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Behavioural avoidance has obvious benefits for animals facing
environmental stressors such as pathogen-contaminated foods.
Most current bioinsecticides are based on the environmental
and opportunistic bacterium Bacillus thuringiensis (Bt) that
kills targeted insect pests upon ingestion. While food and
oviposition avoidance of Bt bioinsecticide by targeted insect
species was reported, this remained to be addressed in non-
target organisms, especially those affected by chronic exposure
to Bt bioinsecticide such as Drosophila species. Here, using a
two-choice oviposition test, we showed that female flies of
three Drosophila species (four strains of D. melanogaster,
D. busckii and D. suzukii) avoided laying eggs in the presence of
Bt var. kurstaki bioinsecticide, with potential benefits for the
offspring and female’s fitness. Avoidance occurred rapidly,
regardless of the fraction of the bioinsecticide suspension
(spores and toxin crystals versus soluble toxins/compounds)
and independently of the female motivation for egg laying. Our
results suggest that, in addition to recent findings of
developmental and physiological alterations upon chronic
exposure to non-target Drosophila, this bioinsecticide may
modify the competitive interactions between Drosophila species
in treated areas and the interactions with their associated
natural enemies.
1. Introduction
When exposed to environmental stressors, animals face two main
options: dealing with the stressor, which may ultimately lead to
the evolution of special features, or physically avoiding it. In the
interactions with opportunistic pathogens, broad-sense immunity
includes components for dealing with infections (physical barriers
and cellular and humoral effectors of the immune system) as well
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as a behavioural component to physically avoid pathogens and reduce the infection risk [1–3]. The immune
response being costly (energy, nutrients and immunopathology resulting from damage to host tissues by
effectors of its innate immune response) [2,4], obvious benefits come from physically avoiding pathogens.

Behavioural avoidance of toxic compounds and microorganisms in a foraging context is well
documented. Both innate avoidance (disgust) and learned avoidance based on associative learning of
hazardous food, are commonly expressed by vertebrates [5] and invertebrates, mainly insects [6–8].
For instance, phytophagous insects avoid plants that accumulate toxic alkaloids [9] and the nematode
Caenorhabditis elegans prefers feeding on non-pathogenic bacteria over pathogenic ones [10,11].
Exposed to opportunistic pathogens through their diet of overripe fruits, Drosophila melanogaster
females are able to learn to adjust their preference for a food odour when that odour has previously
been associated with the gut infection by the virulent bacterium Pseudomonas entomophila [12], as do
C. elegans nematodes when exposed to pathogenic bacteria [13]. Drosophila melanogaster males and
females also express strong innate aversive responses to bacterial lipopolysaccharides when feeding
and egg laying, respectively, mediated by dTRPA1 cation channels of gustatory neurons [14].

Naturally ubiquitous in the environment, Bacillus thuringiensis (Bt) is an opportunistic Gram-positive
bacterium, which synthesizes insecticidal toxins including Cry proteins as crystals along with spores
[15,16]. The insecticidal action relies on the organisms’ feeding activity on Bt-contaminated food sources
[17]. In the context of the growing global food demand and the need for safer and more specific insect
pest control, these natural insecticidal properties have led the development of Bt-based bioinsecticides
(products made of viable Bt spores and toxin crystals) or Bt transgenic crops to control insect pests in
agriculture and forestry (mainly Lepidoptera, and mosquitoes and black flies (Diptera)) [18,19]. Many
studies concluded that Bt bioinsecticides and Bt crops are harmless or have limited impacts on the non-
target fauna [20,21]. However, the partial targeting specificity of Cry toxins and the potential for
environmental accumulation of spores and toxins upon repeated treatments have raised concern about
potential side-effects on non-target organisms [16,22–25]. In insects, recent studies have reported
deleterious effects of the Lepidoptera-targeting Bt var. kurstaki (Btk) bioinsecticide on several species of
non-target Drosophila flies probably present in Btk-treated areas. Chronic exposure of fly larvae to
subacute doses through the diet altered their growth, development duration, survival and complete
development success [26–29]. Btk bioinsecticide also impacted the larval metabolism and midgut
physiology, impairing protein digestion and disturbing the gut epithelium organization [28]. One way
for non-target insects that would alleviate Bt bioinsecticide impacts is the expression of behavioural
avoidance of Bt-treated substrates. As Bt bioinsecticides act after ingestion, behavioural avoidance would
be advantageous upon food foraging, but also upon female oviposition with direct benefits for the
developing offspring and indirect benefits for the female’s fitness.

