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1 Introduction

As prominent economic health indicator, productivity measure is usually defined as index

number evaluating the performance of economic systems (OECD, 2001). In the literature

focusing on productivity studies, the production theoretic approach to index numbers is

principally adopted (Prasada Rao, 2020; Caves et al., 1982). In this theoretical area, two

approaches are traditionally laid out, namely the multiplicative-based approach and the

additive-based one (Briec and Kerstens, 2004; Chambers, 2002; Bjurek, 1996; Färe et al.,

1994). Specifically, the multiplicative productivity indices are defined as ratios of multiplica-

tive distance functions (Shephard, 1970; Debreu, 1951; Farrell, 1957) whilst the additive

productivity measures are defined as difference-based indicators of directional distance func-

tions (Briec, 1997; Chambers et al., 1996)1. Approximation results are provided in the

literature establishing connections between the usual multiplicative and additive produc-

tivity measures (Briec and Kerstens, 2004; Boussemart et al., 2003). These outcomes are

of particular interest to interpret differences of empirical findings that result in employing

either additive- or multiplicative-based productivity indices.

The production theoretic approach to index numbers has been mainly designed through

unidimensional framework, especially focusing on economic components of the evaluated

economic systems (Färe et al., 1994). In the last decades, numerous paper incorporate en-

vironmental dimension to appraise productivity changes (Sueyoshi et al., 2017; Zhou et al.,

2008). In this line, both additive and multiplicative environmental productivity measures

have been defined (Abad and Ravelojaona, 2022, 2021; Azad and Ancev, 2014; Chung et al.,

1997). Specifically, multiplicative environmental productivity measures inherit the structure

of the Malmquist (Caves et al., 1982) and the Hicks-Moorsteen (Bjurek, 1996) productivity

indices. Moreover, additive environmental productivity indicators take the form of the Lu-

enberger (Chambers, 2002) and the Luenberger-Hicks-Moorsteen (Briec and Kerstens, 2004)

productivity indicators.

This contribution establishes equivalence conditions for additive and multiplicative

1The main differences between the additive and the multiplicative approaches are presented in Briec and

Kerstens (2004), Chambers (1998, 2002) and Diewert (1998), among others.
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environmentally-adjusted2 productivity measures. These equivalence conditions extend the

usual approximation results that linked the traditional additive and multiplicative produc-

tivity measures (Briec and Kerstens, 2004; Boussemart et al., 2003). Particularly, this contri-

bution highlights specific conditions for which environmentally-adjusted Malmquist and Lu-

enberger productivity measures are equivalent to each other. Moreover, theoretical relation

between environmentally-adjusted Hicks-Moorsteen and Luenberger-Hicks-Moorsteen pro-

ductivity measures are introduced. As a result, additive and multiplicative environmentally-

adjusted productivity measures are exactly related to each other providing an unified frame-

work for empirical analysis.

Interestingly, this contribution also permits to present additive version of Malmquist

and Hicks-Moorsteen environmentally-adjusted productivity indices. This result extends

the widely applied Chung et al. (1997) methodology, which provides theoretical background

to consider desirable and undesirable components in traditional multiplicative-based pro-

ductivity measure. Moreover, multiplicative version of Luenberger and Luenberger-Hicks-

Moorsteen environmentally-adjusted productivity indicators are provided. This outcome

may be understood as a reciprocal result of the Chung et al. (1997) model, handling the

issue of joint producing good and bad components in productivity assessment through mul-

tiplicative productivity indices.

The applicability of the unified framework presented in this paper is displayed through

an empirical illustration based upon the database sourced from the work of Jeon and Sick-

les (2004). Precisely, the main findings of this paper are illustrated by considering a non

parametric convex neutral by-production model. In this line, multiplicative version of the

by-production model (Abad and Briec, 2019; Murty et al., 2012; Banker and Maindiratta,

1986) is considered to provide non parametric estimation of the main results highlighted in

this paper.

The remainder of this paper unfolds as follows. Section 2 introduces theoretical pre-

liminaries. The pollution-generating production process and the distance functions are also

presented in this section. Section 3 displays multiplicative and additive environmentally-

2To distinguish from the measures existing in the literature (environmental measures), the measures

proposed in this paper are designated as “environmentally-adjusted” ones.
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adjusted productivity measures and further, it provides equivalence conditions for the ad-

ditive and the multiplicative environmentally-adjusted productivity measures. An empirical

illustration is provided in Section 4, highlighting the applicability of the unified framework

introduced in this paper. Finally, section 5 concludes.

2 Background

In this section, the properties of the pollution-generating production process are presented.

Based upon this theoretical background, additive and multiplicative distance functions are

displayed and further, equivalence condition between the proposed distance functions is laid

out.

2.1 Technology definition and properties

Let xt = (xect , x
em
t ) ∈ Rn

+ denotes the economic factors and the emission-generating inputs

used to produce both economic (i.e., intended) and emission-generating (i.e., unintended)

outputs yt = (yect , y
em
t ) ∈ Rm

+ , such that n = nec + nem and m = mec +mem.

