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Abstract

We describe a new algorithm and R package for peak detection in genomic data sets
using constrained changepoint models. These detect changes from background to peak
regions by imposing the constraint that the mean should alternately increase then de-
crease. An existing algorithm for this problem exists, and gives state-of-the-art accuracy
results, but it is computationally expensive when the number of changes is large. We
propose a dynamic programming algorithm that jointly estimates the number of peaks
and their locations by minimizing a cost function which consists of a data fitting term and
a penalty for each changepoint. Empirically this algorithm has a cost that is O(N log(N))
for analyzing data of length N . We also propose a sequential search algorithm that finds
the best solution with K segments in O(log(K)N log(N)) time, which is much faster than
the previous O(KN log(N)) algorithm. We show that our disk-based implementation in
the PeakSegDisk R package can be used to quickly compute constrained optimal models
with many changepoints, which are needed to analyze typical genomic data sets that have
tens of millions of observations.

Keywords: dynamic programming, optimal changepoint detection, peak detection, genomic
data, R.

1. Introduction
This paper presents a new algorithm, and corresponding implementation as R package Peak-
SegDisk (Hocking 2022), for detecting an optimal sequence of up/down changes in large count
data, which are common in genomics. The algorithm is based on the technique of functional
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pruning (Maidstone, Hocking, Rigaill, and Fearnhead 2017), which represents the cost as a
function of the segment mean parameter, and reduces the number of candidate changepoints
while guaranteeing optimality. Note that throughout this paper the term “optimal” will be
used to describe algorithms that compute an exact solution to some well-defined optimization
problem (e.g., maximum likelihood or minimum cost). For models that are defined in terms
of maximizing a likelihood function, we use the terms “more likely” and “most likely” to
compare likelihood values for specific models/algorithms.

1.1. Peak detection via changepoint methods

There are many applications, particularly within genomics, that involve detecting regions that
deviate from a usual/background behavior, and where qualitatively these deviations lead to an
increased mean of some measured signal. For example, ChIP-seq data measure transcription
factor binding or histone modification (Barski et al. 2007); ATAC-seq data measure open
chromatin (Buenrostro, Wu, Chang, and Greenleaf 2015). In these data we have counts of
aligned reads at different positions along a chromosome, and we would like to detect regions for
which the count data are larger than the usual background level. These long contiguous runs
with large counts are referred to as “peaks” and they typically correspond to active regions of
the genome in specific samples and cell types. An important sub-problem in analyzing these
data is identifying the precise genomic positions of the starts and ends of these peak regions.
Each peak is separated from other peaks by background/noise regions (i.e., it is impossible
for two peaks to be directly adjacent to one another without intervening background noise).
This is a central assumption of all peak detection algorithms (Wilibanks and Facciotti 2010);
in practice this means that if there are two or more adjacent regions that result in peaks, any
peak detection algorithm will report them as a single peak.
One approach to detecting these regions is through algorithms that detect changes in the
mean of the data. This paper builds on recent work of Hocking, Rigaill, Fearnhead, and
Bourque (2020) and presents a new changepoint algorithm, and its implementation in R.
This algorithm is based on modeling count data using a Poisson distribution, and using the
knowledge that we have background regions with small values and peak regions with large
values. This imposes constraints on the directions of changes, with the mean of the data
alternately increasing then decreasing in value. A particular challenge with genomic data is
that for an algorithm to be widely used, it must scale well to large data in terms of both time
and memory costs.
There are other algorithms for tackling this type of problem, for example based on hidden
Markov models (Choi, Nesvizhskii, Ghosh, and Qin 2009). One drawback of such methods
is that they assume the background/peak means do not change across large genomic regions,
whereas such long-range changes are observed in many real data sets. For a detailed com-
parison between optimal changepoint models and other algorithms we refer the reader to the
previous work of Hocking, Goerner-Potvin, Morin, Shao, Pastinen, and Bourque (2016). We
focus the remainder of the paper on optimal changepoint models, i.e., penalized maximum
likelihood approaches (and their exact computation).

1.2. Models with no constraints between adjacent segment means

Denote a sequence of N data by z1, . . . , zN . We assume the data sequence is ordered: for
genomic applications the ordering will be due to position along a chromosome, for time-series
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data the ordering is commonly by time. The aim of changepoint analysis is to partition the
data in to K segments that each contain consecutive data points, such that features of the
data are common within a segment but differ between neighboring segments. The feature of
the data that changes will depend on the application, but could be, for example, the mean
of the data, the variance, or the distribution. Detecting changes of different features requires
different statistical algorithms.
Throughout we will let K be the number of segments, with the changepoints being 0 = t0 <
t1 < · · · < tK−1 < tK = N . This means that the kth segment will contain data points
ztk−1+1, . . . , ztk

. We let mk denote the segment-specific model parameter for each segment
k. For the problem of detecting changes in ChIP-seq count data, the simplest statistical
model uses Poisson random variables with segment-specific mean parameters for each segment.
Change detection is then an attempt to detect the points along the chromosome where the
mean of the data changes.
The algorithm we present is based on detecting changes via minimizing a measure of fit to the
data, with this measure of fit being the negative log-likelihood under a Poisson model. This
corresponds to using the loss function ℓ(m, z) = m− z log m for fitting a non-negative count
data point z ∈ Z+ with a mean parameter m ∈ R+. If we know the number of segments K we
can estimate the location of the segments by solving the following “segment neighborhood”
problem,

minimize
m∈RK

0=t0<t1<···<tK−1<tK=N

K∑
k=1

tk∑
i=tk−1+1

ℓ(mk, zi). (1)

Optimizing by naively searching over all possible arrangements of changepoints is an expen-
sive O(NK) time operation. However, solving (1) can be achieved efficiently using dynamic
programming (Bellman 1961). The first application of this principle to changepoint detec-
tion was the segment neighborhood algorithm, which computes optimal segmentations from 1
to K segments in O(KN2) time (Auger and Lawrence 1989). The classical algorithm for
solving the segment neighborhood problem is available in R as changepoint::cpt.mean.
Recent research has led to faster algorithms such as the pruned dynamic programming al-
gorithm (PDPA) of Rigaill (2015), which empirically take O(KN log N) time. The novelty
of this algorithm is a functional representation of the optimal cost, which allows pruning of
the O(N) possible changepoints to only O(log N) candidates (while maintaining optimality).
The original implementation of the PDPA was available in R as cghseg:::segmeanCO for the
normal homoscedastic model, but cghseg (Picard, Hoebeke, Lebarbier, Miele, Rigaill, and
Robin 2020) was orphaned and had to be removed from CRAN as of 18 December 2017. The
PDPA for the normal homoscedastic model is now available as jointseg::Fpsn on Biocon-
ductor (Pierre-Jean, Rigaill, and Neuvial 2015). Cleynen and Lebarbier (2014) described an
implementation of the PDPA for other likelihood/loss functions (Poisson, negative binomial,
normal heteroscedastic). These are available in R as Segmentor3IsBack::Segmentor.
In practice it is unusual to know in advance how many segments K are present in the data.
To estimate K it is common to use information criteria that take into account both of the
measure of fit to the data and the complexity of the segmentation model being fitted. The
most natural measures of complexity are linear in the number of changepoints, although
others exist (Zhang and Siegmund 2007; Cleynen and Lebarbier 2014; Arlot, Brault, Baudry,
Maugis, and Michel 2016). The O(N2) dynamic programming algorithm proposed by Jackson
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Problem No changepoint pruning Functional pruning
Segment neighborhood Dynamic prog. algo. (DPA) Pruned DPA (PDPA)
K Segments Optimal, O(KN2) time Optimal, O(KN log N) time