So far, Bt behavioural avoidance has been investigated mainly in Bt-target invertebrates but scarcely
in non-target invertebrates. Studies have reported no change in the oviposition behaviour of Culex
mosquitoes exposed to Bt var. israelensis [30] or in the feeding behaviour of the Western corn
rootworm Diabrotica virgifera virgifera [31], and even an attractive effect of Bt maize on the oviposition
of the fall armyworm Spodoptera frugiperda [32]. Conversely, behavioural avoidance of Bt upon food
foraging was reported in the nematode Caenorhabditis elegans [33–36] and in two Lepidopteran pests,
the cotton bollworm Helicoverpa armigera and the cotton leafworm Spodoptera litura [37]. Females of
H. armigera and the diamondback moth Plutella xylostella also avoid Bt when laying eggs in a choice
situation [38,39]. Bt avoidance was also reported in insects’ offspring: neonates of the European corn
borer, Ostrinia nubilalis, disperse more on Bt corn [40] and avoid Bt when facing a choice with
untreated diet [41], while neonates of the tobacco budworm Heliothis virescens avoid diets containing
Cry toxins or the Bt bioinsecticide at doses that do not alter their development and survival [42].

In non-target species, foraging activity and learning ability of Apis mellifera ligustica honeybees
remained unchanged on Bt corn [43], while collective nest building and prey attacks were altered by
cuticular Bt inoculation to the African social spider Stegodyphus dumicola [44]. Altered reproduction
and survival were recorded in Bombus terrestris bumblebees exposed to Bt depending on the Bt
subspecies and the exposure route, but without altering their foraging behaviour and colony
performance [45]. Bt bioinsecticides being increasingly applied in the field, studies exploring the
behavioural avoidance by non-target invertebrates are needed for an accurate assessment of the
potential bioinsecticide side-effects.

Here, we explored the expression of behavioural avoidance toward the lepidopteran-targeting Bt var.
kurstaki (Btk) bioinsecticide by non-target Drosophila species that exhibit developmental and physiological
alterations in the chronic presence of bioinsecticide [27,28,46]. Drosophila larvae are particularly exposed
to food-borne stressors as they intensively search for food to fuel their exponential growth but have a low
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dispersal capacity. Bioinsecticide avoidance by adult females when searching for oviposition sites
would mitigate the consequences on larval development. We focused on three Drosophila species with
different ecological features and varying developmental alterations elicited by chronic Btk exposure:
two cosmopolitan domestic species which frequently coexist on overripe fruits, D. melanogaster (four
strains) and the phylogenetically distant and opportunistic D. busckii [47–51], and the invasive
D. suzukii that feeds and lays eggs on ripe fruits and is a threat to agriculture [52–55]. We measured
the females’ oviposition preference in two-choice tests where they were offered food with or without
Btk bioinsecticide at a specific dose. The preference dynamics during the choice test was recorded and
the effect of different fractions of the Btk bioinsecticide suspension (spores and toxin crystals, and
soluble toxins/compounds) on the fly preference was also assessed.
rnal/rsos
R.Soc.Open

