the inlet to the outlet according 996 
to increasing temperatures. T refers to the actual daily temperature in the Rampillon AP. The upper and lower grey 997 
areas refer to the discrepancy between the mean and the maximum and minimum efficiencies, respectively. 998 
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 Table A.8:  Summary of pesticides monitoring data. The selected periods correspond to monitoring data without artifacts. In addition, the pesticide re-mobilization periods were not 999 
considered (i.e., pesticide outlet concentration Cout > inlet concentration Cin). Days refers to the total duration of each period. Qinmax (µg.L-1) is the maximum water flow rate intercepted 1000 
by the Rampillon AP. Qinmean (µg.L-1) is the mean water flow rate intercepted by the Rampillon AP during the corresponding period. Cmax (µg.L-1) is the maximum detected concentration 1001 
of each pesticide, Cmean (µg.L-1) is the mean detected concentration during the corresponding period, and the DR is the detection frequency of pesticides. T (°C) and HRT (d) are the 1002 
average temperature and hydraulic residence time of each period, respectively. TUR (FTU) is the mean turbidity, NO3- (mg.L-1) is the mean nitrate concentration, TOC (mg.L-1) is the 1003 
mean total organic carbon concentration, and DOC (mg.L-1) is the mean total dissolved organic carbon concentration. Each pesticide is associated with its type: (H) Herbicides, (F) 1004 
Fungicides. 1005 

Period 
Duration 
(days) 

Qinmax (L.s-

1) 
Qinmean (L.s-

1) 
Study case Pesticide 

Cmax 
(µg.L-1) 

Cmean (µg.L-

1) 
Detection frequency T HRT TUR NO3 TOC DOC 

14/10/2014 - 
03/06/2015 

233 87.44 19.45 

1 Bentazon (H) 0.443 0.099 100% 

8.0
5 

8 8.88 
10.8

7 
7.53 4.03 

2 Boscalid (F) 0.064 0.029 33.30% 

3 
Chlorotoluron 
(H) 

0.074 0.049 18.20% 

4 Diflufenican (H) 0.026 0.01 54.50% 

5 
S-Metolachlor 
(H) 

0.22 0.033 87.90% 

6 Quinmerac (H) 0.921 0.238 51.50% 

07/11/2016 - 
12/09/2017 

310 24.2 0.73 

7 Bentazon (H) 0.263 0.1106 96.80% 

11.
2 

14 7.98 
10.6

8 
6.95 4.21 

8 Boscalid (F) 0.079 0.0387 35.50% 

9 
S-Metolachlor 
(H) 

12 1.959 19.40% 

12/09/2017 - 
13/06/2018 

275 147.61 27.63 

10 Diflufenican (H) 0.047 0.015 58.30% 

9.2 7 
20.4

1 
10.5

7 
23.3

3 
13.0

7 

11 Mesotrione (H) 1.096 0.5665 16.70% 

12 
S-Metolachlor 
(H) 

8 0.5836 91.70% 

13 Quinmerac (H) 0.331 0.0897 44.40% 
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Table A.8 (continued) 1007 

Period Duration (days) Qinmax (L.s-1) Qinmean (L.s-1) Study case Pesticide Cmax (µg.L-1) Cmean (µg.L-1) Detection frequency T HRT TUR NO3 TOC DOC 

17/10/2018 - 03/07/2019 260 72.32 9.95 

14 Mesotrione (H) 1.449 0.5527 22.20% 

8.63 9 16.8 13.2 33 20.7 15 S-Metolachlor (H) 0.4 0.1039 44.40% 

16 Quinmerac (H) 2.681 0.758 25.90% 

30/10/2019 - 19/05/2020 203 91.42 16.23 

17 Bentazon (H) 0.082 0.0497 21.40% 

8.45 6 7.1 10.2 6.4 3.7 

18 Chlorotoluron (H) 0.113 0.0757 42.90% 

19 Diflufenican (H) 0.039 0.017 78.60% 

20 S-Metolachlor (H) 0.77 0.0767 92.90% 
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