
HAL Id: hal-04191319
https://hal.inrae.fr/hal-04191319v1

Submitted on 1 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

gfpop : An R Package for Univariate Graph-Constrained
Change-Point Detection

Vincent Runge, Toby Dylan Hocking, Gaetano Romano, Fatemeh Afghah,
Paul Fearnhead, Guillem Rigaill

To cite this version:
Vincent Runge, Toby Dylan Hocking, Gaetano Romano, Fatemeh Afghah, Paul Fearnhead, et al.. gf-
pop : An R Package for Univariate Graph-Constrained Change-Point Detection. Journal of Statistical
Software, 2023, 106 (6), pp.1-39. �10.18637/jss.v106.i06�. �hal-04191319�

https://hal.inrae.fr/hal-04191319v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

HAL Id: hal-02961088
https://hal.inrae.fr/hal-02961088

Preprint submitted on 29 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

gfpop : An R Package for Univariate Graph-Constrained
Change-Point Detection

Vincent Runge, Toby Dylan Hocking, Gaetano Romano, Fatemeh Afghah,
Paul Fearnhead, Guillem Rigaill

To cite this version:
Vincent Runge, Toby Dylan Hocking, Gaetano Romano, Fatemeh Afghah, Paul Fearnhead, et al.. gf-
pop : An R Package for Univariate Graph-Constrained Change-Point Detection. 2024. �hal-02961088�

https://hal.inrae.fr/hal-02961088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

JSS Journal of Statistical Software
March 2023, Volume 106, Issue 6. doi: 10.18637/jss.v106.i06

gfpop: An R Package for Univariate
Graph-Constrained Change-Point Detection

Vincent Runge
Université d’Évry

Toby Dylan Hocking
Northern Arizona University

Gaetano Romano
Lancaster University

Fatemeh Afghah
Clemson University

Paul Fearnhead
Lancaster University

Guillem Rigaill
INRAE – Université d’Évry

Abstract

In a world with data that change rapidly and abruptly, it is important to detect those
changes accurately. In this paper we describe an R package implementing a generalized
version of an algorithm recently proposed by Hocking, Rigaill, Fearnhead, and Bourque
(2020) for penalized maximum likelihood inference of constrained multiple change-point
models. This algorithm can be used to pinpoint the precise locations of abrupt changes
in large data sequences. There are many application domains for such models, such as
medicine, neuroscience or genomics. Often, practitioners have prior knowledge about the
changes they are looking for. For example in genomic data, biologists sometimes expect
peaks: up changes followed by down changes. Taking advantage of such prior information
can substantially improve the accuracy with which we can detect and estimate changes.
Hocking et al. (2020) described a graph framework to encode many examples of such
prior information and a generic algorithm to infer the optimal model parameters, but
implemented the algorithm for just a single scenario. We present the gfpop package that
implements the algorithm in a generic manner in R/C++. gfpop works for a user-defined
graph that can encode prior assumptions about the types of changes that are possible and
implements several loss functions (Gauss, Poisson, binomial, biweight, and Huber). We
then illustrate the use of gfpop on isotonic simulations and several applications in biology.
For a number of graphs the algorithm runs in a matter of seconds or minutes for 105 data
points.

Keywords: change-point detection, constrained inference, maximum likelihood inference, dy-
namic programming, robust losses.

https://doi.org/10.18637/jss.v106.i06
https://orcid.org/0000-0002-4857-1799
https://orcid.org/0000-0002-3146-0865
https://orcid.org/0000-0002-7751-9017
https://orcid.org/0000-0002-2315-1173
https://orcid.org/0000-0002-9386-2341
https://orcid.org/0000-0002-7176-7511

2 gfpop: Univariate Graph-Constrained Change-Point Detection in R

1. Introduction

1.1. Multiple change-point R packages

In the last decade there has been an increasing interest in algorithms for detecting changes in
mean. There are a variety of approaches to detecting such change-points, see Truong, Oudre,
and Vayatis (2020) for a recent review of the area. Many of these recursively apply a test
for a single change-point. These include binary segmentation (Scott and Knott 1974) and
its variants (Olshen, Venkatraman, Lucito, and Wigler 2004; Fryzlewicz 2014), multiscale
methods (Frick, Munk, and Sieling 2014) and MOSUM (moving sum) methods (Eichinger
and Kirch 2018). R (R Core Team 2022) packages that implement these and related methods
include wbs (Baranowski and Fryzlewicz 2019), not (Baranowski, Chen, and Fryzlewicz 2019),
breakfast (Anastasiou, Chen, Cho, and Fryzlewicz 2021), stepR (Pein, Hotz, and Sieling
2022), and mosum (Meier, Kirch, and Cho 2021). See Fearnhead and Rigaill (2020) for a
comparison of many of these methods.
Alternatively one can try to jointly estimate the location of all change-points by maximizing a
penalized likelihood or, equivalently, minimizing a penalized cost. Dynamic programming was
originally proposed in the change-point literature in the context of the “segment neighbor-
hood” (SN) and “optimal partitioning” (OP) algorithms (Auger and Lawrence 1989; Jackson
et al. 2005). More recently Killick, Fearnhead, and Eckley (2012) proposed the PELT (pruned
exact linear time) pruning rules, which reduce time complexity from quadratic to linear in
asymptotic regimes where the number of change-points increases as we observe more data.
This work has stimulated a new interest in these problems. The R package changepoint
(Killick and Eckley 2014) and changepoint.np (Haynes and Killick 2021) are based on these
PELT inequality pruning rules. A new functional pruning rule was independently discov-
ered by Johnson (2013) and Rigaill (2015). When comparing these two pruning rules, the
functional pruning always prunes more than PELT inequality pruning (see Theorem 2 and
Figures 4 and 5 in Maidstone, Hocking, Rigaill, and Fearnhead 2017). Furthermore func-
tional pruning empirically shows reduced time complexity in many situations. For example,
when we have data with no changes, PELT pruning algorithms have a quadratic complexity,
but functional pruning algorithms can have a log-linear complexity (see Section 7 in Maid-
stone et al. 2017). Functional pruning algorithms are implemented in the R packages fpop
and fpopw (Maidstone et al. 2017; Rigaill, Hocking, Maidstone, and Fearnhead 2019; Rigaill
2022), Segmentor3IsBack (Cleynen, Koskas, Lebarbier, Rigaill, and Robin 2014) and jointseg
(Pierre-Jean, Rigaill, and Neuvial 2019).
Besides time efficiency, recent efforts have been made to extend the class of change-point
models considered by adding constraints. For example, in applications which involve detecting
peaks in genomic data, the inference is constrained to return a sequence of down and up
segments by packages PeakSegDP (Hocking, Rigaill, and Bourque 2015), PeakSegOptimal
(Hocking et al. 2020), PeakSegDisk (Hocking, Rigaill, Fearnhead, and Bourque 2022), and
PeakSegJoint (Hocking and Bourque 2020). Including such constraints, when appropriate
for the application, has been shown to substantially improve the accuracy of change-point
detection (Hocking et al. 2020). Whereas these previous packages only implement up/down
constraints and the Poisson loss, the proposed gfpop package (Runge et al. 2023) is the first
to implement inference for a wide range of constraints, allows specifying models that can mix
different types of changes through a graph, and also allows for other loss functions. For that

Journal of Statistical Software 3

reason we named our package gfpop as an abbreviation for “generalized functional pruning
optimal partitioning”. Our intention is to provide a user-friendly package which popularizes
these recent discoveries about the functional pruning method, by allowing the user to specify
a wide variety of constraints and loss functions, using prior information about their data and
application domain. Package gfpop is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=gfpop.

1.2. Standard multiple change-point model

Multiple change-point models are designed to find abrupt changes in a signal. In the standard
Gaussian noise model, we have data Y1:n = (Y1, . . . , Yn) where each data point, Yt, is an
independent random variable with Yt ∼ N (µt, σ2) and t 7→ µt is piecewise constant. The
goal is to estimate the number and position of the changes, that is to find all t such that
µt ̸= µt+1 from the observed data (yt)t=1,...,n. A classical way to proceed is to optimize the
log-likelihood by fixing the number of changes. It is also possible to penalize each change by
a positive penalty β and minimize in µ = (µ1, . . . , µn)⊤ ∈ Rn the following least-ssquares
criterion:

Qstd
n (µ) =

n∑
t=1

(yt − µt)2 + β
n−1∑
t=1

Iµt ̸=µt+1 ,

where I ∈ {0, 1} is the indicator function (Ix = 1 if x is true, and zero otherwise). In
both cases, fast dynamic programming algorithms can solve the related optimization problem
exactly (Killick et al. 2012; Rigaill 2015; Maidstone et al. 2017). In Section 3.2 we derive the
explicit form of the simpler FPOP (functional pruning optimal partitioning) update-rule for
our more general graph framework.

1.3. Constrained multiple change-point model

In many applications, it is desirable to constrain the parameters of successive segments (Hock-
ing et al. 2015; Maidstone et al. 2017; Jewell, Hocking, Fearnhead, and Witten 2020; Bara-
nowski and Fryzlewicz 2019). This means that the µ parameter is restricted by inequalities
to a subset of Rn. Arguably, the simplest and most studied case is isotonic regression (Bar-
low, Bartholomew, Bremner, and Brunk 1972). In this case the goal is to minimize in µ the
constrained least-squares criterion:

Qiso
n (µ) =

n∑
t=1

(yt − µt)2 , subject to the constraint µt ≤ µt+1, ∀ t ∈ {1, . . . , n− 1}.

The obtained estimator is piecewise constant, which establishes the link with the multiple
change-point problem. Several efficient inference algorithms have been proposed (Best and
Chakravarti 1990; Johnson 2013; Gao, Han, and Zhang 2020), and the isotone package pro-
vides an implementation (De Leeuw, Hornik, and Mair 2010).
More generally, we may want to impose more complex patterns, such as unimodality (Stout
2008) or a succession of up and down changes (Hocking et al. 2015) to detect peaks. There
are very efficient algorithms for the isotonic and unimodal cases (Best and Chakravarti 1990;
Stout 2008) at least if the number of changes is not penalized. For more complex constraints
like the up-down pattern, Hocking et al. (2020) proposed an exact algorithm. This algorithm
is a generalization of the functional dynamic programming algorithm of Rigaill (2015) and

https://CRAN.R-project.org/package=gfpop

4 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Maidstone et al. (2017). Variants of this algorithm allow penalizing or constraining the
number of changes. Other variants allow robust losses, including the biweight loss, instead
of the least-squares criterion for assessing fit to the data. In the case of non-constrained
(standard) multiple change-point detection, the biweight loss has good statistical properties
(Fearnhead and Rigaill 2019). The simulations of Bach (2018) in the context of isotonic
regression also show the benefit of such losses.

1.4. Contributions
Hocking et al. (2020) described a graph-based framework to encode prior constraints on how
parameters change at each change-point, and a generic algorithm to infer the optimal model
parameters. However, they only implemented the algorithm for a single scenario (Poisson
loss and up/down constraints). The gfpop package implements their algorithm in a generic
manner in R/C++, for user-defined graphs and several loss functions.

1.5. Outline
In Section 2 we formally define the graphs and explain their connection to hidden Markov
model (HMM). We also provide numerous graph examples to illustrate the versatility of our
framework. In Section 3 we present the optimization problem solved by our package. In
Section 4 we go through the main functions of the package. We illustrate in Section 5 the use
of our package on various real data sets. Finally, using simulations we compare in Section 6
the results of our package with those of standard isotonic packages and show the benefit of
using robust losses and penalizing the number of segments.