Sci.10:230565
2. Material and methods
2.1. Fly stocks
Four strains of the model species D. melanogaster were tested: the wild-type Canton-S (Bloomington
Drosophila Center) used here as a reference strain, the wild-type ‘Nasrallah’ from Tunisia (strain 1333,
Gif-sur-Yvette), a wild-type strain ‘Sefra’ derived from flies collected in southern France in 2013, and
the yellow-white double mutant yw1118 (gift from Dr B. Charroux, IBD, Marseille-Luminy). Those
strains and the two other Drosophila species tested, D. busckii (derived from flies collected in southeast
France in 2015) and D. suzukii (gift from Dr R. Allemand, LBBE, University of Lyon 1; originating
from flies collected near Lyon), were reared under controlled laboratory conditions (150–200 eggs/
40 ml fly medium; 25°C for D. melanogaster and 20°C for the two other fly species; 60% relative
humidity; 12 : 12 light/dark cycle) on a high-protein/sugar-free fly medium (10% cornmeal, 10%
yeast, 0% sugar). All the experiments were performed under these laboratory conditions.

2.2. Bacillus thuringiensis bioinsecticide product
Spores and Cry toxins of Bt. var. kurstaki strain SA-11 were from a commercial bioinsecticide product
(Delfin wettable granules, Valent BioSciences, AMM 9200482, 32 000 IU mg−1). Viable spores were
estimated at 5 × 107 CFU mg−1 product by counting colony forming units (CFUs) on LB agar, and this
value remained stable during the timeframe of this study. For the experiments, suspensions of Btk
bioinsecticide were prepared in Ringer buffer (NaCl 7.5 g l−1, NaHCO3 0.1 g l−1, KCl 0.2 g l−1, CaCl2
0.2 g l−1, in distilled water) to reach the desired CFUs in 100 µl.

2.3. Oviposition choice test
Two-to-five day-old mated females (20 D. melanogaster, 30 D. suzukii, 30 D. busckii) were transferred to
aerated plastic cages (Ø 10.5 cm, height 7.5 cm) containing two dishes (Ø 3 cm, approx. 7 cm2, 1 g of
fly medium) diametrically opposed at the cage bottom. The test lasted 18 h for D. melanogaster, and
24 h for D. suzukii and D. busckii which lay fewer eggs per day. To avoid confounding effects, cage
orientation and location in the experimental chamber were randomized.

2.4. Oviposition in presence of Btk bioinsecticide
Flies were given the choice between a dish filled with fly medium mixed with a suspension of Btk
bioinsecticide in Ringer buffer at a given concentration, and a control dish filled with fly medium
mixed with the same volume of Ringer buffer (dose ‘0’). In control cages, females were offered the
choice between two dishes filled with fly medium mixed with Ringer buffer. Oviposition preference
for Btk was calculated as the number of eggs laid on the Btk substrate divided by the total of eggs
counted on the two substrates of the cage. Oviposition preference of 0.5 indicates neither preference
nor avoidance of the bioinsecticide; oviposition preference values above 0.5 indicate bioinsecticide
appetitiveness, while values below 0.5 indicate bioinsecticide avoidance. Oviposition preference in
control cages was the egg proportion on one of the two Ringer substrates.

Three Btk bioinsecticide doses previously described in [27] were used: 106 CFU g−1 fly medium that
has no effect on the Drosophila development and falls in the recommendation range (equivalent to the
field application of 1.4 × 105 CFU cm−2) and 108 and 109 CFU g−1 which strongly alters Drosophila
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larval development (equivalent to the application of 1.4 × 107 and 1.4 × 108 CFU cm−2, respectively). The
dynamics of egg laying over the 18 h choice test were explored with the D. melanogaster Canton-S strain
by measuring the oviposition preference at 2, 4 and 18 h (endpoint) of choice test. Oviposition preference
of D. suzukii and D. busckii was measured as the female choice over 24 h between a Ringer control
substrate and a substrate containing 109 CFU g−1 of Btk bioinsecticide.