The pollution-generating technology is defined as follows:

Tt :=
{

(xt,yt) ∈ Rn+m
+ : xt can produce yt

}
(2.1)

Assume that the production process satisfies the following usual assumptions (Färe et al,

1985):

T1. -No free lunch and inaction- (0, 0) ∈ Tt, (0,yt) ∈ Tt ⇒ yt = 0;

T2. -Boundedness- Tyt
:= {(ut,vt) ∈ Tt : vt ≤ yt} is bounded for any yt ∈ Rm

+ ;

T3. -Closedness- Tt is closed;

Moreover, suppose that for any free disposal cone K := Rn
+ × −Rm

+ , the production set

satisfies the generalised B-disposal property:

T4. -Generalised B-disposability- Tt :=

((
Tt+K

)
∩
(
Tt+(Rnec+mem

+ ×−Rnem+mec
+ )

))
∩(Rn

+×

Rm
+

)
.
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The axiomatic framework T1 –T4 permits to define the production process as an inter-

section of sub-technologies (Abad and Briec, 2019; Murty et al., 2012). Specifically, the

economic (i.e., intended) production activities satisfy the usual free disposal property –i.e.,(
Tt + (Rn

+ ×−Rm
+ )
)
∩
(
Rn

+ × Rm
+

)
– whilst partially reversed free disposal axiom applies for

the polluting (i.e., unintended) production activities; i.e.,
(
Tt + (Rnec+mem

+ ×−Rnem+mec
+ )

))
∩(

Rn
+ × Rm

+

)
. Remarkably, the theoretical model T1 –T4 is fairly weak and do not impose

any convexity assumption such that convex neutral production model may be considered.

2.2 Technology characterisation: distance functions

In this section, additive and multiplicative distance functions are considered as functional

representation of the production process (Chambers and Färe, 2020).

The next result presents additive and multiplicative environmentally-adjusted distance

functions.

Definition 2.1 Let Tt be a production technology that satisfies properties T1–T4. For any

(xt,yt) ∈ Rn+m
+ :

i. The multiplicative environmentally-adjusted distance function is defined as follows,

Dα;βt (xt,yt) := sup
λ

{
λ ≥ 1 :

(
λ−αx′t, λ

βy′t
)
∈ Tt

}
(2.2)

where α = (αec, αem) ∈ Rn
+ and β = (βec, βem) ∈ Rmec

+ × Rmem
− , such that λ−α =

diag(λ−α
ec

, λ−α
em

) and λβ = diag(λβ
ec

, λβ
em

).

ii. The additive environmentally-adjusted distance function is defined as follows,

−→
D γ;σ

t (xt,yt) := sup
δ

{
δ ≥ 0 :

(
(In − δγ)x′t, (Im + δσ)y′t

)
∈ Tt

}
(2.3)

where γ = (γec, γem) ∈ Rn
+ and σ = (σec, σem) ∈ Rmec

+ × Rmem
− , with γ = diag(γec, γem)

and σ = diag(σec, σem).

In statements i. and ii., λ−α, λβ, γ and σ are such that dim(λ−α) = dim(γ) = n × n and

dim(λβ) = dim(σ) = m×m. Moreover, In and Im are to the identity matrix of order n and

m, respectively.
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The additive and multiplicative environmentally-adjusted distance functions fully char-

acterise the production process such that3:

Dα;βt (xt,yt) ≥ 1⇔ (xt,yt) ∈ Tt ⇔
−→
D γ;σ

t (xt,yt) ≥ 0.

Interestingly, the general shape of the additive and multiplicative environmentally-adjusted

distance functions allows comparisons with existing environmental distance functions (Abad

and Ravelojaona, 2022; Picazo-Tadeo et al., 2014; Färe et al., 2004; Chung et al., 1997; Färe

et al., 1989). These connections are presented in the Proposition 5.1 (see Appendix I).

2.3 Environmentally-adjusted distance functions: equivalence con-

dition

Let T++
t := Tt ∩ Rn+m

++ be the strictly positive production set. The next result defines

equivalence condition for the additive and multiplicative environmentally-adjusted distance

functions.

Proposition 2.2 For any (xt,yt) ∈ Rn+m
++ , the equivalence condition for the additive and

multiplicative environmentally-adjusted distance functions is defined as follows:

−→
D γ;σ

t (ln(xt), ln(yt)) ≡ ln
(
Dα;βt (xt,yt)

)
(2.4)

where
−→
D
γ;σ
t (ln(xt), ln(yt)) , ln

(
D
α;β
t (xt,yt)

)
∈ ln (T++

t ), such that γ =

(
αec

ln(xect )
,

αem

ln(xemt )

)
and σ =

(
βec

ln(yect )
,

βem

ln(yemt )

)
.

See Appendix II for the proof.

The equivalence result highlighted in Proposition 2.2 permits to exactly relate the additive

and multiplicative environmentally-adjusted distance functions to one another. Interestingly,

this outcome is applied by considering existing environmental distance functions (Abad and

Ravelojaona, 2022; Picazo-Tadeo et al., 2014; Färe et al., 2004; Chung et al., 1997; Färe et

al., 1989); see Proposition 5.2 in Appendix I.

3The basic properties of the additive- and multiplicative-based distance functions are laid out in

Mehdiloozad et al. (2014), Peyrache and Coelli (2009) and Briec (1997).

6



3 Environmentally-adjusted productivity measures

This section displays equivalence conditions between additive- and multiplicative-based

environmentally-adjusted productivity measures. In addition, additive versions of

multiplicative-based environmentally-adjusted productivity measures are introduced. Re-

ciprocal results laying out multiplicative versions of additive-based environmentally-adjusted

productivity measures are also provided extending the widely applied Chung et al. (1997)

methodology.