2. Constraint graphs and change-points model as a HMM
We begin by recasting the standard and constrained multiple change-point problem as a
continuous HMM with a particular transition kernel represented as a graph (Johnson 2013).
At each time t the signal can be in a number of states, which are nodes of the graph. Possible
transitions between states at time t and t+1 are represented by the edges of the graph. Each
edge has three properties: a constraint (e.g., µt ≤ µt+1), a penalty (possibly null) and a loss
function (cost associated to a data point). In gfpop the set of transitions is constant over
time, leading to a collapsed representation of the graph. We then formalize the concept of
a valid signal or path, that is one satisfying all constraints, and finally present a number of
examples.

2.1. Transition kernel and graph of constraints

Standard multiple change-point model as a HMM. It is possible to recast the clas-
sic multiple change-point model as a hidden Markov model with a continuous state space.
Precisely, we define random variables Z1, . . . , Zn in R or some interval [a, b]. We consider a
transition kernel k(x, y) ∝ Ix=y + e−βIx ̸=y. Finally, in the Gaussian case, observations are
obtained as (Yi|Zi = µ) ∼ N (µ, σ2). The Bayesian network of this model is given in Figure 1.
Here the state space is R, the set of values that the mean can take. The gfpop algorithm of
Hocking et al. (2020) allows one to consider a more complex state space in S ×R where S is

Journal of Statistical Software 5

Z1 Z2 Z3 Z4 Zn

Y1 Y2 Y3 Y4 Yn

Figure 1: Multiple change-point model as a hidden Markov model.

a finite set. In that case the transition kernel is more complex and can be described using a
graph. Below, we first present the graph and then explain how it is linked to the transition
kernel.

Graph of constraints. The graph of constraints Gn is an acyclic directed graph defined as
follows.

1. Nodes are indexed by time t ∈ {1, . . . , n} and a state s ∈ S = {1, . . . , S};

2. We include two undefined states #, ∅ for the starting nodes, v0 = (0, #), and arrival
nodes, vn+1 = (n + 1, ∅);

3. Edges are transitions between consecutive “time” nodes of type v = (t, s) and v′ =
(t + 1, s′). Edges e are then described by a triplet e = (t, s, s′) for t ∈ {0, . . . , n};

4. Each edge e = (t, s, s′) is associated with:

• An indicator function Ie : R × R → {0, 1} constraining successive means1 µt

and µt+1. For example an edge e with the corresponding indicator function
Ie(µt, µt+1) = Iµt≤µt+1 ensures that means are non-decreasing; while an edge with
indicator function Ie(µt, µt+1) = Iµt=µt+1 would correspond to no change.

• A penalty βe ≥ 0 which is used to regularize the model (larger penalty values result
in more costly change-points and thus fewer change-points in the optimal model).

• A loss function γe for data point yt+1
2.

Transition kernel. Coming back to our HMM representation of change-point models, the
transition from state (s, µt) to (s′, µt+1) (up to proportionality) is

• k((s, µt), (s′, µt+1)) = exp(−βe)Ie(µt, µt+1), if there is an edge e = (t, s, s′) in the graph;

• k((s, µt), (s′, µt+1)) = 0 if there is no edge e = (t, s, s′) in the graph.

Some simple examples. In Figures 2 and 3 we provide the corresponding graphs for the
standard and isotonic models. Notice that the only difference is that the transitions between
nodes (t, 1) and (t + 1, 1) are restricted to non-decreasing means in the isotonic case.

1We call this parameter a mean for convenience but some models consider changes in variance or in other
natural parameters.

2The loss function can be edge-specific; see Figure 17 and the graph construction in Section 4.1.

6 gfpop: Univariate Graph-Constrained Change-Point Detection in R

(0, #) (n + 1, ∅)(t, 1) (t + 1, 1)
Iµt=µt+1

Iµt ̸=µt+1 , β

Figure 2: Graph of constraints for the standard multiple change-point model. We have
S = {1}, the loss function is always the ℓ2 (Gaussian loss). The penalty is omitted when
equal to zero.

(0, #) (n + 1, ∅)(t, 1) (t + 1, 1)
Iµt=µt+1

Iµt≤µt+1 , β

Figure 3: Graph of constraints for the isotonic change-point model. We have S = {1}, the
loss function is always the ℓ2. The penalty is omitted when equal to zero.

∅1

Iµt=µt+1

Iµt ̸=µt+1 , β

Figure 4: Collapsed graph of constraints for the standard multiple change-point model. We
have S = {1}. The loss function is always the ℓ2. The penalty is omitted when equal to zero.

∅1

Iµt=µt+1

Iµt≤µt+1 , β

t

µ

Figure 5: Left: Collapsed graph of constraints for the isotonic change-point model. We have
S = {1}, the loss function is always the ℓ2. The penalty is omitted when equal to zero. Right:
In red, a piecewise constant function validating the graph of constraints.

Journal of Statistical Software 7

2.2. Collapsed graph of constraints

In gfpop we only consider transitions that do not depend on time. We then collapse the
previous graph structure. To be specific, we have a single node for each s and a transition
from node s to s′ if there is a transition from (t, s) to (t + 1, s′) in the full graph structure. In
Figures 4 and 5 we provide the corresponding collapsed graphs for the standard and isotonic
models.

Path and constraints validation. In Section 3 we show how we can estimate the changes
by minimizing a penalized loss equal to the loss associated with the path of µt values plus
the sum of the penalties for the edges used. This can be viewed as a maximum a-posteriori
estimate based on the kernel associated with each edge and the likelihood associated with each
observation. To define this maximum properly we formalize the notion of a signal validating
our constraints through the concept of a valid path in the collapsed graph.
A path p of the collapsed graph Gn is a collection of n+2 nodes (v0, . . . , vn+1) with v0 = (0, #),
vn+1 = (n+1, ∅) and vt = (t, st) for t ∈ {1, . . . , n} and st ∈ {1, . . . , S}. In addition, the path is
made of n+1 edges named e0, . . . , en. Recall that each edge et is associated to a penalty βet , a
loss γet and a constraint Iet . A vector µ ∈ Rn validates the path p if for all t ∈ {1, . . . , n−1},
we have Iet(µt, µt+1) = 1 (true). We write p(µ) to say that the vector µ checks the path p.
The starting and arrival edges e0 and en are exceptions. The starting edge is associated with
a loss (γe0) for the first observation but is not associated with a penalty or a constraint and
the arrival edge is not associated with a loss, a penalty, or a constraint.

Definition. From now on when we use the word “graph” we mean the collapsed graph
of constraints. In this graph, the triplet notation (t, s, s′) for edges is replaced by (s, s′).
We remove the time dependency also for edges associated with starting and arrival nodes to
simplify notations (even if in that case, there is a time dependency).

2.3. A few examples

We present a few constrained models and their graphs. Some models have been already
proposed in the literature, but not necessarily using our HMM formalism.

• (Up-down) To model peaks Hocking et al. (2015) proposed an up-down constraint using
two states S = {Up, Dw}. Transitions from Dw to Up are forced to go up Iµt≤µt+1 .
Transitions from Up to Dw are forced to go down Iµt≥µt+1 . The graph of this model is
given in Figure 6.

• (Up-exponentially down) To model pulses Jewell et al. (2020) proposed a model where
the mean decreases exponentially between positive spikes. In that case a unique state
with two transitions is sufficient. The first transition corresponds to an up change
Iµt≤µt+1 and the second to an exponential decay Iαµt=µt+1 with 0 < α < 1. The graph
of this model is given in Figure 7.

• (Segment neighborhood) One often considers a known number of segments, say D
(Auger and Lawrence 1989). This is encoded by a graph with D states, S = {1, . . . , D}.
From any d ∈ S there are two transitions to consider. One from d to d with constraint
Iµt=µt+1 and one from d to d + 1 with constraint Iµt ̸=µt+1 . The graph of this model for
D = 3 is given in Figure 8.

8 gfpop: Univariate Graph-Constrained Change-Point Detection in R

#

∅

UpDw

Iµt=µt+1

Iµt≥µt+1 , β

Iµt=µt+1
Iµt≤µt+1 , β

t

µ

Figure 6: Top: Graph for the up-down change-point model proposed in Hocking et al. (2015).
We have S = {Up, Dw}, the loss function is always the ℓ2. The penalty is omitted when equal
to zero. Bottom: In red, a piecewise constant function validating the graph of constraints.
The penalty is omitted when equal to zero.

∅Dwα

Iαµt=µt+1

Iµt≤µt+1 , β

t

µ

Figure 7: Top: Graph for the up-exponential decrease change-point model proposed in Jewell
et al. (2020). We have S = {Dwα}, the loss function is always the ℓ2. The penalty is omitted
when equal to zero. Bottom: In red, a function validating the graph of constraints.

Journal of Statistical Software 9

∅1 2 3

Iµt=µt+1

Iµt ̸=µt+1

Iµt=µt+1

Iµt ̸=µt+1

Iµt=µt+1

Figure 8: Graph for the 3-segment change-point model. We have S = {1, 2, 3}, the loss
function is always the ℓ2. The penalty is always equal to zero.

∅SegWait

Iµt=µt+1

Iµt ̸=µt+1 , β

Iµt=µt+1

Figure 9: Graph for the at least 2 data points per segment change-point model. We have
S = {Wait, Seg}, the loss function is always the ℓ2. The penalty is omitted when equal to
zero.

• (At least 2 data points per segment) It is often desirable to impose a minimum segment
length. For at least 2 data points one should consider two states S = {Wait, Seg}.
There are 3 transitions to consider: one from Seg to Wait with the constraint Iµt ̸=µt+1 ,
one from Seg to Seg with Iµt=µt+1 and one from Wait to Seg with Iµt=µt+1 . The graph
of this model is given in Figure 9. This can be extended to p data points. The graph
for at least 3 data points per segment is given in Appendix A (Figure 18).
In Appendix A we provide a few more examples. In particular, we reformulate the
collective anomaly model of Fisch, Eckley, and Fearnhead (2022) as a constrained model.

3. Optimization problem solved by gfpop

3.1. Penalized maximum likelihood

We now present the constrained change-point optimization problem. The goal is to mini-
mize the negative log-likelihood over all model parameters that validate the constraints (see
Section 2.2):

Qn = min
p=(v,e) ∈ Gn

µ|p(µ)

{
n∑

t=1
(γet(yt, µt) + βet)

}
.

This is a discrete optimization problem. A naive exploration of the 2n−1 change-point po-
sitions is not feasible in practice. Due to the constraints, segments are dependent and Qn

cannot be written as a sum over all segments. Therefore the algorithms of Auger and Lawrence
(1989); Jackson et al. (2005) and Killick et al. (2012) are not applicable.

10 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Hocking et al. (2020) have shown that it is possible to optimize Qn using functional dynamic
programming techniques. The idea is to consider the quantity Qn as a function of the mean
and the state of the last data point:

Qs
n(θ) = min

p=(v,e) ∈ Gn
µ | p(µ)

µn=θ , vn=(n,s)

{
n∑

t=1
(γet(yt, µt) + βet)

}
, (1)

where we use the subscript n to denote the number of data points analyzed, s to denote the
state of the most recent transition, and θ the mean of the last data point.
By construction, each Qs

n is a piecewise function and can be defined as the pointwise minimum
of a finite number of functions, with the form of these functions depending on the loss used.
In the package three analytical decompositions for the pieces of Qs

n are implemented:

L2 decomposition. f1 : θ 7→ 1, f2 : θ 7→ θ and f3 : θ 7→ θ2. This decomposition allows one
to consider Gaussian (least-squares), biweight and Huber loss functions;

Lin-log decomposition. f1 : θ 7→ 1, f2 : θ 7→ θ and f3 : θ 7→ log(θ). This decomposition
allows one to consider loss functions for Poisson and exponential models. It is also
possible to consider a change in the variance of a Gaussian distribution of mean 03;

Log-log decomposition. f1 : θ 7→ 1, f2 : θ 7→ log(θ) and f3 : θ 7→ log(1 − θ). This decom-
position allows one to consider loss functions for the binomial and negative binomial
likelihoods.