To disentangle the effects on the oviposition preference of Btk spores, toxins (crystals and soluble
toxins), and the commercial product additives, a 2 × 1010 CFU suspension of the bioinsecticide product
was dialysed to remove low molecular weight compounds (such as additives) [27]. A fraction of the
dialysed suspension was centrifuged at 15 000g, 15 min, 18°C to collect the pellet containing mainly
spores and toxin crystals, and the supernatant containing toxin fragments and non-dialysable
compounds [27]. The oviposition preference and total numbers of eggs laid of D. melanogaster Canton-S
females were assessed during 18 h when flies were offered the choice between a control Ringer substrate
and a substrate containing the non-dialysed bioinsecticide, the dialysed bioinsecticide, the centrifugation
pellet (all adjusted to 109 CFU g−1), the supernatant, or the PBS buffer used for dialysis.
Soc.Open
Sci.10:230565
2.5. Statistical analysis
Binomial data on oviposition preference were analysed with mixed-effects generalized linear models that
included, when appropriate, the D. melanogaster strain, the Btk treatment (Ringer control, Btk
bioinsecticide doses, dialysis and centrifugation fractions), the choice test duration and their two-way
interactions as fixed factors. The replicate cage was included as random factor. Total numbers of eggs
laid (counts) were transformed into decimal logarithm values and analysed with mixed-effect models
including the same fixed and random effects as described above (similar statistical results and
biological conclusions were obtained with untransformed data). Significance of fixed effects and
interactions was tested by model comparisons with log-likelihood ratio tests. Pairwise post hoc
comparisons of each Btk dose with the no-Btk control and of each fly strain with the standard strain
Canton-S were performed. The deviation of the oviposition preference from a 50%−50% distribution
of eggs on the two substrates was tested with t-tests under the H0 hypothesis of a mean egg
proportion of 0.5. The replicate number being relatively small, Wilcoxon tests with the same H0
hypothesis were performed and yielded similar biological conclusions. Statistical analyses were
performed in R [56] using the packages lme4 [57] and multcomp [58].
3. Results
3.1. Drosophila melanogaster expressed a rapid, dose-dependent oviposition avoidance of

Btk bioinsecticide
The presence of Btk bioinsecticide impacted the oviposition preference of D. melanogaster females over
18 h compared with the controls without bioinsecticide, yet with varying amplitudes between fly
strains (figure 1; electronic supplementary material, table S1.1). Canton-S females laid eggs evenly
when offered the choice between two control substrates, while they laid fewer eggs on Btk substrate
when offered a choice between substrates with and without Btk (electronic supplementary material,
table S1.1; significance of post hoc control–Btk dose pairwise comparisons in figure 1). The Btk
avoidance increased with the bioinsecticide dose, and deviated significantly from the ‘neutral’
preference of 0.5 at the two highest doses, 108 and 109 CFU g−1 (electronic supplementary material,
table S1.1), dropping to 0.19 on average at 109 CFU g−1 (95% CI: 0.07–0.30). The oviposition preference
of Nasrallah females also decreased with the increasing Btk dose (figure 1; electronic supplementary
material, table S1.1), dropping significantly below 0.5 only at 109 CFU g−1 with a smaller amplitude
than that of Canton-S females (0.27 on average, 95% CI: 0.12–0.41; electronic supplementary material,
table S1.1). Similarly, the average preference of Sefra females was 0.29 at this dose (95% CI: 0.21–0.37),
while the dose 106 CFU g−1 was slightly appetitive (figure 1; electronic supplementary material, table
S1.1). The oviposition preference of the double mutant yw1118 also decreased significantly below 0.5 at
109 CFU g−1 but with smaller amplitude (average preference of 0.37, 95% CI: 0.24–0.50) (figure 1;
electronic supplementary material, table S1.1). For all the four D. melanogaster strains, the total
numbers of eggs laid during the course of the Btk choice tests were similar to those laid in control
conditions, and similar between Btk doses (figure 2; electronic supplementary material, table S1.1).
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Figure 1. Female oviposition preference in the 18 h choice test as the proportion of eggs laid on one food substrate (quartiles,
median and mean preference in red points) of D. melanogaster wild-type strains Canton-S, Nasrallah and Sefra, and the double
mutant strain yw1118, with three doses of Btk bioinsecticide (106, 108, and 109 CFU g−1 of fly medium) and the no-Btk Ringer
control (0). Significance of post hoc pairwise comparisons of the control with each Btk dose: ��� p < 0.0001. N = 10 replicate
cages per treatment for each fly strain.
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Over the course of the 18 h choice test, the oviposition preference of the Canton-S females in control
conditions did not differ from the ‘neutral’ preference 0.5, despite random variation across time points.
By contrast, when offered the choice between a Btk substrate at 109 CFU g−1 and a control substrate, the
female preference for Btk was already below 0.5 at 2 h and further decreased at 4 h to remain down to
approximately 0.2 until the end of the choice test (figure 3a; electronic supplementary material, table
S1.2). The total numbers of eggs laid by Canton-S females evolved similarly and regardless of the
choice they were offered (figure 3b; electronic supplementary material, table S1.2).

