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Although there is a plethora of methods to estimate sensitivity indices associated with individual inputs, there is much less work on interaction effects of every order, especially when it comes to make inferences about the true underlying values of the indices. To fill this gap, a method that allows one to make such inferences simultaneously from a single Monte Carlo sample is given. One advantage of this method is its simplicity: one leverages the fact that Shapley and Sobol indices are only linear transformations of total indices, so that standard asymptotic theory suffices to get confidence intervals, p-values, and the possibility of carrying out statistical tests. To do the numerical computations, Möbius inversion formulas are used and linked to the fast Möbius transform algorithm. An illustration on a model in cellular biology involving 12 inputs and 4096 input combinations and interaction effects is given.

Introduction

Sensitivity analysis seeks to quantify, for a given mathematical or computer model f , the extent to which a change in the inputs contributes to a change in the output. Contrary to local methods, which quantify rates of change at particular points in the input space, global sensitivity analysis assesses the inputs' contributions over the whole input space [START_REF] Saltelli | Global Sensitivity Analysis[END_REF][START_REF] Saltelli | Sensitivity anaysis as an ingredient of modeling[END_REF], often with statistical methods. One then adopts a probabilistic framework in which the inputs X = (X 1 , . . . , X d ) are seen as random variables. From now on, by sensitivity analysis we shall mean global sensitivity analysis.

Different aspects of sensitivity analysis are captured by different kinds of sensitivity indices. The Sobol index σ * (A), A ⊂ {1, . . . , d} =: D, quantifies the interaction effect of order |A| between the components of X A , the subvector of X corresponding to the subset A. (See, e.g. [START_REF] Saltelli | Sensitivity anaysis as an ingredient of modeling[END_REF].) In the special case A = {j}, j = 1, . . . , d, the quantity σ * ({j}) = Var E(f (X)|X j ), called the first-order Sobol index of X j , is interpreted as the expected variance reduction should X j be fixed [START_REF] Iman | A robust measure of uncertainty importance for use in fault tree system analysis[END_REF][START_REF] Janssen | Assessing sensitivities and uncertainties in models: a critical evaluation[END_REF]. The total index τ (A) is defined as the sum over all interaction effects σ * (B), B ∩ A = ∅, or, equivalently, as the output variability induced by a random change in X A , averaged over the remaining inputs X D\A . Shapley indices stem from the application of an allocation method coming from game theory [START_REF] Shapley | The value of an n-person game[END_REF][START_REF] Winter | Chapter 53 The Shapley value[END_REF]. One assigns a "value" to each of the players, based on the performance of all the possible coalitions among them. By analogy, the Shapley index θ({j}) of the individual input X j summarizes its global importance, based on all the possible input combinations.

Estimation of the above sensitivity indices has attracted much attention in the literature. In particular, a plethora of methods have been proposed to estimate first-order Sobol indices. Many methods rest on the fact that Var E(f (X) -E[f (X)]|X j ) can be re-expressed as a simple expectation and use the method-of-moments to estimate it from a Monte Carlo or quasi-Monte Carlo sample of inputs [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF][START_REF] Jansen | Analysis of variance designs for model output[END_REF][START_REF] Janon | Asymptotic normality and efficiency of two Sobol index estimators[END_REF][START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF][START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF][START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF][START_REF] Saltelli | Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index[END_REF][START_REF] Owen | Better estimation of small Sobol'sensitivity indices[END_REF]. Asymptotic normality of some estimators is studied in [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF][START_REF] Janon | Asymptotic normality and efficiency of two Sobol index estimators[END_REF]. To avoid the waste of data, more elaborate ways of combining outputs have been proposed [START_REF] Tissot | A randomized orthogonal array-based procedure for the estimation of first-and second-order Sobol' indices[END_REF][START_REF] Gilquin | Making the best use of permutations to compute sensitivity indices with replicated orthogonal arrays[END_REF][START_REF] Saltelli | Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index[END_REF][START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF], the goal being always to have the most efficient estimates with the least model runs [START_REF] Piano | Variance-based sensitivity analysis: The quest for better estimators and designs between explorativity and economy[END_REF]. See also [START_REF] Saltelli | A quantitative modelindependent method for global sensitivity analysis of model output[END_REF] for another way of exploring the input space. Methods based on U-statistics are found in [START_REF] Gamboa | Sensitivity analysis in general metric spaces[END_REF]. There are also methods that offer a different look, statistically speaking. For instance, nonparametric regression techniques, or techniques based on kernels, are found in [START_REF] Veiga | New estimation of Sobol'indices using kernels[END_REF][START_REF] Veiga | Efficient estimation of sensitivity indices[END_REF][START_REF] Solís | Non-parametric estimation of the first-order Sobol indices with bootstrap bandwidth[END_REF]. The use of meta-models to compute sensitivity indices has been proposed as well [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. It is a fact that the estimation of first-order Sobol indices is an active area of research, and many other methods have been, and continue to be, proposed. See, e.g. the books [START_REF] Prieur | Variance-based sensitivity analysis: theory and estimation algorithms[END_REF][START_REF] Veiga | New estimation of Sobol'indices using kernels[END_REF] for more details and possibly other estimation methods. A list of methods is also available in [START_REF] Iooss | with contribu-tions from Baptiste[END_REF]. A numerical comparison of some of the above methods is given in [START_REF] Kucherenko | Different numerical estimators for main effect global sensitivity indices[END_REF].