As in the Viterbi algorithm for finite state space HMMs, it is possible to define an update
formula linking the set of functions {θ 7→ Qs

n−1(θ) , s ∈ S} to θ 7→ Qs′
n (θ) for all states s′.

Computationally, the update is applied per interval using some edge-dependent operators
described in Section 3.2 (Rigaill 2015; Maidstone et al. 2017; Hocking et al. 2020).

3.2. Operators and update-rule for gfpop

Let us consider a transition from s to s′ at step n. Its edge is (s, s′) and its associated
constraint is I(s,s′). The gfpop algorithm involves calculating the best (θ, s) to reach state
(θ′, s′), i.e., minimizing the functional cost while satisfying the constraint I(s,s′). Formally
this is defined as an operator:

Os,s′
n (θ′) = min

θ|I(s,s′)(θ,θ′)
{Qs

n(θ)} .

Operator calculation. For a general constraint I and a general function Qs
n it is not

easy to compute Os,s′
n . Recall that Qs

n(θ) are piecewise analytical, i.e., they can be exactly
represented by a finite set of real-valued coefficients. For algorithmic simplicity Hocking et al.
(2020) requires that Os,s′

n (θ) has the same analytical decomposition per interval (L2, lin-log
or log-log).
In practice here are the constraints we can accommodate.

3To be clear, in that case the log-likelihood is 1
2 log(1

σ2) − yt
2σ2 and we get the lin-log decomposition by

taking θ = 1
σ2 .

Journal of Statistical Software 11

L2 decomposition: any linear constraint, e.g., aµt + bµt+1 + c ≤ 0 or aµt + bµt+1 + c = 0;

Lin-log decomposition: any proportional constraint, e.g., aµt ≤ µt+1 or aµt = µt+1;

Log-log decomposition: only the two inequalities µt ≤ µt+1 or µt ≥ µt+1.

Note that constraints can be combined by considering more than one edge from one state to
another. In particular, for L2 decomposition the constraint |µt+1−µt| ≥ c can be implemented
using µt + c ≤ µt+1 or µt ≥ µt+1 + c. This constraint encodes the idea of detecting sufficiently
large changes (also called relevant changes) described in Dette and Wied (2016).
Computationally, it is possible to compute Os,s′

n (θ) by scanning from left to right or from right
to left all intervals which correspond to a different functional form of Qs

n(θ) (see examples in
Hocking et al. 2020).

Update-rule. Given this operator function we can now define the update-rule used by the
gfpop algorithm.

Qs′
n+1(θ) = min

s|∃ edge (s,s′)

{
Os,s′

n (θ) + γ(s,s′)(yn+1, θ) + β(s,s′)
}

. (2)

For simplicity, we do not describe the update for initial and final steps. The proof of this
update-rule is very similar to the proof of the Viterbi algorithm and is given in Appendix B.
It follows the strategy of Hocking et al. (2020). Notice also that recovering the optimal set
of change-points from all Qs

1, . . . , Qs
n by backtracking is not straightforward because of the

need to validate the constraints between consecutive segments. We provide some details in
Appendix C.

An example with fpop. With the standard multiple change-point model (see Section 1.2
and Figure 4) we have only one vertex (1) and two edges denoted here 0 (no change) and 1
(a change) replacing the notation (s, s′). We get with Equation 2:

Q1
n+1(θ) = min

{
O0

n(θ) + γ0(yn+1, θ) + β0, O1
n(θ) + γ1(yn+1, θ) + β1

}
.

Only edge 1 is penalized, so that β0 = 0 and β1 = β > 0. As we have no robust loss or
parameter constraint on the cost function: γ0(·, ·) = γ1(·, ·) = γ(·, ·). For edge 0, O0

n(θ′) =
min

θ|θ=θ′
{Q1

n(θ)} = Q1
n(θ′) and for edge 1, O1

n(θ′) = min
θ|θ ̸=θ′

{Q1
n(θ)} = min

θ
{Q1

n(θ)}. Removing the
state index, we eventually obtain the well-known FPOP update-rule:

Qn+1(θ) = min
{

Qn(θ), min
θ
{Qn(θ)}+ β

}
+ γ(yn+1, θ) .

If we assume a Gaussian loss for change in mean, we have γ(yn+1, θ) = (yn+1− θ)2, quadratic
in θ. The update consists in reconstructing the optimal cost by finding for all θ the minimum
between Qn(θ) and the min

θ
{Qn(θ)} constant line leading to a function Qn+1(·) piecewise

quadratic in θ. Ways to deal efficiently with this update-rule have been presented in Maidstone
et al. (2017). For implementing the constraints included in the package, see Hocking et al.
(2020) and Hocking et al. (2022); for other loss functions see also Fearnhead and Rigaill (2019)
and Jewell et al. (2020).

12 gfpop: Univariate Graph-Constrained Change-Point Detection in R

3.3. How to choose the loss function and penalty

The choice of the loss function γ is linked to the choice of the noise model. This choice is
not necessarily easy. For example for continuous data it might make sense to consider the
least-squares error (Picard, Robin, Lavielle, Vaisse, and Daudin 2005); in the presence of
outliers considering a robust loss is natural (Fearnhead and Rigaill 2019); and for count data
a Poisson loss is often used (Hocking et al. 2020). It is our experience that visualizing the
data beforehand is a good way to avoid simple modeling mistakes.
The choice of the penalty β is critical to select the number of change-points. In the absence
of constraints several penalties have been proposed. For detecting a change in mean with
independent Gaussian data, a penalty of β = 2σ2 log(n) was proposed by Yao and Au (1989).
It tends to work well when the number of changes is small. More complex penalties exist,
e.g., Zhang and Siegmund (2007); Lebarbier (2005); Baraud, Giraud, and Huet (2009). For
penalties that are concave in the number of segments one can run the operators and update-
rule for the gfpop() algorithm for various values of β and recover several segmentations (with
a varying number of change-points; Killick et al. 2012). This can be done efficiently using the
CROPS (changepoints for a range of penalties) algorithm (Haynes, Eckley, and Fearnhead
2017). In labeled data sets, supervised learning algorithms can be used to infer an accurate
model for predicting penalty values β (Rigaill, Hocking, Vert, and Bach 2013; Hocking et al.
2015, 2020).
For models with constraints, to the best of our knowledge there is very little statistical liter-
ature available. The paper of Gao et al. (2020) describes a penalty in the isotonic case but
it was not calibrated. It is our experience that the penalties proposed for the unconstrained
case tend to work reasonably well, although they are probably sub-optimal from a statistical
perspective.

4. The gfpop package

4.1. Graph construction

Our gfpop package deals with collapsed graphs for which all the cost functions γ have the
same decomposition (L2, lin-log or log-log). All other characteristics are local and fixed per
edge. The graph Gn (see Section 2.2) is defined in the gfpop package by a collection of edges.

Edge parameters. An edge is a list of four main elements:

• state1: the starting node defined by a string;

• state2: the arrival node defined by a string;

• type: a string equal to "null", "std", "up", "down" or "abs" defining the type of
constraints between successive nodes respectively corresponding to indicators Iµt=µt+1 ,
Iµt ̸=µt+1 , Iµt+c≤µt+1 , Iµt≥µt+1+c and I|µt+1−µt|≥c;

• penalty: the penalty βe associated to this edge (it can be zero);

and some optional elements:

Journal of Statistical Software 13

• decay: a number between 0 and 1 for the mean exponential decay (in case type is
"null") corresponding to the constraint Iµt+1=αµt ;

• gap: the gap c between successive means of the "up", "down" and "abs" types;

• K: the threshold for the biweight and Huber losses (K > 0);

• a: the slope for the Huber robust loss (a ≥ 0).

An example of an edge. We can define an edge e1 with the function Edge as:

R> e1 <- Edge(state1 = "Dw", state2 = "Up", type = "up", penalty = 10,
+ gap = 0.5)

which is an edge from node Dw to node Up with an up constraint, penalty β = 10 and a
minimal jump size of 0.5.

An example of a graph. We provide an example of a graph for collective anomalies
detection with the gfpop package given in Figure 17 (see Fisch et al. 2022):

R> graph(Edge(state1 = "mu0", state2 = "mu0", penalty = 0, K = 3),
+ Edge(state1 = "mu0", state2 = "Coll", penalty = 10, type = "std"),
+ Edge(state1 = "Coll", state2 = "Coll", penalty = 0),
+ Edge(state1 = "Coll", state2 = "mu0", penalty = 0, type = "std", K = 3),
+ StartEnd(start = "mu0", end = c("mu0", "Coll")),
+ Node(state = "mu0", min = 0, max = 0))

state1 state2 type parameter penalty K a min max
1 mu0 mu0 null 1 0 3 0 NA NA
2 mu0 Coll std 0 10 Inf 0 NA NA
3 Coll Coll null 1 0 Inf 0 NA NA
4 Coll mu0 std 0 0 3 0 NA NA
5 mu0 <NA> start NA NA NA NA NA NA
6 mu0 <NA> end NA NA NA NA NA NA
7 Coll <NA> end NA NA NA NA NA NA
8 mu0 mu0 node NA NA NA NA 0 0

Notice that the graph is encoded into a data-frame.

Note 1. Most graphs (such as the previous one) contain recursive edges, that is edges with
the same starting and arrival node. The absence of this edge forces a change and is useful to
enforce a minimal segment length (see Figures 9 and 18).

14 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Note 2. In the gfpop graph definition, abusing our mathematical notations, we call a start-
ing (resp. arrival) state, a state directly connected to the starting node v0 = (0, #) (resp.
arrival node vn+1 = (n+1, ∅)). In other words, the first (resp. last) point can only be in state
s if this state is a "starting" (resp. "arrival") state for gfpop. These specific states are defined
using function StartEnd. If not specified, all nodes are starting and arrival nodes. The range
of values for parameter inference at each node can be constrained using function Node.
In this example we have two states, mu0 and coll. Both states can be arrival states, but we
have fixed the starting node to be mu0. This node mu0 is restricted by min = 0 and max =
0 using the Node function, such that only the zero value can be inferred for any segment in
that state.

Some default graphs. We included in function graph() the possibility to directly build
some standard graphs. Here is an example for the isotonic case corresponding to Figure 5:

R> graph(type = "isotonic", penalty = 12)

state1 state2 type parameter penalty K a min max
1 Iso Iso null 1 0 Inf 0 NA NA
2 Iso Iso up 0 12 Inf 0 NA NA

Three other standard graph types are: "std", "updown" and "relevant" corresponding to
Figures 4, 6 and 19. All graphs presented in this paper are available in our package through
the function paperGraph(), where its first parameter is the figure number.