3.2. All the Btk bioinsecticide fractions elicited the fly oviposition avoidance
While the preference after 18 h of Canton-S females for both Ringer and PBS controls did not differ from
0.5 (figure 4a, electronic supplementary material, table S2), females significantly avoided the dialysed Btk
suspension, the suspended pellet and the supernatant with a similar amplitude to the non-dialysed
Btk bioinsecticide at 109 CFU g−1 (average preference of 0.30, 95% CI: 0.21–0.39; figure 4a, electronic
supplementary material, table S2). The total number of eggs laid during the test were similar across
choice modalities (figure 4b, electronic supplementary material, table S2).

3.3. The amplitude of fly avoidance of Btk bioinsecticide varied between species
Females of the invasive species D. suzukii strongly avoided Btk in the choice test: their oviposition
preference dropped to 0.16 on average in presence of 109 CFU g−1 of Btk (95% CI: 0.11–0.21; figure 5a,
electronic supplementary material, table S3), the results being similar when including only cages with
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more than 15 eggs laid (electronic supplementary material, figure S4). Drosophila busckii females’
preference also dropped significantly to 0.38 on average in presence of 109 CFU g−1 of Btk (95% CI:
0.28–0.49; figure 5c, electronic supplementary material, table S5). For the two fly species, the total
numbers of eggs laid were independent of the choice offered (figures 5b,d; electronic supplementary
material, figure S4; tables S3 and S5).
4. Discussion
When offered the choice between laying eggs on uncontaminated or Btk-contaminated substrates,
females of D. melanogaster (all the strains used), D. busckii and D. suzukii expressed avoidance of the
Btk bioinsecticide. The oviposition responses were independent of confounding differences in the total
numbers of eggs laid during the choice test. Our study focusing on non-ageing mated females only,
this also excludes the confounding effects of the female mating status and disturbance by male
courtship, of sensory ageing impairing the ability to discriminate between food substrates, and of
general ageing influencing the number of eggs laid.

The D. melanogaster strains avoided the bioinsecticide in a dose-dependent manner, and the three
wild-type strains (Canton-S, Nasrallah, Sefra) showed a stronger avoidance of the highest
bioinsecticide dose than the double mutant yw1118. The smaller avoidance amplitude by yw1118

females might coincide with the impacts of the yellow and white mutations on the flies’ non-social
and social behaviour and their ability to learn with olfactory cues [59–62], yet this should be further
explored with an appropriate genetic background control. The observed avoidance expressed by
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D. melanogaster was surprising given the fact that this fly species feeds on decaying organic matter
(overripe fruits) probably full of microorganisms, which presence (detected by olfactory cues)
enhances its egg laying [63]. The invasive Asian species, D. suzukii, exhibited a strong avoidance as
the wild-type D. melanogaster Canton-S, although this species underwent an evolutionary shift in the
bitter taste perception [64], but consistently with previous report of decreased egg laying in the
presence of microorganisms [63]. The third species tested, D. busckii (subgenus Dorsilopha) of the
Drosophila cosmopolitan guild of domestic species, feeds opportunistically on overripe fruits as D.
melanogaster [47], and was the least avoidant species. This indicates the bioinsecticide avoidance was
general to the species tested in our study, yet it occurred with inter-species variability.