Auger and Lawrence (1989) Rigaill (2015)
changepoint jointseg

Optimal partitioning Optimal partitioning algorithm FPOP
Penalty λ Optimal, O(N2) time Optimal, O(N log N) time

Jackson et al. (2005) Maidstone et al. (2017)
fpop

Table 1: Previous work on algorithms for optimal changepoint detection with no constraints
between adjacent segment means.

et al. (2005) solves the corresponding optimal partitioning problem,

minimize
m∈RN

N∑
i=1

ℓ(mi, zi) + λ
N−1∑
i=1

I(mi ̸= mi+1). (2)

The first term in the optimization objective measures fit to the data, and the second term
measures model complexity, which is proportional to the number of changepoints. The non-
negative penalty λ ∈ R+ controls the tradeoff between the two objectives (it is a tuning
parameter that must be fixed before solving the problem). Larger penalty λ values result
in models with fewer changepoints/segments. The extreme penalty values are λ = 0 which
yields N segments (N−1 changepoints), and λ =∞ which yields 1 segment (0 changepoints).
There are several existing algorithms for choosing the penalty parameter λ, and this is an
active area of ongoing research. There are several classical unsupervised heuristics such
as the Bayesian information criterion (BIC, Schwarz 1978; Yao 1988) as well as modern
modifications for genomic data sets (Lebarbier 2005; Zhang and Siegmund 2007). There are
also supervised algorithms which are useful when there are some data sets with labels that
indicate presence/absence of changepoints in specific regions (Rigaill, Hocking, Vert, and
Bach 2013).
There has been substantial research into faster algorithms for solving the optimal partitioning
problem. The pruned exact linear time (PELT) algorithm (changepoint::cpt.mean in R) is
O(N) time if K increases linearly with N (Killick, Fearnhead, and Eckley 2012; Killick and
Eckley 2014). The functional pruning optimal partitioning (FPOP) algorithm (fpop::Fpop in
R) has been shown to be empirically O(N log N) and faster than PELT in practice for several
data sets (Maidstone et al. 2017). In particular, the number of changepoints considered by
FPOP is always smaller than (or equal to) the number of changepoints considered by PELT,
so when PELT is O(N) FPOP is as well. See Table 1 for a summary of the different dynamic
programming algorithms and implementations.
There are alternative approaches to fitting changepoint models, the most common of which
are based on specifying a test for a single change and then repeatedly applying this test to
identify multiple changepoints. Such approaches can be applied more widely than the dy-
namic programming based approaches described above, and often have strong computational
performance with algorithms that are O(N log N) for the segment neighborhood problem.
In situations where both procedures can be used, these methods are often identical if we
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wish to identify at most one changepoint. The advantage that the dynamic programming
approaches have is that they jointly detect multiple changepoints which can lead to more ac-
curate estimates (Maidstone et al. 2017). Several of these alternative algorithms are available
in R. For example, the wbs package implements a stochastic algorithm called wild binary
segmentation (Fryzlewicz 2014; Baranowski and Fryzlewicz 2019). Efficient implementations
of the classical binary segmentation heuristic are available in R as fpop::multiBinSeg and
binseg::binseg_normal (Hocking 2019). The stepR and FDRSeg packages implement a
multiscale approach to changepoint inference, and have linear run times if the number of
changes increases linearly in the number of observations (Frick, Munk, and Sieling 2014; Li,
Munk, and Sieling 2016; Li and Sieling 2017; Pein, Hotz, Sieling, and Aspelmeier 2019).

1.3. Models with inequality constraints between adjacent segment means

The models discussed above are unconstrained in the sense that there are no constraints
between mean parameters mk on different segments. However, as described above, constraints
can be useful when data need to be interpreted in terms of pre-defined domain-specific states.
In the ChIP-seq application the changepoint model needs to be interpreted in terms of peaks
(large values which represent protein binding/modification) and background (small values
which represent noise).
In this context, Hocking, Rigaill, and Bourque (2015) introduced an O(KN2) constrained
dynamic programming algorithm (CDPA) for fitting a model where up changes are followed
by down changes, and vice versa (Table 2). These constraints ensure that odd-numbered
segments can be interpreted as background, and even-numbered segments can be interpreted
as peaks. Note that in this constrained model, peaks can neither be predicted at the beginning
nor at the end of the data. This is a sensible constraint in genomic data, because peaks are
not expected to occur near the beginning/end of the data. Although the CDPA provides a
sub-optimal solution to the segment neighborhood problem in O(KN2) time, Hocking et al.
(2016) showed that it achieves state-of-the-art peak detection accuracy in a benchmark of
ChIP-seq data sets.
Because the quadratic time complexity of the CDPA limits its application to relatively small
data sets, Hocking et al. (2020) proposed to generalize the functional pruning method for
changepoint models with constraints between adjacent segment means. The resulting gener-
alized pruned dynamic programming algorithm (GPDPA) reduces the number of candidate
changepoints from O(N) to O(log N) while enforcing the constraints and maintaining op-
timality. The GPDPA computes the optimal solution to the up-down constrained segment
neighborhood problem in O(KN log N) time. The PeakSegOptimal R package provides an
in-memory solver for the up-down constrained segment neighborhood model (Hocking 2018).

1.4. Contributions

This paper presents two new efficient algorithms for constrained optimal changepoint detec-
tion (Section 3). Whereas previous work has focused on the unconstrained optimal parti-
tioning problem (Table 1) and the constrained segment neighborhood problem (Table 2), this
paper is the first to propose a solver for the constrained optimal partitioning problem. We also
propose a sequential search that uses the optimal partitioning algorithm as a sub-routine for
solving the segment neighborhood problem. These algorithms are implemented using efficient
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No changepoint pruning Functional pruning
Segment neighborhood Constrained DPA GPDPA
K segments Sub-optimal, O(KN2) Optimal, O(KN log N)

Hocking et al. (2015) Hocking et al. (2020)
PeakSegDP PeakSegOptimal

Optimal partitioning GFPOP
Penalty λ Optimal, O(N log N)

This work
PeakSegDisk

Table 2: Algorithms for optimal changepoint detection with up-down constraints on ad-
jacent segment means. Previous work is limited to solvers for the segment neighborhood
problem; this paper presents generalized functional pruning optimal partitioning (GFPOP),
Algorithm 1.

disk-based storage in the R package PeakSegDisk. Our results include a detailed analysis
of the empirical time/space complexity of these algorithms in a benchmark of genomic data
(Section 4). The paper concludes with a discussion of the significance of these contributions
in the context of related work (Section 5).

2. Statistical models and optimization problems
In this section we first introduce an equivalent formulation of the optimal partitioning prob-
lem, then add constraints on adjacent segment means.

2.1. Unconstrained optimal partitioning problem

Recall that z1, . . . , zN ∈ Z+ is a sequence of N non-negative count data. Maximizing the
Poisson likelihood of a data point z given a mean parameter m is equivalent to minimizing
the Poisson loss, ℓ(m, z) = m− z log m. Below we write an equivalent version of the optimal
partitioning Problem 2, in terms of changepoint variables ci and state variables si:

minimize
m∈RN , s∈{0}N

c∈{0,1}N−1

N∑
i=1

ℓ(mi, zi) + λ
N−1∑
i=1

I(ci = 1) (3)

subject to no change: ci = 0⇒ mi = mi+1 and si = si+1,

change: ci = 1⇒ mi ̸= mi+1 and (si, si+1) = (0, 0). (4)

Note that the state si and changepoint ci variables could be eliminated from the optimization
problem — si = 0 and ci = I(mi ̸= mi+1) for all i. We include them in Problem 3 in order to
show the relationship with the problem in the next section, with constraints between adjacent
segment means.
Hocking et al. (2020) proposed to use a graph to represent a constrained changepoint model.
The graph that corresponds to Problem 3 is shown in Figure 1, left. In such graphs, nodes
represent possible values of state variables si and edges represent possible changepoints ci ̸= 0.
Each edge/changepoint corresponds to a constraint such as (4).
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s = 0

c = 1, λ, mi ̸= mi+1 s = 1

s = 0start end

c = 1, λ, mi ≤ mi+1 c = −1, 0, mi ≥ mi+1

Figure 1: State graphs for two changepoint models. Nodes represent states and solid edges
represent changepoints. Left: one-state model in which each change c = 1 has a penalty of λ,
Problem 3. Right: two-state model with up-down constraints between adjacent segment
means, Problem 5. State s = 0 represents background noise (small values) whereas state
s = 1 represents peaks (large values). Constraint c = 1 enforces a non-decreasing change with
a penalty of λ; c = −1 enforces a non-increasing change with a penalty of 0. The model is
additionally constrained to start and end in the background noise s = 0 state (s1 = sN = 0).