4.2. The gfpop() function

The gfpop() function takes as an input the data and the graph and runs the algorithm. It
returns a set of change-points and the non-penalized cost (that is the value of the fit to the
data ignoring the penalties for adding changes). It also returns the mean value and the state
of each segment. The boolean forced value indicates whether a linear inequality constraint
is active, which means that the µt and µt+1 values lie on the frontier defined by the inequality
constraint. Below we illustrate the use of the gfpop() function for various graphs and loss
functions.
We first simulate data. To do this we use the dataGenerator() function provided by the
gfpop package. The function generates n data points using a distribution of type "mean" (by
default), "poisson", "exp", "variance" or "negbin" following a change-point model given
by relative change-point positions (a vector of increasing values in (0, 1]). Standard deviation
parameter sigma and decay gamma are specific to the Gaussian mean model, whereas size is
linked to function rnbinom from the base R package stats.

Gaussian model with an up-down graph. Here is an example with a Gaussian cost and
a standard penalty of 2 log(n) for the up-down graph. We simulate data from a change in
mean model with Gaussian observations.

R> set.seed(75)
R> n <- 1000

Journal of Statistical Software 15

R> myData <- dataGenerator(n, c(0.1, 0.3, 0.5, 0.8, 1),
+ c(1, 2, 1, 3, 1), sigma = 1)

This data has 5 segments, with the end of segments at relative positions 0.1, 0.3, 0.5, 0.8 and
1 along the n = 1000 data points; and with segment means being respectively 1, 2, 1, 3 and 1.
The call to the gfpop() function requires specifying the data, the graph that encapsulates
the changepoint model, and the type of loss function. Here type = "mean" specifies the use
of the L2 or biweight loss.

R> myGraph <- graph(penalty = 2 * log(n), type = "updown")
R> gfpop(data = myData, mygraph = myGraph, type = "mean")

$changepoints
[1] 108 295 500 800 1000
$states
[1] "Dw" "Up" "Dw" "Up" "Dw"
$forced
[1] FALSE FALSE FALSE FALSE
$parameters
[1] 1.044920 2.047202 1.017550 2.916826 1.030938
$globalCost
[1] 963.0278

The response contains four vectors. A vector changepoints contains the last index of each
segment, a vector states gives the nodes in which lie the successive parameter values of the
parameters vector. The vector forced is a vector of booleans of size “number of segments
− 1” with entry TRUE when the transition between two states (nodes) has been forced. The
globalCost is the non-penalized cost.

Gaussian robust biweight model with an up-down graph. Below we illustrate the
use of the biweight loss on data where 10% of the data points are outliers. We shift these
data by ±5 using function rbinom (4th line of code below). We use the biweight loss with
K = 3 and an up-down graph with a difference of at least 1 between consecutive means.

R> n <- 1000
R> chgtpt <- c(0.1, 0.3, 0.5, 0.8, 1)
R> myData <- dataGenerator(n, chgtpt, c(0, 1, 0, 1, 0), sigma = 1)
R> myData <- myData + 5 * rbinom(n, 1, 0.05) - 5 * rbinom(n, 1, 0.05)
R> beta <- 2 * log(n)
R> myGraph <- graph(
+ Edge("Dw", "Up", type = "up", penalty = beta, gap = 1, K = 3),
+ Edge("Up", "Dw", type = "down", penalty = beta, gap = 1, K = 3),
+ Edge("Dw", "Dw", type = "null", K = 3),
+ Edge("Up", "Up", type = "null", K = 3),
+ StartEnd(start = "Dw", end = "Dw"))
R> gfpop(data = myData, mygraph = myGraph, type = "mean")

16 gfpop: Univariate Graph-Constrained Change-Point Detection in R

$changepoints
[1] 102 311 500 806 1000
$states
[1] "Dw" "Up" "Dw" "Up" "Dw"
$forced
[1] TRUE FALSE FALSE FALSE
$parameters
[1] -0.02296768 0.97703232 -0.03434534 1.00246359 -0.03334062
$globalCost
[1] 1097.364

The difference between this graph and the one for the previous example is the specification K
= 3 for each edge. This enforces the use of the biweight loss (with K = 3) as opposed to the
L2 loss.

Poisson model with isotonic up graph. We provide an example with a lin-log cost
decomposition with Poisson data constrained to up changes, with the mean at least doubling
at each change.

R> n <- 1000
R> chgtpt <- c(0.1, 0.3, 0.5, 0.8, 1)
R> myData <- dataGenerator(n, chgtpt, c(1, 3, 5, 7, 12), type = "poisson")
R> beta <- 2 * log(n)
R> myGraph <- graph(type = "isotonic", gap = 2)
R> gfpop(data = myData, mygraph = myGraph, type = "poisson")

$changepoints
[1] 2 99 297 796 1000
$states
[1] "Iso" "Iso" "Iso" "Iso" "Iso"
$forced
[1] TRUE FALSE TRUE TRUE
$parameters
[1] 0.4693878 0.9387755 2.9840954 5.9681909 11.9363817
$globalCost
[1] -5832.845

The use of the Poisson loss is enforced by type = "poisson" in the call to gfpop(). The
graph that describes our change-point model is the default one for isotonic changes, but with
the additional constraint on means at least doubling being specified by gap = 2.

Negative binomial model with 3-segment graph. The parameters to find are proba-
bilities and we restrict the inference to 3 segments. The optional parameter all.null.edges
in the graph() function automatically generates for all nodes a "null" type edge that is an
edge with constraint Iµt=µt+1 and with a penalty equal to 0 (see also bottom of page 12).

Journal of Statistical Software 17

R> myGraph <- graph(Edge("1", "2", type = "std", penalty = 0),
+ Edge("2", "3", type = "std", penalty = 0),
+ StartEnd(start = "1", end = "3"), all.null.edges = TRUE)
R> myData <- dataGenerator(n = 1000, changepoints = c(0.3, 0.7, 1),
+ parameters = c(0.2, 0.25, 0.3), type = "negbin")
R> gfpop(myData, myGraph, type = "negbin")

$changepoints
[1] 300 714 1000
$states
[1] "1" "2" "3"
$forced
[1] FALSE FALSE
$parameters
[1] 0.2117808 0.2652162 0.3212748
$globalCost
[1] 2193.216

Each data point can be weighted using argument weights in the gfpop() function. It can be
useful to gather consecutive identical values for count data time series in order to speed-up
the change-point analysis (Cleynen et al. 2014).

4.3. Some additional useful functions in gfpop

Standard deviation estimation. For many examples using real data sets, we are obliged
to estimate the standard deviation from the observed data. This value is then used to nor-
malize the data or to be included in edge penalties. The function sdDiff() returns such
an estimation with a difference-based estimator of the variance (Hall, Kay, and Titterington
1990) (denoted HALL) well suited for time series with change-points.

A plotting function. We defined a plotting function plot(), which shows data points and
the results of the gfpop() function by using inferred segment parameters and change-points.
The user can plot the result in two graphs or only one for "mean" and "poisson" types
(see parameter multiple) and has to explicitly use the data argument as in the following
examples.
Example 1:

R> set.seed(86)
R> myData <- dataGenerator(1000, c(0.3, 0.4, 0.7, 0.95, 1),
+ c(1, 3, 1, -1, 4), "mean", sigma = 3)
R> s <- sdDiff(myData)
R> g <- gfpop(myData,
+ graph(type = "relevant", gap = 0.5, penalty = 2 * s ^ 2 * log(1000)),
+ type = "mean")
R> plot(x = g, data = myData, multiple = FALSE)

18 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Figure 10: The red piecewise constant signal is the µ vector found by the gfpop() function,
the blue vertical lines indicate the change-point positions. They are built using response
vectors changepoints and parameters. The left graph presents the result of Example 1, the
right graphs of Example 2.

Example 2:

R> set.seed(86)
R> myData <- dataGenerator(1000, c(0.4, 0.8, 1), c(1, 1.3, 2.3), "exp")
R> s <- sdDiff(myData)
R> g <- gfpop(myData, type = "exp",
+ graph(type = "isotonic", penalty = 2 * s ^ 2 * log(1000)))
R> plot(x = g, data = myData, multiple = TRUE)

5. Modeling real data with graph-constrained models
In this section we illustrate the use of our package on several real data sets. For each ap-
plication we illustrate several possible sets of constraints and briefly discuss their relative
advantages.

5.1. Gaussian model for DNA copy number data

We consider DNA copy number data, which are biological measurements that characterize
the number of chromosomes in cell samples. Abrupt changes along chromosomes in these
data are important indicators of severity in cancers such as neuroblastoma (Schleiermacher
et al. 2010). The non-constrained Gaussian segmentation model has been shown to have
state-of-the-art change-point detection accuracy in these data (Hocking et al. 2013).
However, in some high-density copy number data sets, this model incorrectly detects small
changes in mean which are not relevant (Hocking and Rigaill 2012). One such data set is shown
in Figure 11, which also has positive and negative labels from an expert genomic scientist
that indicated regions with (1breakpoint) or without (0breakpoints) relevant change-points.

Journal of Statistical Software 19

∅1

Iµt=µt+1

I|µt−µt+1|≥c, β

Figure 11: Top graph: Relevant change-point model; all changes are forced to be greater
than a in absolute value. Below: Four subsets/windows of a DNA copy number profile (panels
from left to right) and four change-point models (panels from top to bottom); rectangles show
expert-provided labels which are assumed to be a gold standard. Top panel with blue model:
abs model with 13 segments enforces the constraint that the absolute value of each change
must be at least 1, |µt+1 − µt| ≥ 1, which achieves zero label errors in these data. Bottom
panels with green models: each model with no constraints between adjacent segment means
has label errors (4 false positives for 3 segments, 2 false positives and 1 false negative for 7
segments, 1 false positive for 13 segments).

We used these labels to quantify the accuracy of three unconstrained Gaussian change-point
models with several different penalties β.

• The model with 13 segments predicts a change-point in each positive label (0/6 false
negatives), but predicts one change-point in the negative label (1 false positive), for a
total of 1 incorrectly predicted label (bottom panel).

• The model with 7 segments predicts a change-point in four positive labels (2/6 false
negatives), and also predicts the false positive change-point in the negative label, for a
total of 3 incorrectly predicted labels (second panel from bottom).

• The model with 3 segments predicts a change-point in only two positive labels (4/6 false
negatives), and predicts no change-point in the negative label (0/1 false positive), for a
total of 4 incorrectly predicted labels (second panel from top).

20 gfpop: Univariate Graph-Constrained Change-Point Detection in R

∅

Up

Dw

I µ
t

≥
µ

t+
1

Iµt ≤ µt+1

Iµt ≥ µt+1

I
µ

t ≤
µ

t+
1 ,

β

Figure 12: Left: Graph for multi-modal regression. Right top: In these data the previously
proposed AR1 model misses a spike in the left label (false negative) and predicts two spikes
where there should be only one in the right label (false positive). Right bottom: The proposed
multi-modal regression model correctly detects one spike in all the labeled regions.

We computed all non-constrained Gaussian models from 1 to 20 segments for these data,
and none of them were able to provide change-point predictions that perfectly match the
expert-provided labels (each model had at least one false positive or false negative). It is thus
problematic to use the unconstrained change-point model in this context, because none of the
unconstrained models achieves zero label errors.
To solve this problem we propose a graph (Figure 11, top graph) which enforces only “relevant”
change-points |µt+1 − µt| ≥ c, for some relevant threshold c > 0. For the DNA copy number
data set, we set c = 1 and choose β such that the algorithm returns 13 segments (Figure 11,
top panel with blue model). The proposed model predicts a change-point in each of the
positive labels, but does not predict a change-point in the negative label. The proposed graph-
constrained change-point model is therefore able to predict change-points that perfectly match
the expert-provided labels. If overfitting is a concern with this procedure, we can consider
using the two labels in the last region as a test set (105.9–106.5 mega bases), and the other
labels as a train set. In that case we chose the penalty with minimal errors with respect to
the train set labels, and we observed that the test set label error was also minimized.