Drosophila melanogaster bioinsecticide avoidance occurred as early as 2 h after the choice test onset, with
increasing amplitude in the following few hours. This time scale is rapid on a fly lifetime’s scale and
consistent with previous reports of rapid learned avoidance towards pathogenic bacteria observed in
D. melanogaster [12]. The bioinsecticide avoidance may have started earlier during the choice test, yet
counting eggs laid does not provide a fine time resolution, since a robust result requires substantial
numbers of eggs. Further video tracking method may help to investigate this. Nevertheless, it is known
that the female decision-making for oviposition is a highly complex and dynamic trait that combines
several parameters: the female’s genotype and experience of the oviposition substrates [12,65–67], the
presence at oviposition sites of the male-derived aggregation pheromone transmitted to females during
mating and emitted by recently mated females and of the deterring host marking pheromone [68–70], the
social transmission of oviposition substrate preferences between females [71–73] and of other information
linked to substrate quality (presence of larvae and faeces) [70,74,75], the presence of specific commensal
microorganisms [63,76], the amplification of pheromone aggregation signal in infected flies by pathogenic
bacteria [77] and the group size [78]. The substrate texture also plays an important role in the female
oviposition decisions [63,79]. In our study system, the bioinsecticide doses and Ringer buffer addition to
the fly medium changed similarly the texture of the food substrate and did not change its pH [27].
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Figure 4. Drosophila melanogaster Canton-S female (a) oviposition preference as the proportion of eggs laid on one food substrate, and
(b) total number of eggs laid on both food substrates (quartiles, median and mean per treatment in red points) in the 18 h oviposition
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adjusted to the same concentration, the supernatant (Supernat.) after centrifugation, and the Ringer and PBS controls. Significance
of post hoc pairwise comparisons of the Ringer control with each of the other treatment modalities: ��� p < 0.001. N = 15
replicate cages per treatment.
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All the fly strains and species avoided the bioinsecticide at the highest dose tested, 109 CFU g−1 of Btk,
and at 108 CFU g−1 for D. melanogaster Canton-S and Nasrallah. This is in line with recent findings of
development alterations upon chronic exposure to these doses, and the smaller bioinsecticide impacts
on the emergence rates of D. melanogaster yw1118 and D. busckii compared with the other D.
melanogaster strains and D. suzukii [27]. While the dose 109 CFU g−1 is 1000 times above the
manufacturer’s recommendations and seems unrealistic in the field, the dose 108 CFU g−1 (equivalent
to a field application of 1.4 × 107 CFU cm−2) [27] is reachable under current agricultural practices (up
to eight authorized repeated applications are recommended [80,81] www.certiseurope.fr; www.
certisusa.com). Indeed, Bt spores and toxins naturally persist and could accumulate [16,23,24,82], and
bioinsecticide products contain protective compounds that lengthen their activity after field
application [80,83]. Very recently, doses close to 108 CFU g−1 were measured in honeybee matrices and
flowers after field application of the maximum recommended Bt bioinsecticide dose, and
concentrations up to 107 CFU g−1 still persisted two days later [84].

Behavioural avoidance of Btk bioinsecticide also occurred with the dialysed suspension and each of
its fractions independently. This excludes a main role of small molecular weight compounds present in
the commercial product [85], and suggests the contribution of spores, toxins, or residual bacterial
fragments in oviposition avoidance. Since Bt spores persist longer in the field than toxins [16,23,24],
our results suggest that Bt spores in the environment may be sufficient to elicit oviposition avoidance
by non-target Drosophila females. It is further known than the presence of bacterial cell wall
components (possibly remaining after bioinsecticide manufacturing) induce bacteria avoidance in
nematodes [86] and D. melanogaster males and females [14], which could be evaluated in our type of
study system. At the mechanistic level, larvae and adult Drosophila naturally avoid specific harmful
compounds or nutritionally unsuitable food based on the sensory perception of olfactory cues [87–89],