2.2. Optimal partitioning problem with up-down constraints

For genomic data such as ChIP-seq (Barski et al. 2007), it is desirable to have a changepoint
model which is interpretable in terms of peaks (large values) and background noise (small
values). We therefore propose a model based on the graph shown in Figure 1, right. It has
two nodes/states: s = 0 for background, and s = 1 for peaks. It has two edges/changes:
c = 1 for a non-decreasing change from background s = 0 to a peak s = 1, and c = −1 for
a non-increasing change from a peak s = 1 to background s = 0. Furthermore, the model
is constrained to start and end in the background state (because peaks are not present at
the boundaries of genomic data sequences). Maximum likelihood inference in this model
corresponds to the following minimization problem:

F (λ) = min
m∈RN , s∈{0,1}N

c∈{−1,0,1}N−1

N∑
i=1

ℓ(mi, zi) + λ
N−1∑
i=1

I(ci = 1) (5)

subject to no change: ci = 0⇒ mi = mi+1 and si = si+1,

non-decreasing change: ci = 1⇒ mi ≤ mi+1 and (si, si+1) = (0, 1),
non-increasing change: ci = −1⇒ mi ≥ mi+1 and (si, si+1) = (1, 0),
start and end down: s1 = sN = 0.

Note how the Problem 5 with up-down constraints is of the same form as the previous un-
constrained Problem 3. Again there is one constraint for every edge/changepoint in the state
graph (Figure 1). The difference is that in Problem 5, we have inequality constraints between
adjacent segment means (e.g., when ci = 1, we must have a non-decreasing change in the
mean mi ≤ mi+1). Another difference is the model complexity in Problem 5 is the total
number of ci = 1 non-decreasing changes, which is equivalent to the number of peak segments
P , and is linear in the total number of segments K = 2P + 1 and changes K − 1 = 2P .
The solution to the optimal partitioning Problem 5 can be computed by first solving the
segment neighborhood version of the problem (Maidstone et al. 2017). In R the PeakSegDP
package (Hocking and Rigaill 2017) provides a sub-optimal solution in O(KN2) time, and
the PeakSegOptimal package provides an optimal solution in O(KN log N) time. However in
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C1,i−1

C0,i−1

C1,i

C0,i

C1,2

C0,2

C1,N−1

C0,N−1 C0,NC0,1

C1,i−1

C≥
1,i−1

C0,i−1

C≤
0,i−1 + λC≤

0,1 + λ

C0,1

C≥
1,N−1

C0,N−1· · ·

· · ·

· · ·

· · ·

Figure 2: Directed acyclic graph (DAG) representing dynamic programming computations
(Algorithm 1) for changepoint model with up-down constraints between adjacent segment
means. Nodes in the graph represent cost functions, and edges represent inputs to the the
MinOfTwo sub-routine (solid=changepoint, dotted=no change). There is one column for each
data point and one row for each state: the optimal cost of the peak state s = 1 at data point
i is C1,i (top row); the optimal cost of the background noise state s = 0 is C0,i (bottom row).
There is only one edge going to C0,2 and C1,2 because the model is constrained to start in the
background noise state (s1 = 0).

genomic data the number of peaks/segments K increases with N , so it is intractable to solve
the segment neighborhood problem because both N and K are large. Therefore in the next
section we propose a new algorithm for directly solving the constrained optimal partitioning
Problem 5, which can yield a large number of peaks in O(N log N) time.

3. Algorithms and software

In this section we first propose a new algorithm for solving the constrained optimal partition-
ing problem (for a particular penalty λ), and then we propose a new algorithm for solving
the constrained segment neighborhood problem (for a given number P ∗ of desired peaks).

3.1. Generalized functional pruning optimal partitioning (GFPOP)

The proposed generalization of the FPOP algorithm (Maidstone et al. 2017) allows optimal
inference in models with inequality constraints between adjacent means, such as Problem 5.
The resulting algorithm, which we call generalized functional pruning optimal partitioning
(GFPOP), can compute the maximum likelihood parameters for any model with constraints
that can be represented as a state graph G = (V, E) with vertices V for states and edges E for
possible changepoints (e.g., up-down constrained model in Figure 1, right). The state graph
G can be converted into a directed acyclic graph that represents the dynamic programming
updates required to solve the problem, e.g., Figure 2 represents the computations required to
solve the up-down constrained Problem 5. Each node in the computation graph represents
an optimal cost function, and each edge represents an input to the min{} operation in the
dynamic programming updates, e.g., Equations 12 and 13 for the up-down constrained model.
More precisely, we define the optimal cost of mean µ in state σ at any data point τ ∈
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{1, . . . , N} to be

Cσ,τ (µ) = min
m∈Rτ , s∈{0,1}τ

c∈{−1,0,1}τ−1

τ∑
i=1

ℓ(mi, zi) + λ
τ−1∑
i=1

I(ci = 1) (6)

subject to ci = 0⇒ mi = mi+1 and si = si+1,

ci = 1⇒ mi ≤ mi+1 and (si, si+1) = (0, 1),
ci = −1⇒ mi ≥ mi+1 and (si, si+1) = (1, 0),
s1 = sN = 0,

mτ = µ, sτ = σ. (7)

Note how the objective and constraints above are identical to the up-down constrained op-
timal partitioning Problem 5 up to τ − 1 data points, but with two added constraints at
data point τ (7). At data point τ the mean is constrained to be mτ = µ and the state
is constrained to be sτ = σ. The optimal cost Cσ,τ (µ) is a real-valued function that must
be computed by minimizing over all previous means m1, . . . , mτ−1, states s1, . . . , sτ−1, and
changes c1, . . . , cτ−1. It can be computed recursively using the dynamic programming updates
that we propose below.
The algorithm begins by initializing the optimal cost of the background state at the first data
point,

C0,1(µ) = ℓ(µ, z1). (8)

The computations for the second data point are also special, because the model is constrained
to start in the background state s1 = 0. To get to the background state s2 = 0 at the second
data point requires no change (c1 = 0), with a cost of

C0,2(µ) = C0,1(µ) + ℓ(µ, z2). (9)

Similarly, to get to the peak state s2 = 1 at the second data point requires a non-decreasing
change (c1 = 1), with a cost of

C1,2(µ) = min
m1≤µ

C0,1(m1) + λ + ℓ(µ, z2) = C≤
0,1(µ) + λ + ℓ(µ, z2). (10)

Note that we were able to re-write the optimal cost function in terms of a single variable µ
by using the min-less operator,

f≤(µ) = min
x≤µ

f(x). (11)

The min-less operator was introduced by Hocking et al. (2020) in order to compute the optimal
cost in the functional pruning algorithm that solves the segment neighborhood version of this
problem.
More generally, the dynamic programming update rules can be derived from the computation
graph (Figure 2). The optimal cost of the peak state s = 1 at data i > 2 is

C1,i(µ) = ℓ(µ, zi) + min{C1,i−1(µ), C≤
0,i−1(µ) + λ}. (12)

Note how the inputs to the min{} operation are the same as the edges leading to the C1,i

node in the computation graph (Figure 2).
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Algorithm 1 Generalized functional pruning optimal partitioning (GFPOP) for changepoint
model with up-down constraints between adjacent segment means.