5.2. Gaussian multi-modal regression for neuro spike train data

The so-called AR1 (autoregressive of order 1) change-point model, where the mean decreases
exponentially within each segment has been proposed for detecting spikes in calcium imaging
data from neuroscience (Jewell et al. 2020). We fit this model to one calcium imaging data set
(Figure 12, right top) and observed that it is difficult to find a parameter that detects both
labeled spikes. Red rectangles in Figure 12 indicate labels provided by an electrophysiolog-
ical method which is taken as ground-truth in order to emphasize the qualitative difference
between the two algorithms. Part of the difficulty of the AR1 model is the fact that there are
two parameters to tune, the penalty β and also the exponential decay parameter γ. It is more
difficult to tune two parameters using grid search because of its quadratic time complexity.

Journal of Statistical Software 21

Another issue is that a visual inspection of the data suggests that the rate of decay of the
mean between spikes may not be constant as assumed by the AR1 model.
We therefore propose a new multi-modal regression model (isotonic up-isotonic down graph
shown in Figure 12, left) with only one parameter, the penalty β. We can view this model
as detecting modes in the data. Each mode consists of a period before-hand where the
mean increases followed by a period where then mean decreases. The period where the mean
increases can be interpreted as a period of time where a spike occurs, with the periods where
the mean decreases modeling the decay in the data after the spike end. The number of
detected spikes is equal to the number of regions where the mean increases, and is controlled
by the penalty β. We observed that it is easy to find a penalty β which detects both labeled
spikes. Overall these results indicate that the proposed multi-modal regression model (isotonic
up-isotonic down) is promising for spike detection in calcium imaging data. We leave a more
extensive quantitative comparison to future work.

5.3. Gaussian nine-state model for electrocardiogram data

In the context of monitoring hospital patients with heart problems, electrocardiogram (ECG)
analysis is one of the most common non-invasive techniques for diagnosing several heart
arrhythmia (Afghah, Razi, and Najarian 2015).
A preliminary and fundamental step in ECG analysis is the detection of the QRS complex (the
combination of the waves Q, R and S seen on a typical ECG, see https://en.wikipedia.
org/wiki/QRS_complex) that leads to detecting the heartbeat and classifying the rhythms
(Mousavi and Afghah 2019).
Here, we utilize the proposed change-point detection method to locate the QRS complex in
ECG waveforms. The ECG signals used in this study are extracted from the publicly avail-
able Physionet Challenge 2015 database (PhysioNet 2015; Clifford et al. 2016) that includes
measurements for three physiological signals (including ECG) for 750 patients. The resolution
and frequency of each signal are 12bit and 250Hz, respectively. Also, each signal has been
filtered by a finite impulse response (FIR) notch filter with band pass 0.05 to 40Hz.

Figure 13: In these electrocardiogram data, it is important for models (blue) to accurately
detect the QRS complex (Q is before the peak, R is the peak marked in red, S is the local
minimum after the peak, other states o1–o6). Top: Previous model of Pan and Tompkins
(1985) mistakenly predicts S at the peak. Bottom: Proposed constrained change-point model
accurately predicts R at each peak.

https://en.wikipedia.org/wiki/QRS_complex
https://en.wikipedia.org/wiki/QRS_complex

22 gfpop: Univariate Graph-Constrained Change-Point Detection in R

O1

Q

R

S

O2

O3

O4

O5

O6

β

∆
µ

t
≤

0

∆
µ t
≥

2

∆
µ

t ≤
5

∆
µ t
≥

2
∆µ t
≥ 1

∆
µ

t
≥

0

∆
µ

t
≤

0

∆
µ

t
≤

0

∆µt ≥ 0

Figure 14: Graph structure of proposed nine-state constrained change-point model. The
graph is cyclic: the last node O1 is the first node O1. Only one transition (from O1 to Q) to
enter the QRS complex is penalized by a positive penalty β = 8× 103. We used the notation
∆µt = µt+1 − µt. Transitions from state Q to state O3 are constrained with a minimal gap
size of 2, 5, 2 and 1. Due to lack of space, we removed the indicator function I on this graph.
Dashed arrows correspond to Iµt=µt+1 transitions. The vertical position of the states gives
information on the direction of the constrained changes.

The Pan-Tompkins algorithm is one of the most common segmentation methods used for
ECG analysis (Pan and Tompkins 1985; Agostinelli et al. 2017). This method uses a patient-
specific threshold-based approach for real-time detection of the QRS complex in ECG signals,
which represents the ventricular depolarization. In this algorithm, after a pre-processing step
by a band-pass filter, the signal is passed through differentiation and squaring blocks to
determine and amplify the slope of QRS, followed by a moving window integration step with
an adaptive set of thresholds to determine the peaks. The detection thresholds are learned
at the beginning of the algorithm and are calibrated periodically to follow the variations of
the ECG signal.

Figure 13 (top) shows four seconds of ECG data for which we predicted the QRS complex
using the well-known Pan-Tompkins method. The peak of each heartbeat should be predicted
as R, but the algorithm incorrectly predicts S in two cases. In contrast the peak is correctly
classified as R (bottom) using our proposed model with nine states (see Figure 14), which were
determined using prior knowledge about the expected sequence of changes. In this model,
the QRS complex is modeled by an up-spike followed by a down-spike with the maximum
amplitude difference related to adjacent spikes. The graph model considers a vertex for each
main waveform (i.e., P , Q, R, S, T) as well as three baselines, which are intermediate states
(Fotoohinasab, Hocking, and Afghah 2021).

Journal of Statistical Software 23

6. Isotonic regression with a constraint graph and robust loss
Our package can be used with robust loss functions which have been shown to be useful in the
presence of outliers (Fearnhead and Rigaill 2019) and in particular in the context of isotonic
regression (Bach 2018). Here we illustrate this on simulations inspired by those of (Bach
2018, see Figure 15 with corrupted data). We compare our package using the isotonic model
described in Figure 5 with several implementations of the Pool Adjacent Violators Algorithm
(PAVA) (Best and Chakravarti 1990; De Leeuw et al. 2010).
Relative to the very fast O(n) PAVA algorithm, our dynamic programming algorithm is slower.
However, PAVA only works for the squared loss and the non-penalized model (maximum
number of changes). In contrast, gfpop() can handle non-convex losses (such as the biweight
loss) and can include a positive penalty in order to reduce the number of changes.

6.1. Parametrization

gfpop. In all simulations we use gfpop with the graph of Figure 5 and a quadratic (L2) or a
biweight loss (bw). We consider two different values for the penalty β: 0 and 2σ2 log(n), with
σ2 the true variance. Thus, we have 4 different algorithms of the gfpop() function: gfpop1
(β = 0, K = 0), gfpop2 (β = 2σ2 log(n), K = 0), gfpop3 (β = 0, K = 3σ2) and gfpop4
(β = 2σ2 log(n), K = 3σ2).

Figure 15: For the two types of signal, we show simulated data with n = 104 data points
and σ = 10 for the three different noises (Gauss, Student, corrupted). Note that, in order to
display the same slope on all of the 6 panels, about 0.15% of the data-points are out of the
plot for the student case.

24 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Competitors. We compare the output of gfpop with those of 2 isotonic regression package
functions:

• isoreg() function of the stats package which is based on the very fast Pool adjacent
violators algorithm for the ℓ2 loss (Best and Chakravarti 1990);

• reg 1d() function developed in package UniIsoRegression which solves the isotonic
regression problem for the ℓ2 and ℓ1 losses (Stout 2008).

We also include a simple linear regression approach (lm() function of the stats package) as
a reference. In total we have 4 competitors (lm(), isoreg(), reg 1d() with the ℓ2 and ℓ1
losses).

6.2. Simulated data
We focus on two types of increasing signals:

linear: as in Bach (2018) we consider linearly increasing time series with a signal

si = α(i− n

2) i = 1, . . . , n ;

step-wise: as our package is devoted to change-point inference we also consider a step-wise
increasing series (with 10 steps) with a signal

si = ⌊10(i− 1)
n

⌋ − n

2 , i = 1, . . . , n .

We consider three ways to corrupt the data.

Gaussian noise: here we simply add a Gaussian noise, with a variance σ2 to the signal (i.e.,
Yi = si + εi).

Student noise: we also consider a Student noise with degrees of freedom equal to 3.

Corrupted noise: in the most difficult scenario, suggested by Bach (2018), we randomly
select a proportion p of data points and multiply them by −1 and then add a Gaussian
noise, i.e., Yi = Xisi + εi, where Xi ∼ B(p) is a Bernoulli trial with probability p to get
−1 and probability 1− p to get 1. We fix p = 0.3 for all simulations.

In total we have 6 scenarios (2 signals and 3 ways to corrupt the data). In Figure 15 we
illustrate those 6 scenarios with n = 104 and σ = 10.

Criteria. To assess the quality of the results, we compute the mean-squared error (MSE)
as well as the ability to recover the true number of changes when there are changes in the
data in the step-wise scenario.

6.3. A simple illustration
We illustrate our results on a step-wise increasing signal with corrupted data. In Figure 16,
we represent the data and the results of various approaches. We see that using a biweight
loss our package in blue is closer to the true signal in black than other approaches.

Journal of Statistical Software 25

Figure 16: Isotonic regression with 30% of corrupted data in the step-wise scenario with 10
steps. We have 104 data points and σ = 10. gfpop4() is close to the signal and with a
number of segments equal to 10.

In the appendix, we consider Monte-Carlo simulations to confirm this result: see Appendix D.1
for the linear increasing scenario and Appendix D.2 for the step-wise increasing scenario. As
expected, recovering the true number of changes with corrupted data with also a small MSE
is a challenging task for all methods excepted for gfpop4() using a robust loss, a positive
penalty and the isotonic constraint graph. The R code of these simulations can be found on
the Github page at https://github.com/vrunge/gfpop/tree/master/simulations.

7. Conclusion

In this paper we described the gfpop package, which provides a generalized version of an algo-
rithm recently proposed by Hocking et al. (2020) for penalized maximum likelihood inference
of constrained multiple change-point models. The gfpop package implements the algorithm
in a generic manner in R/C++ and allows the user to specify the constraint graph in R code.
We explained how these constrained multiple change-point models can also be seen as con-
strained continuous state space HMMs. gfpop allows one to encode modeling assumptions on
the type of changes using a graph of states and constraints. We illustrated the use of gfpop
on isotonic simulations and several applications in biology.
For a number of graphs the algorithm runs in a matter of seconds or minutes for 105 data
points. While gfpop can be used to fit simple change-point models, such as the standard
change in mean in Gaussian data, it is slower than fpop which implements functional pro-
gramming specifically for that model: For example, for 105 points with no change fpop runs
in 0.040 seconds and gfpop in 0.49 seconds. This is because the gfpop package is coded in
a more generic manner, as it handles constraints and various losses. As we illustrated with
numerous examples, the advantage of gfpop is that it allows one to include constraints and/or
unconventional losses, and thus fit a range of change-point models that cannot be fit by other
generic software.

https://github.com/vrunge/gfpop/tree/master/simulations

26 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Future work. For future work we are interested to explore generalizations which allow time-
dependent constraints. As mentioned in Section 2.2 our implementation only allows inference
in models that can be represented by a collapsed graph with transitions that are valid for all
time points. We are interested in exploring new frameworks for defining which transitions
and/or states are feasible at which time points, in order to efficiently support inference in
models such as labeled optimal partitioning (Hocking and Srivastava 2023). There are a
number of other extensions of gfpop that are possible, including allowing local fluctuations
in the parameter between change-points and modeling autocorrelated noise – these can be
both incorporated using ideas from Romano, Rigaill, Runge, and Fearnhead (2022). Another
extension would be to consider the detection of change-points in trees as proposed in Chapter 3
of the Ph.D. thesis of Thépaut (2019). Furthermore, the underlying gfpop algorithm is
sequential and thus can be adapted to allow for online change-point detection.