3.1 Malmquist and Luenberger productivity measures: equiva-

lence condition

The next result presents the environmentally-adjusted Malmquist and Luenberger produc-

tivity measures.

Definition 3.1 Assume that Tt,t+1 is a production process that satisfies properties T1–T4.

For any (xt,t+1,yt,t+1) ∈ Rn+m
+ and for any i, k = {ec, em} with k 6= i,

i. The environmentally-adjusted Malmquist productivity index is defined as follows,

EAMα;β
t,t+1(xt,t+1,yt,t+1) =

 ∏
i={ec,em}

D
αi;βi

t (xt,yt)

D
αi;βi

t (xit+1, x
k
t , y

i
t+1, y

k
t )
×

D
αi;βi

t+1 (xt+1,yt+1)

D
αi;βi

t+1 (xit, x
k
t+1, y

i
t, y

k
t+1)


1

2
(3.1)

where α = (αec, αem) ∈ Rn
+ and β = (βec, βem) ∈ Rmec

+ × Rmem
− .

ii. The environmentally-adjusted Luenberger productivity indicator is defined as follows,

EALγ;σt,t+1(xt,t+1,yt,t+1) =
1

2

 ∑
i={ec,em}

(−→
D
γi;σi

t (xt,yt)−
−→
D
γi;σi

t (xit+1, x
k
t , y

i
t+1, y

k
t )
)

+
(−→
D
γi;σi

t+1 (xt+1,yt+1)−
−→
D
γi;σi

t+1 (xit, x
k
t+1, y

i
t, y

k
t+1)

) (3.2)

where γ = (γec, γem) ∈ Rn
+ and σ = (σec, σem) ∈ Rmec

+ × Rmem
− .

The proposition below introduces equivalence condition for the environmentally-adjusted

Malmquist and Luenberger productivity measures.
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Proposition 3.2 For any (xt,t+1,yt,t+1) ∈ Rn+m
++ , equivalence condition for the environmentally-

adjusted Malmquist and Luenberger productivity measures is as follows:

ln
(

EAMα;β
t,t+1(xt,t+1,yt,t+1)

)
≡ EALγ;σt,t+1

(
ln(xt,t+1), ln(yt,t+1)

)
, (3.3)

with ln
(

EAMα;β
t,t+1(xt,t+1,yt,t+1)

)
,EALγ;σt,t+1

(
ln(xt,t+1), ln(yt,t+1)

)
∈ ln

(
T++
t,t+1

)
such that

γ =

(
αec

ln(xect,t+1)
,

αem

ln(xemt,t+1)

)
and σ =

(
βec

ln(yect,t+1)
,

βem

ln(yemt,t+1)

)
.

In the next statement, additive (respectively, multiplicative) version of the environmentally-

adjusted Malmquist (respectively, Luenberger) productivity measure is proposed. The addi-

tive version of the environmentally-adjusted Malmquist productivity index is defined through

additive distance functions. This productivity measure is named the environmentally-adjusted

Malmquist-Luenberger productivity index based upon the initial work of Chung et al. (1997).

Besides, the reciprocal environmentally-adjusted Malmquist-Luenberger productivity mea-

sure proposes a multiplicative version of the environmentally-adjusted Luenberger produc-

tivity indicator.

Corollary 3.3 For any (xt,t+1,yt,t+1) ∈ Rn+m
++ , and any γi =

αi

ln(xit,t+1)
and σi =

βi

ln(yit,t+1)
with i, k = {ec, em} and i 6= k :

i. The environmentally-adjusted Malmquist-Luenberger productivity index is defined as fol-

lows,

EAMLα;βt,t+1(xt,t+1,yt,t+1) =

 ∏
i={ec,em}

exp
(−→
D
γi;σi

t (ln(xt), ln(yt))
)

exp
(−→
D
γi;σi

t (ln(xit+1), ln(xkt ), ln(yit+1), ln(ykt ))
)

×
exp

(−→
D
γi;σi

t+1 (ln(xt+1), ln(yt+1))
)

exp
(−→
D
γi;σi

t+1 (ln(xit), ln(xkt+1), ln(yit), ln(ykt+1))
)


1

2
(3.4)

ii. The reciprocal environmentally-adjusted Malmquist-Luenberger productivity measure is

defined as follows,

EAML
γ;σ

t,t+1 (ln(xt,t+1), ln(yt,t+1)) =
1

2

[ ∑
i={ec,em}

(
ln
(
D
αi;βi

t (xt,yt)
)
− ln

(
D
αi;βi

t (xit+1, x
k
t , y

i
t+1, y

k
t )
))

+
(

ln
(
D
αi;βi

t+1 (xt+1,yt+1)
)
− ln

(
D
αi;βi

t+1 (xit, x
k
t+1, y

i
t, y

k
t+1)

))]
(3.5)
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3.2 Hicks-Moorsteen and Luenberger-Hicks-Moorsteen productiv-

ity measures: equivalence condition

The upcoming statement displays the environmentally-adjusted Hicks-Moorsteen and Luenberger-

Hicks-Moorsteen productivity measures.