1: Input: data set z ∈ RN , penalty constant λ ≥ 0.
2: Output: vectors of optimal segment means U ∈ RN and ends T ∈ {1, . . . , N}N
3: Initialize 2×N empty PiecewiseFunction objects Cs,i either in memory or on disk.
4: Compute min z and max z of z.
5: C0,1 ← PiecewiseFunction(z1, z, z)
6: for data point i from 2 to N : // dynamic programming
7: M1 ← λ + MinLess(i− 1, C0,i−1) // cost of non-decreasing change
8: C1,i ← MinOfTwo(M1, C1,i−1) + PiecewiseFunction(zi, z, z)
9: M0 ← MinMore(i− 1, C1,i−1) // cost of non-increasing change

10: C0,i ← MinOfTwo(M0, C0,i−1) + PiecewiseFunction(zi, z, z)
11: mean, prevEnd, prevMean← ArgMin(C0,n) // begin decoding
12: seg← 1; Useg ← mean; Tseg ← prevEnd
13: while prevEnd > 0:
14: if prevMean <∞: mean← prevMean
15: if seg is odd: cost← C1,prevEnd else C0,prevEnd
16: prevEnd, prevMean← FindMean(mean, cost)
17: seg← seg + 1; Useg ← mean; Tseg ← prevEnd

Similarly, the optimal cost of the background state s = 0 is

C0,i(µ) = ℓ(µ, zi) + min{C0,i−1(µ), C≥
1,i−1(µ) + λ}, (13)

where the min-more operator is defined as

f≥(µ) = min
x≥µ

f(x). (14)

These dynamic programming computations are summarized in Algorithm 1.

Implementation details
As in PDPA (Rigaill 2015) and FPOP (Maidstone et al. 2017), the key idea is to use a data
structure that provides an exact representation of the real-valued cost functions Cs,i(µ) (6).
In the case of the Poisson loss ℓ, each Cs,i(µ) is a piecewise function, where each piece is of the
form αµ + β log µ + γ, and α, β, γ ∈ R are coefficients that exactly represent the cost function
on a particular piece. Therefore we propose to store each optimal cost function Cs,i(µ) as an
instance of a C++ ‘PiecewiseFunction’ class, which is essentially a linked list of intervals of
possible mean values µ, each with different coefficients α, β, γ. When the final cost function
C0,N (µ) has been computed, the solution to (5) is obtained by searching each piece in the
linked list for the mean µ with min cost, F (λ) = minµ C0,N (µ). The implementation is thus
highly dependent on the chosen loss function ℓ; implementing other convex loss functions
(e.g., Gaussian) is possible but we save that for future work.

Discussion of pseudocode
Algorithm 1 begins on Line 3 by initializing the array Cs,i of optimal cost functions (either in
memory or on disk). It then computes the min z and max z of the data, which define the range
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of possible µ values (Line 4). The optimal cost at the first data point is then initialized as a
linked list with just one function piece, using the PiecewiseFunction constructor (Line 5).
Since the Poisson loss is ℓ(µ, z1) = µ− z1 log µ, this first optimal cost function is represented
as the single function piece with interval µ ∈ (z, z) and coefficients (α = 1, β = −z1, γ = 0).
The dynamic programming recursion in this algorithm is a loop over data points i (Line 6).
Each iteration of the loop uses the MinLess/MinMore/MinOfTwo sub-routines to process the
PiecewiseFunction objects. The details about how to implement these sub-routines have
been described previously (Hocking et al. 2020). Briefly,

MinLess inputs a PiecewiseFunction f(µ) and outputs a PiecewiseFunction correspond-
ing to the min-less operator f≤(µ) (11).

MinMore inputs a PiecewiseFunction f(µ) and outputs a PiecewiseFunction corre-
sponding to the min-more operator f≥(µ) (14).

MinOfTwo inputs two PiecewiseFunction objects f(µ), g(µ), and outputs a PiecewiseFunction
corresponding to the pointwise minimum min{f(µ), g(µ)}.

The DP update (12) is used to compute C1,i: the penalty constant λ is added to the result
of the MinLess sub-routine (Line 7), before using the MinOfTwo sub-routine and adding the
cost of the new data point (Line 8). Similarly, the DP update (13) is used to compute C0,i

on lines 9–10. It uses the MinMore sub-routine, does not add the penalty λ, then finally uses
the MinOfTwo sub-routine.
After computing the optimal cost functions, the decoding of optimal parameters occurs on
Lines 11–17. The last segment mean and second to last segment end are first stored on
Line 12 in (U1, T1). For each other segment i, the mean and previous segment end are stored
on Line 17 in (Ui, Ti). Note that there should be space to store (Ui, Ti) parameters for up to
N segments. Our disk-based implementation writes these parameters to a text output file.

Computational complexity

The time complexity of Algorithm 1 is O(NI), where I is the mean number of intervals
(function pieces) that are used to represent the Cs,i cost functions. Our implementation uses
O(NI) disk space and O(I) memory. There are some pathological data sets for which the
algorithm computes I = O(N) intervals, which results in a worst case complexity of O(N2).
One such example is when the penalty is large and the data sequence always increases, which
also results in the worst case of the original FPOP algorithm. However our empirical study
suggests much faster average complexity in real genomic data (Section 4.3).

Usage in R

We implemented the disk-based version of Algorithm 1 in C++ code with an interface in the
R package PeakSegDisk. To illustrate its usage we first load a set of genomic data,

R> library("PeakSegDisk")
R> data("Mono27ac", package = "PeakSegDisk")
R> Mono27ac$coverage
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chrom chromStart chromEnd count
1: chr11 60000 132601 0
2: chr11 132601 132643 1
3: chr11 132643 146765 0
4: chr11 146765 146807 1
5: chr11 146807 175254 0

---
6917: chr11 579752 579792 1
6918: chr11 579792 579794 2
6919: chr11 579794 579834 1
6920: chr11 579834 579980 0
6921: chr11 579980 580000 1

Note that the 4 column bedGraph format shown above must be used to represent a data
set. Furthermore a run-length encoding should be used for data sets that have runs of the
same values. Each row represents a sequence of identical data values. For example the first
row means that the value 0 occurs on the 72601 positions in (60000, 132601], the second row
means a value of 1 for the 42 positions in (132601, 132643], etc. This run-length encoding
results in significant savings in disk space and time (Cleynen, Koskas, Lebarbier, Rigaill, and
Robin 2014); for example in the data set above there are only 6921 lines used to represent
520000 data values.
In order to handle very large data sets while using only O(log N) memory, the algorithm
reads input data from a text file on disk (and never actually stores the entire data set in
memory). So before using the algorithm we must save the data set to disk, in bedGraph
format (the four columns shown above, separated by tabs). Note that the file name must be
coverage.bedGraph:

R> data.dir <- file.path("Mono27ac", "chr11-60000-580000")
R> dir.create(data.dir, showWarnings = FALSE, recursive = TRUE)
R> PeakSegDisk::writeBedGraph(
+ Mono27ac$coverage, file.path(data.dir, "coverage.bedGraph"))

After saving the file to disk, we can run the algorithm using the code below:

R> fit <- PeakSegDisk::PeakSegFPOP_dir(data.dir, 10000.5)

The first argument must be the folder name (not the coverage.bedGraph file name); the
second argument must be a non-negative penalty λ value (larger penalties yield fewer peaks).
The smallest value is 0 which yields max peaks, and the largest value is Inf which yields no
peaks. For increased speed when solving for several penalties for the same problem, files are
automatically created to store/cache the results. If the files already exist (and are consistent)
then PeakSegFPOP_dir just reads them; otherwise it runs the dynamic programming C++
code in order to create those files.
The returned fit object is a named list of data.tables. The summary method shown below
returns one row of general information about the computed model:

R> summary(fit)
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Figure 3: Visualization of mean model (green) for genomic count data (grey).

penalty segments peaks bases bedGraph.lines mean.pen.cost total.loss
1: 10000.5 15 7 520000 6921 0.2189399 43845.26

equality.constraints mean.intervals max.intervals megabytes seconds
1: 0 14.4279 41 4.178795 0.38

Above we can see that the optimal model for the given penalty λ had P = 7 peaks (K = 15
segments/K − 1 = 14 changepoints). The segments component is used to visualize three of
those peaks in a subset of the data below.

R> library("ggplot2")
R> gg <- ggplot() + theme_bw() + coord_cartesian(xlim = c(2e5, 3e5)) +
+ geom_step(aes(chromStart, count), color = "grey50",
+ data = Mono27ac$coverage) +
+ geom_segment(aes(chromStart, mean, xend = chromEnd, yend = mean),
+ color = "green", size = 1, data = fit$segments) +
+ xlab("Position on chromosome (bases)")
R> print(gg)

The code above results in the plot shown in Figure 3. It is apparent in the plot that the peaks
detected by our algorithm vary in both height (i.e., mean value) and length (in bases along
the chromosome). Note that this typical “coverage” representation results in a sequence of
spatially correlated genomic data which are not independently distributed (many subsequent
counts are identical). Although this lack of independence may be problematic for other
statistical methods, our results indicate that our proposed algorithm yields similar peaks in
data with or without such spatial correlation (Section 4.2).
The PeakSegDisk package contains several other helper functions (which call the functions
mentioned above). For example PeakSegFPOP_vec computes the optimal model for a data
set specified as an integer vector, and PeakSegFPOP_df takes a data frame as input. Next,
we use PeakSegFPOP_df to compute the optimal model for a smaller penalty than was used
above:
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Figure 4: Visualization of peak model, created using plot method on the object returned by
PeakSegFPOP_df.

R> fit <- PeakSegDisk::PeakSegFPOP_df(Mono27ac$coverage, 999.9)
R> class(fit)

[1] "PeakSegFPOP_df" "PeakSegFPOP_dir" "list"

R> gg <- plot(fit)
R> print(gg)

The code above produces the plot shown in Figure 4. Note that this special plot method
creates a ggplot of the data along with predicted peaks and segmentation model (which seems
to have too many changepoints/peaks, suggesting that a larger penalty should be used).
Vertical dashed green lines are used to show changepoint variables with strict inequality
constraints, i.e., ci = 1, mi < mi+1 or ci = −1, mi > mi+1 in Problem 5; vertical dashed solid
lines show non-zero changepoint variables with equality constraints, i.e., ci ∈ {−1, 1}, mi =
mi+1. Since the plot method returns a ggplot object, it can be further processed, e.g., to
zoom in on the part of the model with equality constraints:

R> print(gg + ggplot2::coord_cartesian(xlim = c(205000, 210000)))

The code above creates the plot shown in Figure 5. The plot shows that each equality
constraint changepoint occurs just before another inequality constraint changepoint (first
change up, second change down).

3.2. Sequential search algorithm for P ∗ peaks

Note that in GFPOP (Algorithm 1), the user inputs a penalty λ, and is unable to directly
choose the number of segments/peaks. In this section, we propose an algorithm that allows
the user to specify the number of peaks. The algorithm then repeatedly calls GFPOP until
it finds the most likely model with at most the specified number of peaks.
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Figure 5: Zoom to a peak in the data, which shows details of which equality constraints are
active/inactive.

To understand how the algorithm works, we must review the relationship between the optimal
partitioning and segment neighborhood problems (Maidstone et al. 2017). We define the
optimal loss for a given number of peaks P as

LP = min
m∈RN , s∈{0,1}N

c∈{−1,0,1}N−1

N∑
i=1

ℓ(mi, zi) (15)

subject to ci = 0⇒ mi = mi+1 and si = si+1,

ci = 1⇒ mi ≤ mi+1 and (si, si+1) = (0, 1),
ci = −1⇒ mi ≥ mi+1 and (si, si+1) = (1, 0),
s1 = sN = 0,

P =
N−1∑
i=1

I(ci = 1). (16)

The problem above is the segment neighborhood version of the Optimal Partitioning problem
that GFPOP solves (5). The penalty λ is absent, and the model complexity (the number
of peaks) has moved to a Constraint 16. Recall that F (λ) is the minimum value of the
optimal partitioning Problem 5. It can be written in terms of the solution to the segment
neighborhood Problem 15,

F (λ) = min
P ∈{0,1,...,Pmax}

LP + λP. (17)

From (17) it is clear that there are only a finite number of optimal changepoint models (from
0 to Pmax peaks). F (λ) is a concave, non-decreasing function that can be computed as the
minimum of a finite number of affine functions fP (λ) = LP + λP .
We now assume the user wants to compute the optimal model with a fixed number of peaks
P ∗. To compute that model we will maximize the function

G(λ) = F (λ)− P ∗λ = min
P ∈{0,1,...,Pmax}

LP + λ(P − P ∗)︸ ︷︷ ︸
gP (λ)

. (18)



16 Constrained Optimal Changepoint Detection in Genomic Data

it=1, P = 29681

it=1, P = 0
it=2, P = 3445

it=3, P = 401
it=4, P = 51

-1600000

-1200000

-800000

-400000

0 5000 10000 15000 20000
Penalty λ

G
(λ

)=
F

(λ
)−

λ
P

∗

All 13 iterations

it=9, P = 77
it=10, P = 71

it=11, P = 74it=12, P = 76
it=13, P = 76

-71900

-71875

-71850

2500 2510 2520 2530 2540 2550
Penalty λ

G
(λ

)=
F

(λ
)−

λ
P

∗

Zoom to iterations 9–13

Figure 6: Example of a G(λ) function which is maximized in order to find the most likely
model with at most P ∗ = 75 peaks. Red dots show G(λ) values evaluated by the algorithm;
grey lines show affine functions gP (λ) = LP + (P − P ∗)λ used to determine the next λ value
(Line 5 of Algorithm 2). Left: iteration 1 runs GFPOP with λ ∈ {0,∞}, resulting in initial
lower bound of p = 0 peaks and upper bound of p = 29681 peaks. In iteration 2 the algorithm
finds the intersection of the upper/lower bound lines g0(λ) = g29681(λ) at λ = 90.9; running
GFPOP with that penalty reduces the upper bound to p = 3445. Right: In the last iteration
(13), we run GFPOP with λ = 2522.1 (which is where g74 intersects g76), resulting in 76 peaks
when we already have p = 76 as an upper bound (computed in iteration 12). The maximum
of G is thus G(2522.1) = g74(2522.1) = g76(2522.1); the algorithm returns the model with
P = 74 peaks.

From (18) it is clear that G(λ) is a concave function that can be computed as the minimum
of a finite number of affine functions gP (λ) = LP + λ(P − P ∗). For an example G function
see Figure 6.