References

Afghah F, Razi A, Najarian K (2015). “A Shapley Value Solution to Game Theoretic-Based
Feature Reduction in False Alarm Detection.” Neural Information Processing Systems
(NIPS), Workshop on Machine Learning in Healthcare. doi:10.48550/arXiv.1512.01680.

Agostinelli A, Marcantoni I, Moretti E, Sbrollini A, Fioretti S, Di Nardo F, Burattini L (2017).
“Noninvasive Fetal Electrocardiography Part I: Pan-Tompkins’ Algorithm Adaptation to
Fetal R-Peak Identification.” The Open Biomedical Engineering Journal, 11, 17–24. doi:
10.2174/1874120701711010017.

Anastasiou A, Chen Y, Cho H, Fryzlewicz P (2021). breakfast: Methods for Fast Multi-
ple Change-Point Detection and Estimation. R package version 2.2, URL https://CRAN.
R-project.org/package=breakfast.

Auger IE, Lawrence CE (1989). “Algorithms for the Optimal Identification of Segment Neigh-
borhoods.” Bulletin of Mathematical Biology, 51(1), 39–54. doi:10.1007/BF02458835.

Bach F (2018). “Efficient Algorithms for Non-Convex Isotonic Regression through Submodu-
lar Optimization.” In NIPS’18: Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 1–10.

Baranowski R, Chen Y, Fryzlewicz P (2019). “Narrowest-Over-Threshold Detection of Mul-
tiple Change Points and Change-Point-Like Features.” Journal of the Royal Statistical
Society B, 81(3), 649–672. doi:10.1111/rssb.12322.

Baranowski R, Fryzlewicz P (2019). wbs: Wild Binary Segmentation for Multiple Change-
Point Detection. R package version 1.4, URL https://CRAN.R-project.org/package=
wbs.

Baraud Y, Giraud C, Huet S (2009). “Gaussian Model Selection with an Unknown Variance.”
The Annals of Statistics, 37(2), 630–672. doi:10.1214/07-aos573.

Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972). “Statistical Inference under
Order Restrictions: The Theory and Application of Isotonic Regression.” Technical report,
Defense Technology Information Centre. Report AD0751311.

https://doi.org/10.48550/arXiv.1512.01680
https://doi.org/10.2174/1874120701711010017
https://doi.org/10.2174/1874120701711010017
https://CRAN.R-project.org/package=breakfast
https://CRAN.R-project.org/package=breakfast
https://doi.org/10.1007/BF02458835
https://doi.org/10.1111/rssb.12322
https://CRAN.R-project.org/package=wbs
https://CRAN.R-project.org/package=wbs
https://doi.org/10.1214/07-aos573

Journal of Statistical Software 27

Best MJ, Chakravarti N (1990). “Active Set Algorithms for Isotonic Regression: A Unifying
Framework.” Mathematical Programming, 47(1–3), 425–439. doi:10.1007/bf01580873.

Cleynen A, Koskas M, Lebarbier E, Rigaill G, Robin S (2014). “Segmentor3IsBack: An
R Package for the Fast and Exact Segmentation of Seq-Data.” Algorithms for Molecular
Biology, 9(1), 1–11. doi:10.1186/1748-7188-9-6.

Clifford GD, Silva I, Moody B, Li Q, Kella D, Chahin A, Kooistra T, Perry D, Mark RG
(2016). “False Alarm Reduction in Critical Care.” Physiological Measurement, 37(8), 5–23.
doi:10.1088/0967-3334/37/8/e5.

De Leeuw J, Hornik K, Mair P (2010). “Isotone Optimization in R: Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods.” Journal of Statistical Software, 32(5), 1–24.
doi:10.18637/jss.v032.i05.

Dette H, Wied D (2016). “Detecting Relevant Changes in Time Series Models.” Journal of
the Royal Statistical Society B, 78(2), 371–394. doi:10.1111/rssb.12121.

Eichinger B, Kirch C (2018). “A MOSUM Procedure for the Estimation of Multiple Random
Change Points.” Bernoulli, 24(1), 526–564. doi:10.3150/16-bej887.

Fearnhead P, Rigaill G (2019). “Changepoint Detection in the Presence of Outliers.” Journal
of the American Statistical Association, 114(525), 169–183. doi:10.1080/01621459.2017.
1385466.

Fearnhead P, Rigaill G (2020). “Relating and Comparing Methods for Detecting Changes in
Mean.” Stat, 9(1), e291. doi:10.1002/sta4.291.

Fisch ATM, Eckley IA, Fearnhead P (2022). “A Linear Time Method for the Detection of
Collective and Point Anomalies.” Statistical Analysis and Data Mining, 15(4), 494–508.
doi:10.1002/sam.11586.

Fotoohinasab A, Hocking TD, Afghah F (2021). “A Greedy Graph Search Algorithm Based
on Changepoint Analysis for Automatic QRS Complex Detection.” Computers in Biology
and Medicine, 130, 104208. doi:10.1016/j.compbiomed.2021.104208.

Frick K, Munk A, Sieling H (2014). “Multiscale Change Point Inference.” Journal of the
Royal Statistical Society B, 76(3), 495–580. doi:10.1111/rssb.12047.

Fryzlewicz P (2014). “Wild Binary Segmentation for Multiple Change-Point Detection.” The
Annals of Statistics, 42(6), 2243–2281. doi:10.1214/14-aos1245.

Gao C, Han F, Zhang CH (2020). “On Estimation of Isotonic Piecewise Constant Signals.”
The Annals of Statistics, 48(2), 629–654. doi:10.1214/18-aos1792.

Hall P, Kay JW, Titterington DM (1990). “Asymptotically Optimal Difference-Based Es-
timation of Variance in Nonparametric Regression.” Biometrika, 77(3), 521–528. doi:
10.1093/biomet/77.3.521.

Haynes K, Eckley IA, Fearnhead P (2017). “Computationally Efficient Changepoint Detection
for a Range of Penalties.” Journal of Computational and Graphical Statistics, 26(1), 134–
143. doi:10.1080/10618600.2015.1116445.

https://doi.org/10.1007/bf01580873
https://doi.org/10.1186/1748-7188-9-6
https://doi.org/10.1088/0967-3334/37/8/e5
https://doi.org/10.18637/jss.v032.i05
https://doi.org/10.1111/rssb.12121
https://doi.org/10.3150/16-bej887
https://doi.org/10.1080/01621459.2017.1385466
https://doi.org/10.1080/01621459.2017.1385466
https://doi.org/10.1002/sta4.291
https://doi.org/10.1002/sam.11586
https://doi.org/10.1016/j.compbiomed.2021.104208
https://doi.org/10.1111/rssb.12047
https://doi.org/10.1214/14-aos1245
https://doi.org/10.1214/18-aos1792
https://doi.org/10.1093/biomet/77.3.521
https://doi.org/10.1093/biomet/77.3.521
https://doi.org/10.1080/10618600.2015.1116445

28 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Haynes K, Killick R (2021). changepoint.np: Methods for Nonparametric Changepoint
Detection. R package version 1.0.3, URL https://CRAN.R-project.org/package=
changepoint.np.

Hocking TD, Bourque G (2020). “Machine Learning Algorithms for Simultaneous Supervised
Detection of Peaks in Multiple Samples and Cell Types.” In Proceedings of the Pacific
Symposium on Biocomputing, volume 25, pp. 367–378.

Hocking TD, Rigaill G (2012). “SegAnnot: An R Package for Fast Segmentation of Annotated
Piecewise Constant Signals.” HAL technical report 00759129, URL https://hal.inria.
fr/hal-00759129/.

Hocking TD, Rigaill G, Bourque G (2015). “PeakSeg: Constrained Optimal Segmentation
and Supervised Penalty Learning for Peak Detection in Count Data.” In International
Conference on Machine Learning, pp. 324–332. PMLR.

Hocking TD, Rigaill G, Fearnhead P, Bourque G (2020). “Constrained Dynamic Programming
and Supervised Penalty Learning Algorithms for Peak Detection in Genomic Data.” Journal
of Machine Learning Research, 21(87), 1–40.

Hocking TD, Rigaill G, Fearnhead P, Bourque G (2022). “Generalized Functional Pruning
Optimal Partitioning (GFPOP) for Constrained Changepoint Detection in Genomic Data.”
Journal of Statistical Software, 101(10), 1–31. doi:10.18637/jss.v101.i10.

Hocking TD, Schleiermacher G, Janoueix-Lerosey I, Boeva V, Cappo J, Delattre O, Bach F,
Vert JP (2013). “Learning Smoothing Models of Copy Number Profiles Using Breakpoint
Annotations.” BMC Bioinformatics, 14(164). doi:10.1186/1471-2105-14-164.

Hocking TD, Srivastava A (2023). “Labeled Optimal Partitioning.” Computational Statistics,
38(1), 461–480. doi:10.1007/s00180-022-01238-z.

Jackson B, Scargle JD, Barnes D, Arabhi S, Alt A, Gioumousis P, Gwin E, Sangtrakulcharoen
P, Tan L, Tsai TT (2005). “An Algorithm for Optimal Partitioning of Data on an Interval.”
IEEE Signal Processing Letters, 12(2), 105–108. doi:10.1109/lsp.2001.838216.

Jewell S, Hocking TD, Fearnhead P, Witten D (2020). “Fast Nonconvex Deconvolution of
Calcium Imaging Data.” Biostatistics, 21(4), 709–726. doi:10.1093/biostatistics/
kxy083.

Johnson NA (2013). “A Dynamic Programming Algorithm for the Fused Lasso and L0-
Segmentation.” Journal of Computational and Graphical Statistics, 22(2), 246–260. doi:
10.1080/10618600.2012.681238.

Killick R, Eckley IA (2014). “changepoint: An R Package for Changepoint Analysis.” Journal
of Statistical Software, 58(3), 1–19. doi:10.18637/jss.v058.i03.

Killick R, Fearnhead P, Eckley IA (2012). “Optimal Detection of Changepoints with a Linear
Computational Cost.” Journal of the American Statistical Association, 107(500), 1590–
1598. doi:10.1080/01621459.2012.737745.

https://CRAN.R-project.org/package=changepoint.np
https://CRAN.R-project.org/package=changepoint.np
https://hal.inria.fr/hal-00759129/
https://hal.inria.fr/hal-00759129/
https://doi.org/10.18637/jss.v101.i10
https://doi.org/10.1186/1471-2105-14-164
https://doi.org/10.1007/s00180-022-01238-z
https://doi.org/10.1109/lsp.2001.838216
https://doi.org/10.1093/biostatistics/kxy083
https://doi.org/10.1093/biostatistics/kxy083
https://doi.org/10.1080/10618600.2012.681238
https://doi.org/10.1080/10618600.2012.681238
https://doi.org/10.18637/jss.v058.i03
https://doi.org/10.1080/01621459.2012.737745

Journal of Statistical Software 29

Lebarbier É (2005). “Detecting Multiple Change-Points in the Mean of Gaussian Process by
Model Selection.” Signal Processing, 85(4), 717–736. doi:10.1016/j.sigpro.2004.11.
012.