Definition 3.4 Let Tt,t+1 be a production process that satisfies properties T1-T4. For any

(xt,t+1,yt,t+1) ∈ Rn+m
+ and for any i, k = {ec, em} with i 6= k,

i. The environmentally-adjusted Hicks-Moorsteen productivity index is defined as follows,

EAHMα;β
t,t+1(xt,t+1,yt,t+1) =

 ∏
i={ec,em}

D
βi

t (xt,yt)

D
βi

t (xt, yit+1, y
k
t )
× Dα

i

t (xt,yt)

Dα
i

t (xit+1, x
k
t ,yt)

(3.6)

×
D
βi

t+1(xt+1, y
i
t, y

k
t+1)

D
βi

t+1(xt+1,yt+1)
×

Dα
i

t+1(x
i
t, x

k
t+1,yt+1)

Dα
i

t+1(xt+1,yt+1)

]1

2

where α = (αec, αem) ∈ Rn
+ and β = (βec, βem) ∈ Rmec

+ × Rmem
− .

ii. The environmentally-adjusted Luenberger-Hicks-Moorsteen productivity indicator is de-

fined as,

EALHMγ;σ
t,t+1(xt,t+1,yt,t+1) =

1

2

[ ∑
i={ec,em}

(−→
D σ

i

t (xt,yt)−
−→
D σ

i

t (xt, y
i
t+1, y

k
t )
)

+
(−→
D
γi

t (xt,yt)−
−→
D
γi

t (xit+1, x
k
t ,yt)

)
+

(−→
D σ

i

t+1(xt+1, y
i
t, y

k
t+1) −

−→
D σ

i

t+1(xt+1,yt+1)
)

+
(−→
D
γi

t+1(x
i
t, x

k
t+1,yt+1)−

−→
D
γi

t+1(xt+1,yt+1)
)]

(3.7)

where γ = (γec, γem) ∈ Rn
+ and σ = (σec, σem) ∈ Rmec

+ × Rmem
− .

Equivalence condition for the environmentally-adjusted Hicks-Moorsteen and Luenberger-

Hicks-Moorsteen productivity measures is defined in the next result.

Proposition 3.5 For any (xt,t+1,yt,t+1) ∈ Rn+m
++ , the equivalence condition for the

environmentally-adjusted Hicks-Moorsteen and Luenberger-Hicks-Moorsteen productivity mea-

sures is defined as:

ln
(

EAHMα;β
t,t+1(xt,t+1,yt,t+1)

)
≡ EALHMγ;σ

t,t+1

(
ln(xt,t+1), ln(yt,t+1)

)
, (3.8)

where ln
(

EAHMα;β
t,t+1(xt,t+1,yt,t+1)

)
,EALHMγ;σ

t,t+1

(
ln(xt,t+1), ln(yt,t+1)

)
∈ ln

(
T++
t,t+1

)
such

that γ =

(
αec

ln(xect )
,

αem

ln(xemt )

)
and σ =

(
βec

ln(yect )
,

βem

ln(yemt )

)
.
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Additive version of the environmentally-adjusted Hicks-Moorsteen productivity index and

its reciprocal are presented in the statement below. These productivity measures are named

the Hicks-Moorsteen-Luenberger index and the reciprocal Hicks-Moorsteen-Luenberger in-

dicator, respectively.

Corollary 3.6 For any (xt,t+1,yt,t+1) ∈ Rn+m
++ , and any γi =

αi

ln(xit,t+1)
and σi =

βi

ln(yit,t+1)
with i, k = {ec, em} and i 6= k:

i. The environmentally-adjusted Hicks-Moorsteen-Luenberger productivity index is defined as
follows,

EAHMLα;βt,t+1(xt,t+1,yt,t+1) =

 ∏
i={ec,em}

exp
(−→
D σ

i

t (ln(xt), ln(yt))
)

exp
(−→
D σ

i

t (ln(xt), ln(yit+1), ln(y
k
t ))
) × exp

(−→
D
γi

t (ln(xt), ln(yt))
)

exp
(−→
D
γi

t (ln(xit+1), ln(x
k
t ), ln(yt))

)

×
exp

(−→
D σ

i

t+1(ln(xt+1), ln(yit), ln(y
k
t+1))

)
exp

(−→
D σ

i

t+1(ln(xt+1), ln(yt+1))
) ×

exp
(−→
D
γi

t+1(ln(x
i
t), ln(x

k
t+1), ln(yt+1))

)
exp

(−→
D
γi

t+1(ln(xt+1), ln(yt+1))
)


1

2

(3.9)

ii. The reciprocal environmentally-adjusted Hicks-Moorsteen-Luenberger productivity indica-

tor is defined as follows,

EAHML
γ;σ

t,t+1 (ln(xt,t+1), ln(yt,t+1)) =
1

2

[ ∑
i={ec,em}

(
ln
(
D
βi

t (xt,yt)
)
− ln

(
D
βi

t (xt, y
i
t+1, y

k
t )
))

+
(

ln
(
Dα

i

t (xt,yt)
)
− ln

(
Dα

i

t (xit+1, x
k
t ,yt)

))
+
(

ln
(
D
βi

t+1(xt+1, y
i
t, y

k
t+1)

)
− ln

(
D
βi

t+1(xt+1,yt+1)
))

+
(

ln
(
Dα

i

t+1(x
i
t, x

k
t+1,yt+1)

)
− ln

(
Dα

i

t+1(xt+1,yt+1)
))]

(3.10)

3.3 A class of examples

The general shape of the additive and multiplicative environmentally-adjusted productivity

measures allows to provide equivalences with classical additive- and multiplicative-based

productivity measures as displayed in the next statements.