Discussion of pseudocode

Algorithm 2 summarizes the sequential search. The main idea of the sequential search algo-
rithm is to keep track of a lower bound p < P ∗ and upper bound p > P ∗ on the number
of peaks computed thus far. The algorithm starts with λ = 0, p = Pmax (Line 2) and
λ = ∞, p = 0 (Line 3). At each iteration of the algorithm, we find the intersection of the
affine functions gp(λ) = gp(λ), which leads to a new candidate penalty λnew = (Lp−Lp)/(p−p)
(Line 5). As previously described (Haynes, Eckley, and Fearnhead 2017), there are two pos-
sibilities for the solution to the optimal partitioning problem:

• GFPOP(λnew) yields p or p peaks (Line 7). In that case maxλ G(λ) = G(λnew) =
gp(λnew) = gp(λnew) and there is no optimal partitioning model with P ∗ peaks. We
terminate the algorithm by returning the model with p peaks.

• GFPOP(λnew) yields a new model with pnew peaks. If pnew = P ∗ then maxλ G(λ) = LP ∗

and we return this model (Line 8). Otherwise it must be true that p < pnew < p. If
p < pnew < P ∗ then we use pnew for a new lower bound p (Line 9); otherwise we use it
for a new upper bound p (Line 10).
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Algorithm 2 Sequential search for P ∗ peaks using GFPOP.
1: Input: data z ∈ RN , target peaks P ∗.
2: L, p← GFPOP(z, λ = 0) // initialize upper bound to max peak model
3: L, p← GFPOP(z, λ =∞) // initialize lower bound to 0 peak model
4: While P ∗ ̸∈ {p, p}:
5: λnew = (L− L)/(p− p)
6: Lnew, pnew ← GFPOP(z, λnew)
7: If pnew ∈ {p, p}: return model with p peaks.
8: If pnew = P ∗: return model with pnew peaks.
9: If pnew < P ∗: L, p← Lnew, pnew // new lower bound

10: Else: L, p← Lnew, pnew // new upper bound

Computational complexity

The space complexity is the same as GFPOP: O(NI) disk and O(I) memory for N data
and I intervals (candidate changepoints). Its time complexity is O(WNI) where W is the
number of times the GFPOP sub-routine is called, i.e., the number of iterations of the while
loop (Line 4). Because the algorithm essentially performs binary search, we expect W =
O(log Pmax) iterations, where Pmax = O(N) is the maximum number of peaks for the data
set. We study the empirical number of iterations W in Sections 4.5–4.6.

Usage in R

The R code below computes the optimal model with 17 peaks:

R> fit <- PeakSegDisk::sequentialSearch_dir(data.dir, 17L)

If you want to see how many iterations/penalties the algorithm required in order to compute
the optimal model with 17 peaks, you can look at the fit$others component:

R> fit$others[, list(iteration, under, over, penalty, peaks, total.loss)]

iteration under over penalty peaks total.loss
1: 1 NA NA 0.0000 3199 -130227.291
2: 1 NA NA Inf 0 375197.873
3: 2 0 3199 157.9947 224 -62199.931
4: 3 0 224 1952.6688 17 2640.128

The output above shows that the algorithm only used three iterations to compute the optimal
model with 17 peaks. The under and over columns show the current values of p and p,
respectively. The peaks and total.loss are pnew, Lnew from the model that resulted from
running GFPOP with λ = penalty. Note that iteration 1 evaluates both extreme penalties
λ ∈ {0,∞} in parallel (and λ = ∞ is the trivial model with 0 peaks that can be computed
without dynamic programming), so these two models are considered a single iteration.
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4. Results on genomic data
In this section we discuss several applications of our algorithms in some typical genomic data
sets. We downloaded the chipseq data set from the UCI machine learning repository (Dua
and Karra Taniskidou 2017). We considered 4951 data sets ranging in size from N = 103 to
N = 107 lines in the bedGraph file. Note that our implementation of the proposed algorithm
uses the previously described cost function weighting/compression technique (Cleynen et al.
2014; Hocking et al. 2020), so the number of dynamic programming updates N is equal to
the number of lines in the bedGraph file (which is much smaller than the number of bases).
For example if the data sequence 5, 1, 1, 1, 0, 0, 5, 5 is encoded as N = 4 lines zi5, 1, 0, 5 with
corresponding weights wi1, 3, 2, 2 then the weighted/compressed Poisson loss function for
mean µ is ℓ(zi, wi, µ) = wi(µ − zi log µ). Therefore in the following sections our analysis
of computational complexity refers to data set size N in terms of number of lines in the
bedGraph file.

4.1. Computing maximum likelihood models with a given number of peaks

In this section we show that our algorithms can be used to compute the most likely model
for a given number of peaks. A subset of one data set is shown in Figure 7, along with
three segmentation/peak models. In the top panel, we show the peak model that results
from running MACS2, a heuristic algorithm from the bioinformatics literature (Zhang et al.
2008). Using default parameter settings MACS2 detects five peaks, so we ran our proposed
sequential search (Algorithm 2) with P ∗ = 5 on these data in order to compute the most

Figure 7: One ChIP-seq data set with three peak models. (green horizontal segment means;
green dotted vertical lines for changepoints; blue bars for peaks; blue dots for peak starts)
Top: the MACS2 algorithm (a heuristic from the bioinformatics literature) computed a sub-
optimal model with five peaks for these data. Middle: the most likely model with five peaks
contains one equality constraint between segment means (see zoomed figure on the right),
which suggests that there are less than five easily interpretable peaks. Bottom: the most
likely model with three peaks is also more likely than the MACS2 model.
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Figure 8: For two different ChIP-seq experiment types (left=broad H3K36; right=sharp
H3K4), our proposed GFPOP algorithm detects similar peaks (blue) in data sequences with
(top) or without (bottom) spatial correlation. Also shown are raw/exact count data (black),
mean counts in bins (red), and peak position differences in bases between top/bottom panels
(blue numbers).

likely model with at most 5 peaks (shown in middle panel). It is clear that the optimal 5
peak model is a better fit in terms of likelihood (as expected); it is also a better fit visually,
especially for the peak on the left. Furthermore the optimal 5 peak model actually has one
active equality constraint between adjacent segment means, suggesting that there are less
than five easily interpretable peaks. Therefore we also computed the optimal 3 peak model
(bottom panel), which also has a higher log-likelihood than the 5 peak MACS2 model. The
given example shows that our algorithm can be used to compute models which are both more
likely and simpler (with fewer peaks) than heuristics such as MACS2.

4.2. GFPOP is robust to spatial correlation in typical genomic data

As in all genomic data which use the typical “coverage” representation of DNA sequence reads
aligned to a reference genome, there is spatial correlation in the ChIP-seq data we analyze.
In other words, a sequence read is counted at each genomic position where it aligns to the
reference genome, which results in a sequence of counts which is not independent. For example
if a read of size 100 bases aligns on chr1:1-100 and another read aligns on chr1:51-150, then
the typical coverage representation is a count of 1 aligned read on chr1:1-50, a count of 2
aligned reads on chr1:51-100, and a count of 1 aligned read on chr1:101-150, which leads to
spatial correlation between nearby positions (top panels of Figure 8). Another representation
with no spatial correlation would be to count a sequence read at only the last genomic position
where it aligns (bottom panels of Figure 8). In the example above that would be counting 1
at chr1:100 and 1 at chr1:150, and 0 elsewhere.
We have tried GFPOP on both representations of the data, and we have observed that the
detected peaks are highly consistent (with some variation on the order of the read size,
100 bases). In Figure 8 we represent two datasets (left:H3K36 and right:H3K4) using the
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Figure 9: In our empirical tests, the computational requirements of the GFPOP algorithm
were log-linear O(N log N) in the number of data points N to segment. Left: we analyzed
the number of intervals I (candidate changepoints) stored in the Ct(µ) cost functions, because
the total time/space complexity is O(NI). We observed empirically that the mean number
of intervals I = O(log N) (red curve). Even the maximum number of intervals (blue curve)
is much less than N . Right: storage on disk (top panel) and computation time (bottom
panel) are empirically O(N log N). Error bands show median and 5%/95% quantiles over
several data sets of a given size N and penalties λ; black dots and text show computational
requirements for the most extreme data sets.

coverage representation (top) and last position representation (bottom). The peak positions
of the models shown in blue are highly consistent between the top and bottom plots. This
illustrates that the proposed algorithm is highly robust to spatial correlation.