Maidstone R, Hocking TD, Rigaill G, Fearnhead P (2017). “On Optimal Multiple Changepoint
Algorithms for Large Data.” Statistics and Computing, 27(2), 519–533. doi:10.1007/
s11222-016-9636-3.

Meier A, Kirch C, Cho H (2021). “mosum: A Package for Moving Sums in Change-Point
Analysis.” Journal of Statistical Software, 97(8), 1–42. doi:10.18637/jss.v097.i08.

Mousavi S, Afghah F (2019). “Inter- And Intra- Patient ECG Heartbeat Classification for
Arrhythmia Detection: A Sequence to Sequence Deep Learning Approach.” In ICASSP
2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1308–1312. doi:10.1109/icassp.2019.8683140.

Olshen AB, Venkatraman E, Lucito R, Wigler M (2004). “Circular Binary Segmentation
for the Analysis of Array-Based DNA Copy Number Data.” Biostatistics, 5(4), 557–572.
doi:10.1093/biostatistics/kxh008.

Pan J, Tompkins WJ (1985). “A Real-Time QRS Detection Algorithm.” IEEE Transactions
on Biomedical Engineering, BME-32(3), 230–236. doi:10.1109/tbme.1985.325532.

Pein F, Hotz T, Sieling H (2022). stepR: Multiscale Change-Point Inference. R package
version 2.1-3, URL https://CRAN.R-project.org/package=stepR.

PhysioNet (2015). Reducing False Arrhythmia Alarms in the ICU. Accessed 2016-07-28, URL
https://www.physionet.org/challenge/2015/.

Picard F, Robin S, Lavielle M, Vaisse C, Daudin JJ (2005). “A Statistical Approach for Array
CGH Data Analysis.” BMC Bioinformatics, 6(1), 27. doi:10.1186/1471-2105-6-27.

Pierre-Jean M, Rigaill G, Neuvial P (2019). jointseg: Joint Segmentation of Multivariate
(Copy Number) Signals. R package version 1.0.2, URL https://CRAN.R-project.org/
package=jointseg.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rigaill G (2015). “A Pruned Dynamic Programming Algorithm to Recover the Best Seg-
mentations with 1 to Kmax Change-Points.” Journal de la Société Française de Statistique,
156(4), 180–205.

Rigaill G (2022). fpopw: Weighted Segmentation using Functional Pruning and Optimal
Partioning. R package version 1.1, URL https://CRAN.R-project.org/package=fpopw.

Rigaill G, Hocking TD, Maidstone R, Fearnhead P (2019). fpop: Segmentation Using Optimal
Partitioning and Function Pruning. R package version 2019.08.26, URL https://CRAN.
R-project.org/package=fpop.

Rigaill G, Hocking TD, Vert JP, Bach F (2013). “Learning Sparse Penalties for Change-Point
Detection Using Max Margin Interval Regression.” In Proceedings of the 30th International
Conference on Machine Learning, volume 28, pp. 172–180.

https://doi.org/10.1016/j.sigpro.2004.11.012
https://doi.org/10.1016/j.sigpro.2004.11.012
https://doi.org/10.1007/s11222-016-9636-3
https://doi.org/10.1007/s11222-016-9636-3
https://doi.org/10.18637/jss.v097.i08
https://doi.org/10.1109/icassp.2019.8683140
https://doi.org/10.1093/biostatistics/kxh008
https://doi.org/10.1109/tbme.1985.325532
https://CRAN.R-project.org/package=stepR
https://www.physionet.org/challenge/2015/
https://doi.org/10.1186/1471-2105-6-27
https://CRAN.R-project.org/package=jointseg
https://CRAN.R-project.org/package=jointseg
https://www.R-project.org/
https://CRAN.R-project.org/package=fpopw
https://CRAN.R-project.org/package=fpop
https://CRAN.R-project.org/package=fpop

30 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Romano G, Rigaill G, Runge V, Fearnhead P (2022). “Detecting Abrupt Changes in the Pres-
ence of Local Fluctuations and Autocorrelated Noise.” Journal of the American Statistical
Association, 117(540), 2147–2162. doi:10.1080/01621459.2021.1909598.

Runge V, Hocking TD, Rigaill G, Grose D, Romano G, Afghah F, Fearnhead P (2023). gfpop:
Graph-Constrained Functional Pruning Optimal Partitioning. R package version 1.1.1, URL
https://CRAN.R-project.org/package=gfpop.

Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, Klijanienko J, Couturier J, Pierron G,
Mosseri V, Valent A, Auger N, Plantaz D, Rubie H, Valteau-Couanet D, Bourdeaut F,
Combaret V, Bergeron C, Michon J, Delattre O (2010). “Accumulation of Segmental Al-
terations Determines Progression in Neuroblastoma.” Journal of Clinical Oncology, 28(19),
3122–3130. doi:10.1200/jco.2009.26.7955.

Scott AJ, Knott M (1974). “A Cluster Analysis Method for Grouping Means in the Analysis
of Variance.” Biometrics, 30(3), 507–512. doi:10.2307/2529204.

Stout QF (2008). “Unimodal Regression via Prefix Isotonic Regression.” Computational
Statistics & Data Analysis, 53(2), 289–297. doi:10.1016/j.csda.2008.08.005.

Thépaut S (2019). Problèmes de clustering liés à la synchronie en écologie: Estimation de
rang effectif et détection de ruptures sur les arbres. Ph.D. thesis, Université Paris-Saclay
(ComUE). 2019SACLS477, URL https://www.theses.fr/2019SACLS477.

Truong C, Oudre L, Vayatis N (2020). “Selective Review of Offline Change Point Detection
Methods.” Signal Processing, 167, 107299. doi:10.1016/j.sigpro.2019.107299.

Yao YC, Au ST (1989). “Least-Squares Estimation of a Step Function.” Sankhyā A, 51(3),
370–381.

Zhang NR, Siegmund DO (2007). “A Modified Bayes Information Criterion with Applications
to the Analysis of Comparative Genomic Hybridization Data.” Biometrics, 63(1), 22–32.
doi:10.1111/j.1541-0420.2006.00662.x.

https://doi.org/10.1080/01621459.2021.1909598
https://CRAN.R-project.org/package=gfpop
https://doi.org/10.1200/jco.2009.26.7955
https://doi.org/10.2307/2529204
https://doi.org/10.1016/j.csda.2008.08.005
https://www.theses.fr/2019SACLS477
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1111/j.1541-0420.2006.00662.x

Journal of Statistical Software 31

A. Some other graphs
Here are three graphs for models discussed in the main part of the paper.

#

∅

Collµ0

Iµt=µt+1 , bw
Iµt ̸=µt+1 , ℓ2, β

Iµt ̸=µt+1 , bw

Iµt=µt+1 , ℓ2

Figure 17: Graph for the model proposed in Fisch et al. (2022). We have S = {µ0, Coll}.
Note that the value of µ0 is given and that the loss function is either the ℓ2 or the biweight
bw. The penalty is omitted when equal to zero.

∅SegWait1

Wait2

Iµt=µt+1

Iµt ̸=µt+1 , β

I
µ

t=µ
t+1 Iµt=

µt+
1

Figure 18: Graph for the at least 3 data points per segment model. We have S =
{Wait1, Wait2, Seg}, the loss function is always the ℓ2. The penalty is omitted when equal to
zero.

∅1

Iµt=µt+1

I|µt−µt+1|≥c, β

Figure 19: Graph for relevant change-point model. We have S = {1}, the loss function is
always the ℓ2. The penalty is omitted when equal to zero.

32 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Below we provide a few other constrained models and their graphs.

• (Up-down relevant) It might make sense to consider sufficiently large changes. This is
a simple modification of the up-down model (see Figure 6). The Dw to Up constraint
Iµt≤µt+1 can be replaced by Ic+µt≤µt+1 for c > 0 or Iaµt≤µt+1 for a > 1 if µt is positive.
The graph is shown in Figure 20.

• (Up-down with at least two data points) If one wants to detect peaks and is certain that
segments are at least of length 2 it suffices to add two waiting states in the up-down
graph. The graph of this model is given Figure 21.

∅

.

UpDw

Iµ
t=µ

t+1

Iµt=µt+1

Iµt ≥ µt+1+c, β

Iµt=µt+1
Iµt+c ≤ µt+1 , β

Figure 20: Graph for the up-down relevant model. We have S = {Up, Dw}, the loss function
is always the ℓ2. The penalty is omitted when equal to zero.

#

∅ Up1

Dw1 Up

Dw

I µ
t
=

µ
t+

1

Iµt=µt+1

Iµt≥µt+1 , β

I
µ

t =
µ

t+
1

Iµt=µt+1

Iµt≤µt+1 , β

Figure 21: Graph for the up-down model with segments of size at least 2. We have S =
{Up1 , Up, Dw1 , Dw}. The loss function is always the ℓ2 or the Poisson. The penalty is
omitted when equal to zero.

Journal of Statistical Software 33

• (Up-isotonic down) In the pulse detection example (up-exponentially down model in
Figure 7) if one is not sure of the exponential decrease it could make sense to consider
an isotonic decrease. For this it suffices to consider two states S = {Up, Dw}. Compared
to the up-down model, described earlier, we add an additional transition from Dw to
Dw with the constraint Iµt≥µt+1 . The graph of this model is given in Figure 22.

• (Isotonic up-isotonic down) In the previous model one considers a sharp transition up.
It might make sense to consider an isotonic increase. For this it suffices to add an edge
from Up to Up in the previous model. Only transitions from Up to Dw and Dw to Up
are penalized. The graph of this model is given in Figure 23.

#

∅

UpDw

Iµt≥µt+1
Iµt≥µt+1

Iµt≤µt+1 , β

Figure 22: Top: Graph for the up-down* change-point model. We have S = {Dw, Up}, the
loss function is always the ℓ2. The penalty is omitted when equal to zero.

#

∅

UpDw

Iµt≥µt+1 , β Iµt≤µt+1Iµt≥µt+1

Iµt≤µt+1 , β

Figure 23: Graph for the up*-down* change-point model. We have S = {Dw, Up}, the loss
function is always the ℓ2. The penalty is omitted when equal to zero.

34 gfpop: Univariate Graph-Constrained Change-Point Detection in R

B. Update-rule proof
We recall here the update-rule (2) given at the end of Section 3.2.

Qs′
n+1(θ) = min

s|∃ edge (s,s′)

{
Os,s′

n (θ) + γ(s,s′)(yn+1, θ) + β(s,s′)
}

.

We name the path and vector realizing the best cost Qs′
n+1(θ), defined in Equation 1, p∗ and

µ∗. We call s∗ the corresponding vector of states. We have s∗
n+1 = s′, µ∗

n+1 = θ and

Qs′
n+1(θ) =

n+1∑
t=1

(
γe∗

t
(yt, µ∗

t) + βe∗
t

)
=

n∑
t=1

(
γe∗

t
(yt, µ∗

t) + βe∗
t

)
+ (γ(s∗

n,s′)(yn+1, θ) + β(s∗
n,s′)) .

We will first show that
n∑

t=1

(
γe∗

t
(yt, µ∗

t) + βe∗
t

)
= Qs∗

n
n (µ∗

n) = Os∗
n,s′

n (θ).

(Proof) Restricting the path p∗ and the vector µ∗ to their first n elements, by definition of
Q

s∗
n

n (µ∗
n) we have ∑n

t=1

(
γe∗

t
(yt, µ∗

t) + βe∗
t

)
≥ Q

s∗
n

n (µ∗
n). Also, given that a move from parameter

µ∗
n to θ is a valid transition from state s∗

n to s′ and by the definition of O
s∗

n,s′
n (θ), we have

Q
s∗

n
n (µ∗

n) ≥ O
s∗

n,s′
n (θ).