Proposition 3.7 For any (xt,t+1,yt,t+1) ∈ Rn+m
++ and a logarithmically transformed produc-

tion technology ln
(
T++
t,t+1

)
, the environmentally-adjusted Malmquist and Luenberger produc-

tivity measures are respectively equivalent to classical Malmquist and Luenberger productivity

measures, under some conditions.
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Table 1 displays the equivalence conditions between the environmentally-adjusted Malmquist

and Luenberger productivity measures and classical Malmquist and Luenberger productivity

measures, respectively4.

Productivity measures Parameters References

EALγ;σt,t+1(ln(·)) ≡ γec γen σec σen

−ln(Mec
t,t+1(·)) 0 0

1

ln(yect,t+1)
0

Caves et al. (1982)
ln(Mem

t,t+1(·)) 0 0 0 − 1

ln(yemt,t+1)

ln(EAMα;β
t,t+1(·)) ≡ αec αen βec βen

Lec
t,t+1(·) 0 0 ln(yect,t+1) 0

Chambers (2002)
Lem
t,t+1(·) 0 0 0 −ln(yemt,t+1)

Table 1: Environmentally-adjusted and classical Malmquist and Luenberger productivity measures equiv-

alences.

Proposition 3.8 For any (xt,t+1,yt,t+1) ∈ Rn+m
++ and a transformed production technology

ln
(
T++
t,t+1

)
, the environmentally-adjusted Luenberger-Hicks-Moorsteen and Hicks-Moorsteen

productivity measures are respectively equivalent to classical Luenberger-Hicks-Moorsteen and

Hicks-Moorsteen productivity measures, under some conditions.

Table 2 provides the equivalence conditions between the environmentally-adjusted Total

Factor Productivity (TFP) measures and the classical Hicks-Moorsteen and Luenberger-

Hicks-Moorsteen productivity measures.

4Note that the outcomes provided in Table 1 are based upon output oriented Malmquist and Luenberger

productivity measures. However, equivalence results can also be defined through input orientation.
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Productivity measures Parameters References

EALHMγ;σ
t,t+1(ln(·)) ≡ γec γen σec σen

−ln(HMec
t,t+1(·))

1

ln(xect,t+1)
0

1

ln(yect,t+1)
0

Bjurek (1996)
ln(HMem

t,t+1(·)) 0
1

ln(xemt,t+1)
0 − 1

ln(yemt,t+1)

ln(EAHMα;β
t,t+1(·)) ≡ αec αen βec βen

LHMec
t,t+1(ln(·)) ln(xect,t+1) 0 ln(yect,t+1) 0

Briec and Kerstens (2004)
LHMem

t,t+1(ln(·)) 0 ln(xemt,t+1) 0 −ln(yemt,t+1)

Table 2: Environmentally-adjusted TFP and classical TFP equivalences.

Remark that the outcomes displayed in Table 1 provide as an immediate result the

equivalence between the environmentally-adjusted Luenberger productivity indicator and the

hyperbolic-based Malmquist productivity indexMHo

t,t+1(·) by considering any (xt,t+1,yt,t+1) ∈

Rn+m
++ and a transformed production technology ln

(
T++
t,t+1

)
. Reciprocally, the

environmetally-adjusted Malmquist productivity measure is equivalent to the environmetal

Luenberger productivity indicator ELt,t+1(·) (Azad and Ancev, 2014). These equivalences

are displayed as follows:

ln
(
MHo

t,t+1(·)
)
≡ EALγ;σt,t+1 (ln(·)) with γ = 0 and σ =

(
1

ln(yect )
,− 1

ln(yemt )

)
, (3.11)

ELt,t+1(·) ≡ ln
(
EAMα;β

t (·)
)

with α = 0 and β = (ln(yect ),−ln(yemt )) . (3.12)

4 Empirical illustration

This section aims to propose an empirical illustration highlighting the equivalence conditions

stated in the previous sections. To do so, both production technology and distance functions

are non parametrically specified in the upcoming section.

4.1 Non parametric specifications

To propose non parametric specifications of the production technology and of the distance

functions, we use the data envelopment analysis (DEA) approach.
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In this empirical illustration, the non convex multiplicative production set of Banker

and Maindiratta (1986) is considered. Indeed, non convexity allows to take account for

local strictly increasing returns-to-scale contrary to the variable returns-to-scale production

technology of Banker et al. (1984), which is well known as the BCC model. Moreover,

non convexity shows that there exists non-linear relationship between the inputs and the

outputs and hence, there can be indivisibilities in the production process (Sahoo and Tone,

2013). Specifically, multiplicative version of the by-production model satisfies T1− T4 and

is considered to display the applicability of the unified framework presented in this paper

(Abad and Briec, 2019; Murty et al., 2012).