4.3. GFPOP is empirically log-linear

To measure the empirical time complexity of GFPOP (Algorithm 1), we ran it on all 4951
genomic data sets, with a grid of penalty values λ ∈ (log N, N) for each data set of size N .
The overall theoretical time/space complexity is O(NI), where I is the number of intervals
(candidate changepoints) stored in the Cs,t optimal cost functions. During each run we
therefore recorded the mean and max number of intervals over all s, t. We observed that
the empirical mean/max number of intervals increases logarithmically with data set size,
I = O(log N) (Figure 9, left). Remarkably, for the largest data set (N = 11, 499, 958)
the algorithm only computed a mean of I = 19 intervals. The most intervals computed to
represent any single Cs,t function was 512 intervals for one data set with N = 4, 583, 432.
Since empirically I = O(log N) in these genomic data sets, we expected an overall time/space
complexity of O(N log N). The empirical measurements of time and space requirements are
consistent with this expectation (Figure 9, right). For the largest data sets (N = 107), the
algorithm takes only about 80 gigabytes of storage and 1 hour of computation time. Overall
these results suggest that GFPOP can be used to compute optimal peak models for genomic
data in O(N log N) space/time.

4.4. Disk storage is slower than memory by a constant factor

In the previous section, we discussed how tens of gigabytes of storage are required to run
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Figure 10: The disk-based storage method is only a constant factor slower than the memory-
based method. We benchmarked both methods on several small data sets (N ≤ 462, 890) for
which optimal models could be computed using 1GB of storage. Left: computation time is
empirically O(N log N) for both storage methods, but the disk-based method is slower by a
constant factor. Median line and quartile band computed over several penalty values for a
given data set. Right: fixing one data set with N = 106, 569, the computation time generally
increases with penalty value λ for both storage methods.

GFPOP when N = 107. Since typical computers may not have enough memory, our imple-
mentation uses disk-based storage. We compared our disk-based implementation to another
memory-based implementation, in terms of computation time on small data sets for which
GFPOP uses < 1GB of storage. Note that these results depend on the disk type, the amount
of RAM available for disk caching, and the access pattern; the ATA disk we used was a
TOSHIBA MK1652GSX (attached to SCSI, cache/buffer size = 8192 KB). We observed that
disk storage is slower than memory storage by a constant factor (1.7–2.3×, Figure 10), which
was expected.

4.5. Sequential search is faster than segment neighborhood

In this section we compare the number of GFPOP calls required for the proposed sequential
search (Algorithm 2) and the previous generalized pruned dynamic programming algorithm
(GPDPA) of Hocking et al. (2020). Both algorithms compute the solution to the segment
neighborhood problem (optimal model with at most P ∗ peaks). The GPDPA requires exactly
2P ∗ iterations of dynamic programming, each of which is empirically an O(N log N) operation.
In contrast, the proposed sequential search (Algorithm 2) needs to solve for a sequence of
penalties, each of which is done via GFPOP in empirically O(N log N) time.

For two data sets with N ≈ 106 we therefore recorded the empirical number of times GFPOP
was called by the sequential search algorithm. We observed that the number of GFPOP
calls grows logarithmically with P ∗ (Figure 11, left). For a large desired number of peaks
(P ∗ > 5), it is clearly faster to use the sequential search algorithm (Figure 11, right). Overall
these experiments indicate that the sequential search for P ∗ desired peaks takes O(log P ∗)
GFPOP calls.
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Figure 11: Comparison of time to compute optimal model with at most P ∗ desired peaks
using segment neighborhood (grey lines) and optimal partitioning with proposed sequential
search (green dots). GFPOP with sequential search (Algorithm 2) was used to compute opti-
mal models with different numbers of desired peaks P ∗, for two data sets with N ≈ 106. Left:
the number of iterations is linear O(P ∗) for segment neighborhood (grey line) but empirically
O(log P ∗) for optimal partitioning with sequential search (green dots). Right: optimal parti-
tioning is empirically faster for computing models with P ∗ > 5 peaks (11 segments); segment
neighborhood is faster for smaller models.

4.6. Sequential search iterations increase logarithmically with data set size

Recall that the proposed sequential search (Algorithm 2) repeatedly calls the GFPOP sub-
routine until it finds the desired model with P ∗ peaks. Because the algorithm is an instance
of binary search, we expected the number of GFPOP calls W to increase logarithmically
with the maximum number of peaks Pmax. To test this hypothesis we ran the sequential
search algorithm on several ChIP-seq data sets from the UCI benchmark, with Pmax varying
from about 103.5 to about 106.5. For each data set we determined the maximum number of
peaks Pmax by running GFPOP with a penalty of λ = 0. We then ran the sequential search
algorithm on each data set with P ∗ ∈ {10, 100, 1000} as values for the input parameter (desired
number of peaks). We observed in these data that the number of GFPOP calls increases
logarithmically with the maximum number of peaks (Figure 12). These results provide a
substantial empirical validation that the sequential search takes O(log Pmax) GFPOP calls,
as expected.

4.7. Application: Computing a zero-error peak model

In this section we study the performance of the proposed algorithms in a typical application.
In the UCI chipseq data set, there are labels that indicate subsets of the data with or without
peaks. These labels were created by expert genomic scientists, who used visual inspection of
coverage data plots to determine genomic regions with/without peaks which are significantly
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Figure 12: The number of GFPOP calls required during the sequential search algorithm is
O(log Pmax) where Pmax is the maximum number of peaks for a data set. Each panel shows,
for a fixed input parameter P ∗ (desired number of peaks), the empirical number of GFPOP
calls over several data sets of different sizes.
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Figure 13: Labels are used to compute an error rate for each peak model (blue bars), defined
as the sum of false positive and false negative labels (rectangles with black outline). This
H3K36me3 ChIP-seq data set has N = 1, 254, 751 data to segment on a subset of chr12, but
in the plot above we show only the 82, 233 data (grey signal) in the region around the labels
(colored rectangles). The model with penalty = 6682 results in 320 peaks, which is too many
(three false positive labels with more than one peak start/end). Conversely, the model with
penalty = 278653 results in 33 peaks, which is too few (only two peaks in the plotted region,
resulting in two false negative labels on the right where there should be exactly one peak
start/end). The range of penalties between 9586 and 267277 results in models with between
34 and 236 peaks, and achieves zero label errors.

higher than the neighboring background noise. Although such labels are not available in all
ChIP-seq data sets, here we use them as a gold standard to compute false positive and false
negative rates for peak models. For example Figure 13 shows one data set with six labels and
four peak models computed via GFPOP. Small penalties result in too many peaks, and large
false positive rates. Large penalties result in too few peaks, and large false negative rates. A
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Figure 14: The model with minimal label errors has O(
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N) peaks in a data set of size
N . For each data set we computed peak models with minimal label errors (see Figure 13);
we then plot the number of peaks in minimal error models as a function of data set size N .
Black median line and grey quartile band computed over several data sets of a given size N ;
asymptotic reference lines shown in red.
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Figure 15: Computing a zero-error model with O(
√

N) peaks is possible in O(N(log N)2)
time using our proposed optimal partitioning Search algorithm. Left: segment neighbor-
hood requires O(

√
N) dynamic programming iterations to compute a model with O(

√
N)

peaks; our proposed optimal partitioning search algorithm requires only O(log N) iterations.
Right: optimal partitioning solves for one penalty in O(N log N) space/time (median line
and 5%/95% quantile band over data sets and penalties); finding the zero-error model with
O(
√

N) peaks takes O(N(log N)2) time/space – only a log factor more (points).

range of intermediate penalties/peaks achieves zero label errors. The labels can thus be used
to determine an desired number of peaks P ∗ (with zero errors) for each data set.
More generally, after computing GFPOP models for a range of penalties for each data set, we
computed the label error of each model. For each data set we computed the min/max peaks
that achieves zero label errors (34/236 in Figure 13), along with the mean of those two values,
(34 + 236)/2 = 135. We plot the mean number of peaks that achieves zero label errors as a
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function of data set size N in Figure 14. From the figure it is clear that the mean number of
peaks required to achieve zero label errors in these data is on the order of O(

√
N).