http://www.certiseurope.fr
http://www.certisusa.com
http://www.certisusa.com
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Figure 5. Drosophila suzukii (a) and D. busckii (c) female oviposition preference as the proportion of eggs laid on one food
substrate, and (b,d) their respective total numbers of eggs laid on both food substrates during the 24 h oviposition choice test
with Btk bioinsecticide at 109 CFU g−1 and the no-Btk Ringer control (0) (quartiles, median and mean per treatment in red
points). Significance of post hoc pairwise comparisons of the control with the Btk bioinsecticide: � p < 0.05 and ��� p <
0.0001. N = 25 replicate cages per treatment for D. suzukii (all cages) and N = 15 replicate cages for D. busckii.
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gustatory cues [64,90–92], or the physiological consequences of ingesting virulent bacteria [12]. In our
study, it seems unlikely that female bioinsecticide avoidance for oviposition relies only on olfactory
cues, as this would probably result in stronger oviposition avoidance early during the test. Yet the
involvement of gustatory cues (e.g. bitter taste) and/or physiological consequences of ingesting Btk
bioinsecticide remains to be assessed. Indeed, it was shown very recently that Bt endotoxins could
activate the Drosophila innate immune system and disrupt their gut cellular and endocrine
homeostasis [93,94].

For the females’ offspring, oviposition avoidance of Btk bioinsecticide alleviates the cost of developing
under chronic bioinsecticide exposure. Indeed, the growth and gut physiology of D. melanogaster larvae is
dramatically disturbed already at 5 × 107 CFU g−1 of bioinsecticide [28]. Emergence rates of D. melanogaster
strains on 108 CFU g−1 of bioinsecticide dropped by up to 81% [27]. The development success was even
null at 109 CFU g−1 [27]. Avoidance of Btk bioinsecticide by females while searching for oviposition sites
would thus increase their inclusive fitness, providing their progeny more chances to develop and reach
the adult stage and reproduce. Given that Drosophila females both feed and lay eggs on food substrates,
the avoidance of Btk-contaminated oviposition sites would also reduce the adult fly exposure to
bioinsecticide, although adults are not severely impacted [27].

From an ecological point of view, varying avoidance amplitudes between D. melanogaster genotypes
and Drosophila species may modify their competitive interactions in Btk-treated areas. Variations in
avoidance strength have already been observed for carbon dioxide and other odorants indicating the
stage of the fruit ripeness, reflecting the biological differences between Drosophila species specialized
on overripe fruits (D. melanogaster, D. yakuba, D. pseudobscura, D. virilis) and D. suzukii specialized on
ripening fruits [87,88]. In our study, smaller avoidance amplitude of D. busckii, combined with its
lower developmental susceptibility to chronic bioinsecticide exposure [27] suggest that Btk
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applications might not dramatically affect the field presence of this species in the Drosophila community.
By contrast, the strong developmental alterations of D. suzukii upon chronic exposure to bioinsecticide
[26,27], combined with the strong female oviposition avoidance, suggest that developmental
alterations could be alleviated by avoidance of Btk-treated areas. Despite the fact that D. melanogaster
and D. suzukii have different niche specializations, their potential indirect interactions would be
displaced mostly to Btk-untreated areas since both species show strong oviposition avoidance. The
population dynamics of their natural enemies (predators and parasites) would also be indirectly
impacted by these distribution changes, in addition to potential direct impacts [95]. Interestingly, our
results further indicate that Btk bioinsecticide might be an effective repellent to D. suzukii in orchards
and gardening, but not a population control agent as it comes with side effects for other non-target
fly species.

In summary, females of several Drosophila species and genotypes expressed oviposition avoidance of
food substrates contaminated with Btk bioinsecticide. The avoidance appeared rapidly after the onset of
choice tests, for all the fractions of the bioinsecticide suspension, and was independent of female
motivation for egg laying. Our study extends the assessment of Btk bioinsecticide chronic effects
previously reported in multiple Drosophila species to behavioural aspects, and highlights the need for
multi-component assessments (development, physiology, life history, behaviour) of the potential effects
of bioinsecticides on non-target invertebrates.
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