For any (xt,yt) ∈ Rn+m
+ and any set of observations J = {1, · · · , J} with j ∈ J , the

non parametric multiplicative by-production technology is defined as:

T M
t :=

{
(xt,yt) ∈ Rn+m

+ : xt ≥
∏
j∈J

(
xjt
)λj ,yt ≤

∏
j∈J

(
yjt
)λj , xemt ≤∏

j∈J

(
xem,jt

)µj ,
yemt ≥

∏
j∈J

(
yem,jt

)µj ;λ, µ ≥ 0;
∑
j∈J

λj = µj = 1

}
. (4.1)

Now, suppose that we consider strictly positive input-output vectors such that (xt,yt) ∈
Rn+m

++ . Hence, the natural logarithmic transformation of the multiplicative by-production

technology yields a Napierian by-production set as follows:

ln
(
T M
t

)
:=

(xt,yt) ∈ Rn+m++ : ln(xt) ≥
∑
j∈J

λj ln
(
xjt

)
, ln(yt) ≤

∑
j∈J

λj ln
(
yjt

)
,

ln(xemt ) ≤
∑
j∈J

µj ln
(
xem,jt

)
, ln(yemt ) ≥

∑
j∈J

µj ln
(
yem,jt

)
;λ, µ ≥ 0;

∑
j∈J

λj = µj = 1

 . (4.2)

It is worth noting that the Napierian technology has similar structure with the BCC

production set. In such case, the multiplicative by-production set is a log-additive and a

log-convex set.

See Appendix III for the non parametric specifications of the distance functions.
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4.2 Data

In this paper, we use a dataset sourced from the work of Jeon and Sickles (2004). The

considered decision making units are 17 OECD countries: (1) Canada; (2) the United States;

(3) Japan; (4) Austria; (5) Belgium; (6) Denmark; (7) Finland; (8) France; (9) Germany;

(10) Greece; (11) Ireland; (12) Italy; (13) Norway; (14) Spain; (15) Sweden; (16) United

Kingdoms; (17) Australia, for the years 1989 and 1990. The dataset includes two no polluting

inputs (i) capital and (ii) labour; one polluting input (iii) energy; one polluting output (iv)

carbon dioxide emission and one no polluting output (v) gross domestic product.

4.3 Results

Observations (1a) EAM (1b) ln(EAM) (2) EAL (3a) EAHM (3b) ln(EAHM) (4) EALHM

Canada ∞ ∞ ∞ 1.0474 0.0464 0.0464

United States ∞ ∞ ∞ 0.9646 -0.0360 -0.0360

Japan 1.0154 0.0152 0.0152 0.9490 -0.0523 -0.0523

Austria 1.0002 0.0002 0.0002 0.9309 -0.0716 -0.0716

Belgium ∞ ∞ ∞ 0.9470 -0.0545 -0.0545

Denmark ∞ ∞ ∞ 1.0806 0.0775 0.0775

Finland ∞ ∞ ∞ 0.9471 -0.0543 -0.0543

France 1.0001 0.0001 0.0001 0.9787 -0.0216 -0.0216

Germany 0.9989 -0.0011 -0.0011 0.9817 -0.0184 -0.0184

Greece ∞ ∞ ∞ 0.8927 -0.1135 -0.1135

Ireland ∞ ∞ ∞ 0.9489 -0.0524 -0.0524

Italy 1.0113 0.0113 0.0113 1.0019 0.0019 0.0019

Norway ∞ ∞ ∞ 1.0321 0.0316 0.0316

Spain 1.0018 0.0018 0.0018 1.0987 0.0941 0.0941

Sweden 0.9991 -0.0009 -0.0009 1.0596 0.0579 0.0579

United Kingdoms ∞ ∞ ∞ 0.9494 -0.0519 -0.0519

Australia ∞ ∞ ∞ 0.8694 -0.1399 -0.1399

Table 3: Environmentally-adjusted productivity scores over the period 1989-1990.

The results in Table 3 are illustrated in Figure 1 for the environmentally-adjusted Malmquist

and Luenberger productivity measures and in Figure 2 for the environmentally-adjusted

Hicks-Moorsteen and, Luenberger-Hicks-Moorsteen productivity measures.

Results in Table 3 show that 5 countries have productivity improvement through measures

(1a-1b) and (2) whereas 2 countries are facing productivity loss over the considered period.
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It is worth noting that EAM and EAL are defined with complete cross-sectional distance

measures such that infeasibilities may occur (Abad, 2015). In such case, some results are

indeterminate and cannot be interpreted. Specifically, in this empirical illustration, 10 out

of 17 observations have indeterminate productivity measure.

Total factor productivity measures such as (3a-3b) and (4) allow to overcome the issue

of indeterminateness since these measures are always assessed towards feasible directions.

Thus, results of productivity measures (3a-3b) and (4) cannot be infeasible and can always

be interpreted as show in Table 3. These results show that 7 out of 17 observations have

productivity gains.

As visible in Figure 1 and Figure 2, if an observation faces a productivity loss under an

EAM productivity measure then it also deals with a productivity deterioration through an

EAL productivity indicator. This outcome is a result of the connection between EAM and

EAL productivity measures. The same reasoning holds for the EAHM and EALHM total

factor productivity measures. Regarding the additive and multiplicative classical families of

productivity measures, namely Hicks-Moorsteen-, Luenberger-Hicks-Moorsteen-, Malmquist-

and Luenberger-based indicators, similar outcomes are provided in Appendix IV.

Figure 1: Environmentally-adjusted Luenberger and logarithmically transformed Malmquist productivity

measures.
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Figure 2: Environmentally-adjusted Luenberger-Hicks-Moorsteen and logarithmically transformed Hicks-

Moorsteen productivity measures.

5 Concluding Comments

This paper presents a general method comparing additive- and multiplicative-based pro-

ductivity measures. Specifically, this contribution lays out equivalence conditions for the

additive and multiplicative environmentally-adjusted productivity measures. Therefore, an

unified framework allowing to compare additive and multiplicative environmentally-adjusted

productivity measures is provided.