We will now proceed by contradiction. Let us assume: ∑n
t=1

(
γe∗

t
(yt, µ∗

t) + βe∗
t

)
> O

s∗
n,s′

n (θ).
We name the path and vector realizing the O

s∗
n,s′

n (θ) p+ and µ+. Extending this path and
vector to n + 1 with s+

n+1 = s′ and µ+
n+1 = θ we get a better cost than p∗ for Qs′

n+1(θ) which
is a contradiction.
So we have

Qs′
n+1(θ) = Os∗

n,s′
n (θ) + γ(s,s′)(yn+1, θ) + β(s∗

n,s′),

and considering all possible states at time n we get the update-rule.

C. Backtracking
After running the Viterbi-like algorithm with update-rule (2), we need a backward proce-
dure called backtracking to return the optimal change-point vector. First, we recover using
Algorithm 1 the optimal vector of states ŝ ∈ {1, . . . , S}n and vector of means µ̂ ∈ Rn. We
then find the best change-point vector τ̂ ⊂ {1, . . . , n} with Algorithm 2. The basic idea of
Algorithm 1 is that if we knew ŝt+1 and µ̂t+1 we could recover first ŝt and then µ̂t taking the
argmin of the update-rule (see lines 8 and 9 of Algorithm 1).
The obtained vectors ŝ and µ̂ are simplified removing repetitions of consecutive identical
states or values: i.e., ŝt = σ0 and µ̂t = m0γt2−t for t = t1, . . . , t2 (including the case of
exponential decay with parameter γ and γ = 1 if no decay). In that case, the index t2 is an
element of the change-point vector and m0 its associated segment parameter. The vector of
change-points can be built by a linear-in-time procedure described in Algorithm 2.
Notice that τ̂ is the changepoints vector returned by the gfpop() function. Restricting ŝ
and µ̂ vectors to positions in τ̂ , these vectors are respectively the states and the parameters
vectors.

Journal of Statistical Software 35

Algorithm 1 Backtracking ŝ and µ̂.
1: procedure Backtrack((Q1

1, . . . , QS
1), . . . , (Q1

n, . . . , QS
n))

2: µ̂← empty vector of size n
3: ŝ← empty vector of size n
4: (ŝn, µ̂n) = argmin

(s,µ)
{Qs

n(µ)}

5: ▷ We can impose a subset of arrival states S̃ ⊂ {1, . . . , S}
6: by (ŝn, µ̂n)← {argmin

(s,µ)
{Qs

n(µ)} , s ∈ S̃}

7: for t = n− 1 to t = 1 do
8: ŝt = argmin

s|∃ edge (s,ŝt+1)

{
O

s,ŝt+1
t (µ̂t+1) + γ(s,ŝt+1)(yt+1, µ̂t+1) + β(s,ŝt+1)

}
9: µ̂t = argmin

µ|I(ŝt,ŝt+1)(µ,µ̂t+1)

{
Qŝt

t (µ)
}

▷ If µ̂t is such that the constraint is active,

10: we have ‘forced = TRUE’ in gfpop() response.
11: end for
12: return (ŝ, µ̂)

Algorithm 2 Change-point vector.
1: procedure Change-point(ŝ, µ̂)
2: τ̂ ← NULL
3: t← n + 1
4: while t > 1 do
5: τ̂ ← (t− 1, τ̂)
6: while (ŝt−1, γµ̂t−1) = (ŝt, µ̂t) do
7: t← t− 1
8: end while
9: end while

10: return τ̂

D. Simulation results for isotonic regression

D.1. Linear signal

We simulate 100 linearly increasing time series and compute the mean of the MSE for each
noise structure. The results are given in Table 1. We highlight in bold the two best results
in each row and also give the standard deviation (SD).
In the Gaussian case the ℓ2 isotonic regression is the best method. For the Student and for
the corrupted scenarios the robust biweight loss with β = 0 is performing better in terms
of MSE. Note that it is however much slower than PAVA. Including a penalty for change-
points (β0 = 2σ2 log(n)) deteriorates the results. This make sense as there are in fact no
change-points in the data.

D.2. Iso-step signal

We simulate 100 step-wise increasing time series with 10 segments and compute the mean of
the MSE for each noise structure. The results are given in Table 2. We highlight in bold the
two best results in each row and also give the standard deviation (SD).

36 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Isolinear linear isoreg reg 1d reg 1d gfpop1 gfpop2 gfpop3 gfpop4
simulations fit ℓ2 ℓ1 ℓ2 β = 0 β = 0 β = β0 β = β0

ℓ2 K = 3σ2 ℓ2 K = 3σ2

Gauss
MSE 0.0176 0.702 1.09 0.699 0.828 1.03 2.57 3.55
(SD) (0.018) (0.082) (0.17) (0.082) (0.14) (0.14) (0.23) (0.37)

Student
MSE 0.0193 0.682 0.549 0.680 0.752 0.560 2.56 2.69
(SD) (0.019) (0.092) (0.066) (0.092) (0.11) (0.088) (0.23) (0.25)

Corrupted
MSE 300 299 29.0 299 295 3.49 302 6.99
(SD) (8.7) (8.5) (2.1) (8.5) (14) (0.59) (8.7) (0.79)

Table 1: Mean-squared errors MSE = 1
n

∑n
i=1(ŝi − si)2 for different algorithms on linear

simulations with their empirical standard deviation (SD). We consider three types of noise:
Gaussian, Student and corrupted.

Iso-step linear isoreg reg 1d reg 1d gfpop1 gfpop2 gfpop3 gfpop4
simulations fit ℓ2 ℓ1 ℓ2 β = 0 β = 0 β = β0 β = β0

ℓ2 K = 3σ2 ℓ2 K = 3σ2

Gauss
MSE 8.27 0.636 1.27 0.634 1.26 0.958 0.378 0.586
(SD) (0.021) (0.14) (0.26) (0.14) (1.9) (0.19) (0.12) (0.22)

Student
MSE 8.27 0.591 0.588 0.588 1.07 0.443 0.342 0.217
(SD) (0.021) (0.17) (0.15) (0.17) (0.74) (0.14) (0.21) (0.088)

Corrupted
MSE 302 297 30.4 297 292 3.20 299 2.80
(SD) (8.2) (7.9) (3.6) (7.9) (15) (0.62) (8.1) (0.65)

Table 2: Mean-squared errors MSE = 1
n

∑n
i=1(ŝi − si)2 for different algorithms on step-wise

simulations with their empirical standard deviation (SD). We consider three types of noise:
Gaussian, Student and corrupted.

In the Gaussian and Student cases the penalized algorithms gfpop3 and gfpop4 with β =
β0 = 2σ2 log(n) are better. For the corrupted scenario, we need the robust loss of algorithms
gfpop2 and gfpop4 to get a much better MSE than other approaches. To confirm the benefit
of using a penalized approach in the Student case, we plot the distribution of the MSE for
five of the algorithms in Figure 24.

We also compare the ability of the different methods to estimate the number of steps. The
average estimated number of steps over 100 simulations is reported in Table 3. Only the
penalized algorithms are able to recover the true number of steps (10). The choice of a good
penalty in isotonic simulations is an area of ongoing research in statistics (Gao et al. 2020).

Journal of Statistical Software 37

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

isoreg reg_1d_L1 gfpop2 gfpop3 gfpop4
method

M
S

E

method

isoreg

reg_1d_L1

gfpop2

gfpop3

gfpop4

Figure 24: Box plots of the MSE for iso-step simulations with Student noise. The shape of
the distribution is very similar for the 5 methods considered.

Iso-step isoreg reg 1d reg 1d gfpop1 gfpop2 gfpop3 gfpop4
simulations ℓ2 ℓ1 ℓ2 β = 0 β = 0 β = β0 β = β0

ℓ2 K = 3σ2 ℓ2 K = 3σ2

Gauss
D̂ 67.1 59.1 66.9 70.2 68.3 10.0 10.0

(SD) (6.7) (6.1) (6.6) (8.3) (6.7) (0) (0)
Student

D̂ 68.9 63.9 68.8 70.5 70.8 10.0 10.0
(SD) (6.7) (6.7) (6.7) (6.8) (7.6) (0.1) (0)

Corrupted
D̂ 40.6 49.7 40.4 41.0 63.6 11.2 10.0

(SD) (5.6) (6.3) (5.6) (5.6) (7.6) (1.0) (0.14)

Table 3: Mean number of segments over 100 simulations with 104 data points for different
algorithms on step-wise simulations. We consider three types of noise: Gaussian, Student and
corrupted.

38 gfpop: Univariate Graph-Constrained Change-Point Detection in R

Affiliation:
Vincent Runge
Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation
d’Evry (LaMME)
91037, Evry-Courcouronnes, France
E-mail: vincent.runge@univ-evry.fr

Toby Dylan Hocking
Northern Arizona University
School of Informatics, Computing, and Cyber Systems
Building 90, Room 120, 1295 S. Knoles Dr.
Flagstaff, AZ 86011, United States of America
E-mail: toby.hocking@nau.edu

Gaetano Romano
Department of Mathematics and Statistics
Lancaster University
LA1 4YF, United Kingdom
E-mail: g.romano@lancaster.ac.uk

Fatemeh Afghah
Department of Electrical and Computer Engineering
Clemson University
216 Palmetto BLvd.
Clemson, SC 29634, United States of America
E-mail: fafghah@clemson.edu

Paul Fearnhead
Department of Mathematics and Statistics
Lancaster University
LA1 4YF, United Kingdom
E-mail: p.fearnhead@lancaster.ac.uk

Guillem Rigaill
Université Paris-Saclay, CNRS, INRAE, Univ Evry
Institute of Plant Sciences Paris-Saclay (IPS2)
Batiment 630, 91405 Orsay, France. Université de Paris
CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2)
Batiment 630, 91405 Orsay, France
and

mailto:vincent.runge@univ-evry.fr
mailto:toby.hocking@nau.edu
mailto:g.romano@lancaster.ac.uk
mailto:fafghah@clemson.edu
mailto:p.fearnhead@lancaster.ac.uk

Journal of Statistical Software 39

Université Paris-Saclay, CNRS, Univ Evry
Laboratoire de Mathématiques et Modélisation d’Evry (LaMME)
91037, Evry-Courcouronnes, France
E-mail: guillem.rigaill@inrae.fr

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

March 2023, Volume 106, Issue 6 Submitted: 2021-02-26
doi:10.18637/jss.v106.i06 Accepted: 2022-04-01

mailto:guillem.rigaill@inrae.fr
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v106.i06

	Introduction
	Multiple change-point R packages
	Standard multiple change-point model
	Constrained multiple change-point model
	Contributions
	Outline

	Constraint graphs and change-points model as a HMM
	Transition kernel and graph of constraints
	Collapsed graph of constraints
	A few examples

	Optimization problem solved by gfpop
	Penalized maximum likelihood
	Operators and update-rule for gfpop
	How to choose the loss function and penalty

	The gfpop package
	Graph construction
	The gfpop function
	Some additional useful functions in gfpop

	Modeling real data with graph-constrained models
	Gaussian model for DNA copy number data
	Gaussian multi-modal regression for neuro spike train data
	Gaussian nine-state model for electrocardiogram data

	Isotonic regression with a constraint graph and robust loss
	Parametrization
	Simulated data
	A simple illustration

	Conclusion
	Some other graphs
	Update-rule proof
	Backtracking
	Simulation results for isotonic regression
	Linear signal
	Iso-step signal