Computing the optimal model with P = O(
√

N) peaks is computationally expensive using the
segment neighborhood algorithm (PeakSegOptimal package), because the overall complexity
would be O(N

√
N log N). For example in N = 107 data, P ∗ = 1414 peaks are desired in order

to achieve zero label errors. Computing the optimal model with segment neighborhood would
thus require 2828 O(N log N) DP iterations. If we assume that each iteration would have
similar computational requirements as one O(N log N) run of GFPOP, each would require
about 1 hour and 80 gigabytes (Figure 9). Overall that would mean 220 terabytes of storage
and 17 weeks of computation time, which is much too expensive in practice.
Instead, we propose to use the sequential search (Algorithm 2) to compute the model with
the desired number of peaks. In our empirical tests, we observed that only O(log N) GFPOP
calls are required to compute O(

√
N) peaks (Figure 15, left). In particular for N = 107 data

only 10–15 GFPOP calls are required, which is significantly fewer than the 2828 DP iterations
that would be required for the segment neighborhood solver in the PeakSegOptimal package.
We also observed that the empirical timings of the sequential search are only a log-factor
slower than solving for one penalty (Figure 15, right). In particular for N = 107 data the
sequential search takes on the order of hours, which is much less than the weeks that would be
required to solve the segment neighborhood problem. Overall these empirical results indicate
that the sequential search algorithm in the PeakSegDisk package can be used to compute a
model with O(

√
N) peaks in O(N(log N)2) time.

5. Summary and discussion
This paper presented two new algorithms for constrained optimal changepoint detection. We
presented generalized functional pruning optimal partitioning (GFPOP) which computes the
optimal model for one penalty λ. We also proposed a sequential search algorithm which re-
peatedly calls GFPOP with different penalties λ, in order to compute the most likely model
with at most P ∗ desired peaks (K = 2P ∗ + 1 segments). The algorithms are implemented in
the R package PeakSegDisk which is publicly available from the Comprehensive R Archive Net-
work (CRAN) at https://CRAN.R-project.org/package=PeakSegDisk and from GitHub.
This paper has several substantial similarities and differences with previous work. The main
new algorithm presented in this paper is GFPOP, which generalizes the FPOP algorithm
of Maidstone et al. (2017). FPOP was originally proposed for use with Gaussian mean
change-point problems, but has also been used with robust loss functions, resulting in the
R-FPOP algorithm (Fearnhead and Rigaill 2019). FPOP and R-FPOP perform the same
dynamic programming updates, but use different representations of the cost function. In
contrast, in this paper we propose a generalization of FPOP for changepoint problems with
inequality constraints between adjacent segment means. The resulting algorithm, GFPOP,
is substantially novel because it uses different dynamic programming update rules, which
depend on the constraints. We refer to the algorithm as “Generalized” because FPOP is
the special case corresponding to a constraint graph with only one node and edge (Figure 1,
left). The up-down constrained model we implemented in PeakSegDisk is another special
case, but the GFPOP algorithm works for any model which can be represented as a state
graph (Figure 1).

https://CRAN.R-project.org/package=PeakSegDisk
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Whereas we previously proposed an exact solver for the up-down constrained changepoint
model (Hocking et al. 2020), the current paper provides a more efficient algorithm for com-
puting the same model on the large genomic data sets that are now common. In such data, we
are only interested in models with many segments/changepoints, so it is a waste of time and
space to compute all models from 1 to K segments using segment neighborhood algorithms.
Our proposed GFPOP algorithm solves the optimal partitioning problem, so yields one opti-
mal model with K segments (without having to compute the models from 1 to K−1 segments).
We show that the empirical complexity of our GFPOP implementation is O(N log N) time,
O(N log N) disk, and O(log N) memory, which makes it possible to compute optimal models
with many peaks on common laptop computers. More precisely, the novelty of this paper
with respect to that previous work is in terms of:

Data. Both papers propose peak detection algorithms for genomic data. Our previous work
analyzes a smaller data set (2752 sequences of sizes up to N = 105) whereas in this
paper we analyze a larger data set (4951 sequences of sizes up to N = 107).

Problem formulation. Both papers analyze changepoint problems with up-down constraints
between adjacent segment means. Our previous work focuses on solving the segment
neighborhood problem (best model in K segments), whereas in this paper we addition-
ally solve the optimal partitioning problem (best model for penalty λ).

Algorithm complexity. Both papers propose dynamic programming algorithms for com-
puting the same up-down constrained changepoint model. The algorithm in our previous
work is O(KN log N) which is too slow when both the number of segments K and data
N are large. This paper proposes an O(N log N) algorithm which is useful for computing
complex models of large data sets.

Results/baselines. The empirical analysis in our previous paper demonstrates more accu-
rate peak detection in cross-validation experiments; we considered baseline algorithms
from the bioinformatics literature, and baseline changepoint algorithms (unconstrained,
heuristic). The empirical analysis in this paper demonstrates faster computation time
in large data, relative to the up-down constrained segment neighborhood algorithm.

Finally the previous work of Haynes et al. (2017) has proposed the CROPS algorithm for
computing all changepoint models for a range of penalties (λ, λ) (which is the input param-
eter). In this paper we use similar ideas in our proposed sequential search algorithm for
computing the optimal model with at most P ∗ desired peaks (which is the input parameter).
Both algorithms work by repeatedly solving the Optimal Partitioning problem for different
penalties λ.
In an analysis of benchmark genomic data sets, we empirically showed that our sequential
search algorithm only requires O(log P ∗) calls to GFPOP. For example, this approach can
compute an optimal model with ≈ 1000 peaks for N = 107 data using only ≈ 20 calls to GF-
POP. This translates into only hours of compute time and gigabytes of storage, which is much
less than weeks/terabytes which would be required for the previous segment neighborhood
solver. More generally, these results suggest that our proposed sequential search algorithm
can be used to reduce computation times for other changepoint models, i.e., optimal parti-
tioning combined with the sequential search algorithm should be preferred over the classical
segment neighborhood approach.
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For future work we look forward to implementing our proposed disk-based storage mechanism
for other loss/likelihood functions and constraints. For example, we are currently working
on a gfpop package (Runge et al. 2021) which uses the Gaussian loss/likelihood with a user-
specified constraint graph. Results from this paper indicate that disk-based storage can be
used to scale to very large data sets, while maintaining fast computation times.

Reproducible research statement
The source code and data to reproduce all results from the paper is available at https://
github.com/tdhock/PeakSegFPOP-paper. The code for reproducing the outputs and figures
in the paper are also available as supplementary file v101i10-replication.zip on the journal
website.
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