Using the unified framework defined in this paper, researchers would be able to analyse

environmentally-adjusted productivity variation through a general method. Indeed, the

proposed approach allows to remove differences in magnitudes of empirical results arising

from the use of different families of productivity measures. As a result, the proposed approach

would provide a theoretical framework that is neutral as regard to the class of selected

productivity measures.
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Appendix I

The following results highlight connections between the environmentally-adjusted multiplica-

tive distance function (2.2), the intended (Dec
t ) and unintended (Dem

t ) outputs Shephard

distance functions (Färe et al., 2004), the hyperbolic output (Ho
t) distance function (Färe et

al., 1989) and the hyperbolic environmental efficiency (Ψt) measure (Abad and Ravelojaona,

2022). Moreover, the next outcomes also permit comparing the environmentally-adjusted

additive distance function (2.3) with the environmental directional (
−→
D t) distance function

(Chung et al., 1997), the intended (
−→
D ec

t ) and unintended (
−→
D em

t ) sub-vector directional dis-

tance functions (Picazo-Tadeo et al., 2014) as well as the environmental disaggregated di-

rectional (Ξt) distance function (Abad and Ravelojaona, 2022).

Proposition 5.1 For any (xt,yt) ∈ Rn+m
+ , the environmentally-adjusted additive- and

multiplicative-based distance function allows to provide classical additive- and multiplicative-

based efficiency measures, as follows:

Efficiency measures Parameters

References
D
α;β
t (·) ≡ αec αen βec βen

a. [Dec
t (·)]−1 0 0 1 0

Färe et al. (2004)
b. Dem

t (·) 0 0 0 -1

c. Ho
t(·) 0 0 1 -1 Färe et al. (1989)

d. Ψt(·) 1 1 1 -1 Abad and Ravelojaona (2022)

−→
D
γ;σ
t (·) ≡ γec γen σec σen

e.
−→
D ec

t (·) 0 0 1 0
Picazo-Tadeo et al. (2014)

f.
−→
D em

t (·) 0 0 0 -1

g.
−→
D t(·) 0 0 1 -1 Chung et al. (1997)

h. Ξt(·) 1 1 1 -1 Abad and Ravelojaona (2022)

Table 4: Environmentally-adjusted and classical distance functions equivalence

The upcoming statements display equivalence conditions for the proposed environmentally-
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adjusted distance functions (2.2)-(2.3) and the aforementioned additive- and multiplicative-

based distance functions.

Proposition 5.2 For any (xt,yt) ∈ Rn+m
++ and any logarithmically transformed production

set ln (T++
t ), the environmentally-adjusted additive and multiplicative distance functions are

equivalent to classical additive- and multiplicative-based efficiency measures, as follows:

Efficiency measures Parameters

Reference
ln(Dα;βt (·)) ≡ αec αen βec βen

i.
−→
Dec

t (ln(·)) 0 0 ln(yect ) 0
Picazo-Tadeo et al. (2014)

ii.
−→
Dem

t (ln(·)) 0 0 0 −ln(yemt )

iii.
−→
Dt(ln(·)) 0 0 ln(yect ) −ln(yemt ) Chung et al. (1997)

iv. Ξt(ln(·)) ln(xect ) ln(xemt ) ln(yect ) −ln(yemt ) Abad and Ravelojaona (2022)

−→
D
γ;σ
t (ln(·)) ≡ γec γen σec σen

v. −ln(Dec
t (·)) 0 0

1

ln(yect )
0

Färe et al. (2004)
vi. ln(Dem

t (·)) 0 0 0 − 1

ln(yemt )

vii. ln(Ho
t (·)) 0 0

1

ln(yect )
− 1

ln(yemt )
Färe et al. (1989)

viii. ln(Ψt(·))
1

ln(xect )

1

ln(xect )

1

ln(yemt )
− 1

ln(yemt )
Abad and Ravelojaona (2022)

Table 5: Equivalence conditions: environmentally-adjusted and classical efficiency measures.

Remark that the hyperbolic-based distance function (c.) can be approximated through

a Taylor’s expansion as proposed by Färe et al. (2016), with respect to some constraints.

However, this paper assesses the hyperbolic efficiency measure by using the equivalence (vi.)

in Proposition 5.2.
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Appendix II

Proof of Proposition 2.2: Assume that Tt is a production technology that satisfies properties

T1 -T4. For any (xt,yt) ∈ Rn+m
++ , the environmentally-adjusted additive distance function

(2.3) is defined as follows,

−→
D γ;σ

t (xt,yt) := sup
δ

{
δ ≥ 0 :

(
(In − δγ)x′t, (Im + δσ)y′t

)
∈ Tt

}
(5.1)

Therefore,

−→
D γ;σ

t (ln(xt), ln(yt)) := sup
δ

{
δ ≥ 0 :

(
(In − δγ)ln(xt)

′, (Im + δσ)ln(yt)
′
)
∈ T ln

t

}
, (5.2)

such that ln(xt) = (ln(xect ), ln(xemt )), ln(yt) = (ln(yect ), ln(yemt )) and T ln
t := {(ln(xt), ln(yt)) :

(xt,yt) ∈ T++
t } =: ln (T++

t ).

Moreover, according to the definition of the environmentally-adjusted multiplicative dis-

tance function (2.2),

ln
(
Dα;βt (xt,yt)

)
:= sup

λ

{
λ ≥ 1 : (−αln(λ) + ln(xt)

′, βln(λ) + ln(yt)
′) ∈ ln

(
T++
t

)}
. (5.3)

As a result, since T ln
t ≡ ln (T++

t ) then,
−→
D
γ;σ
t (ln(xt), ln(yt)) ≡ ln

(
D
α;β
t (xt,yt)

)
with

γ =

(
αec

ln(xect )
,

αem

ln(xemt )

)
and σ =

(
βec

ln(yect )
,

βem

ln(yemt )

)
. 2
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Appendix III

Non parametric specification of the distance functions.

Multiplicative environmentally-adjusted distance function

The multiplicative environmentally-adjusted distance function is defined within the multi-

plicative technology T M
t . Let α = (αec, αem) ∈ Rn

+ and β = (βec, βem) ∈ Rmec
+ × Rmem

− , for any

(xt,yt) ∈ Rn+m
++ :

D
α;β
t (xt,yt) = min λ

s.t. λαxt ≥
∏
j∈J

(
xjt
)λj

λβyt ≤
∏
j∈J

(
yjt
)λj

λα
em

xemt ≤
∏
j∈J

(
xem,jt

)µj
λβ

em

yemt ≥
∏
j∈J

(
yem,jt

)µj
∑
j∈J

λj = 1∑
j∈J

µj = 1

λ, µ ≥ 0.

Additive environmentally-adjusted distance function

The additive environmentally-adjusted distance function is defined within the natural loga-

rithmic transformed multiplicative production technology ln (T M
t ). For any (xt,yt) ∈ Rn+m

++

and any γ = (γec, γem) and σ = (σec, σem) where γec, γem ∈ Rn
+, σec ∈ Rmec

+ and σem ∈ Rmem
− ,
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−→
D
γ;σ
t (ln(xt), ln(yt)) = max δ

s.t. (1− δγ)ln(xt) ≥
∑
j∈J

λjln
(
xjt
)

(1 + δσ)ln(yt) ≤
∑
j∈J

λjln
(
yjt
)

(1− δγem)ln(xemt ) ≤
∑
j∈J

µjln
(
xem,jt

)
(1 + δσem)ln(yemt ) ≥

∑
j∈J

µjln
(
yem,jt

)
∑
j∈J

λj = 1∑
j∈J

µj = 1

λ, µ ≥ 0.
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Appendix IV

Observations Mec ln (Mec) Lec HMec ln (HMec) LHMec

Canada 1.0053 0.0053 0.0053 0.974 -0.0263 -0.0263

U. S. A 1.0245 0.0242 0.0242 0.9811 -0.0191 -0.0191

Japan 1.0131 0.0130 0.013 1.0116 0.0115 0.0115

Austria 1.0002 0.0002 0.0002 1.0256 0.0253 0.0252

Belgium 1.0224 0.0222 0.0221 1.0205 0.0203 0.0203

Denmark 1.0049 0.0049 0.0049 1.0063 0.0063 0.0063

Finland 1 0 0 0.9852 -0.0149 -0.015

France 1.0001 0.0001 0.0001 1.0159 0.0158 0.0158

Germany 1.0003 0.0003 0.0003 1.0351 0.0345 0.0345

Greece 1.0179 0.0177 0.0177 0.9982 -0.0018 -0.0018

Ireland 1.048 0.0469 0.0469 1.0759 0.0732 0.0731

Italy 1.0098 0.0098 0.0098 1.0002 0.0002 0.0002

Norway 1.0016 0.0016 0.0016 1.0122 0.0121 0.0122

Spain 1.0018 0.0018 0.0018 0.9878 -0.0123 -0.0122

Sweden 0.9991 -0.0009 -0.0009 1.0006 0.0006 0.0006

U. K. 1.0303 0.0299 0.0299 0.9698 -0.0307 -0.0307

Australia 1.0183 0.0181 0.0181 0.9537 -0.0474 -0.0474

Table 6: Economic-based productivity scores over the period 1989-1990.
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Observations Mem ln (Mem) Lem HMem ln (HMem) LHMem

Canada ∞ ∞ ∞ 1.0754 0.0727 0.0727

U. S. A ∞ ∞ ∞ 0.9832 -0.0169 -0.017

Japan 1.002 0.0020 0.002 0.9382 -0.0638 -0.0638

Austria 1 0 0 0.9077 -0.0968 -0.0968

Belgium ∞ ∞ ∞ 0.928 -0.0747 -0.0747

Denmark ∞ ∞ ∞ 1.0738 0.0712 0.0712

Finland ∞ ∞ ∞ 0.9614 -0.0394 -0.0394

France 1 0 0 0.9634 -0.0373 -0.0373

Germany 0.9986 -0.0014 -0.0014 0.9484 -0.0530 -0.053

Greece ∞ ∞ ∞ 0.8943 -0.1117 -0.1117

Ireland ∞ ∞ ∞ 0.882 -0.1256 -0.1256

Italy 1.0015 0.0015 0.0015 1.0018 0.0018 0.0018

Norway ∞ ∞ ∞ 1.0197 0.0195 0.0195

Spain 1 0 0 1.1122 0.1063 0.1064

Sweden 1 0 0 1.0589 0.0572 0.0572

U. K. ∞ ∞ ∞ 0.979 -0.0212 -0.0212

Australia ∞ ∞ ∞ 0.9116 -0.0926 -0.0925

Table 7: Polluting-based productivity scores over the period 1989-1990.
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