Although a plethora of methods exist to estimate first-order indices, the literature is more thin about the estimation of higher order interaction effects. Attention has increased recently, though, as they are useful to compute Shapley indices [START_REF] Castro | Polynomial calculation of the Shapley value based on sampling[END_REF][START_REF] Iooss | Shapley effects for sensitivity analysis with correlated inputs: Comparisons with Sobol' indices, numerical estimation and applications[END_REF][START_REF] Plischke | Computing Shapley effects for sensitivity analysis[END_REF][START_REF] Song | Shapley Effects for Global Sensitivity Analysis: Theory and Computation[END_REF][START_REF] Goda | A simple algorithm for global sensitivity analysis with Shapley effects[END_REF]. The full consideration of the possibility of making inferences about the true underlying values for each of the interaction effects based on sound statistical theory (e.g. confidence intervals, p-values, hypothesis testing) is still lacking, however.

A method to make inferences about the true underlying values of the sensitivity indices of every order simultaneously from a single Monte Carlo sample is given. The main advantage of this method is its simplicity: one leverages the fact that Shapley and Sobol indices are only linear transformations of total indices, so that the standard central limit theorem and delta method suffice to get asymptotic confidence intervals, p-values, and the possibility of carrying out statistical tests. In practice, one pitfall that may impede the calculation of inferences using asymptotic theory is the requirement of analytic expressions and/or efficient algorithms to compute the corresponding asymptotic variancecovariance matrices [START_REF] Koehler | On the assessment of Monte Carlo error in simulation-based statistical analyses[END_REF]. Since the number of interaction effects grows exponentially with the number of inputs, efficient algorithms must be found to do the numerical computations. For this purpose, it is explained how Möbius inversion formulas and the fast Möbius transform algorithm can be used to reduce the computational expense. An application on a model in cellular biology involving 12 inputs and 4096 input combinations and interaction effects is presented.

The rest of the paper is organized as follows. Section 2 is a brief review of sensitivity analysis. Section 3 presents the inference method. Section 4 presents the sensitivity analysis of a cellular biology model. The results are discussed in a Conclusion.

Sensitivity analysis

Let f (X) be the output of some function f with random inputs X := (X 1 , . . . , X d ). Denote D = {1, . . . , d}. Let 2 D be the power set of D, that is, the set of the subsets of D. For A ∈ 2 D \ ∅, the symbol X A denotes the subvector of

X = X D = (X 1 , . . . , X d ) that corresponds to A. For instance if d = 4 and A = {3, 1, 4} then X A = (X 1 , X 3 , X 4 ).

Variance decomposition and Sobol indices

If the components of X are independent and E f (X) 2 < ∞ then it holds that f (X) = A⊂D f A (X A ), where the functions

f A satisfy (1) E(f A (X A )|X B ) = 0 if A ⊂ B.
By convention, f (X ∅ ; ∅) denotes a constant. Equation (1) characterizes the decomposition of f (X): if there are functions f A that satisfy (1) and f (X) = A⊂D f A (X A ) then each f A (X A ) must be equal to f A (X A ) almost surely. The above decomposition is called the Sobol decomposition, or Sobol-Hoeffding decomposition. For more details see [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF][START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF][START_REF] Van Der | Asymptotic Statistics[END_REF].

The Sobol-Hoeffding decomposition entails a decomposition of the variance of f (X). Indeed, equation [START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF] implies that the random variables f A (X A ) are uncorrelated, and hence Var f (X) = A⊂D Var f A (X A ). The quantities σ * (A) := Var f A (X A ) are called the Sobol indices [START_REF] Prieur | Variance-based sensitivity analysis: theory and estimation algorithms[END_REF][START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]. Note that σ * (∅) = 0. The Sobol indices associated with the singletons are called first order Sobol indices, or main effects, and the remaining indices are called interaction indices, or interaction effects. The Sobol index vector, that is, the vector with components σ * (A), is denoted by σ * .

First order indices have an easy interpretation. Indeed, it is easy to see that

(2) B⊂A f B (X B ) = E(f (X)|X A )
and hence, taking

A = {j}, one gets σ * (j) = σ * ({j}) = Var E(f (X)|X j ) = Var f (X)-E Var(f (X)|X j )
, which is the expected reduction in variance induced by fixing X j to a random value. Taking the variance in both sides of (2), one gets similarly that

(3) B⊂A σ * (B) = Var E(f (X)|X A ) =: τ * (A).
The index τ * (A) is sometimes called the closed Sobol index of A [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF][START_REF] Jansen | Analysis of variance designs for model output[END_REF]. We shall call it the dual total index of A, or simply the dual of A. The reason stems from the duality relatioship between τ * (A) and the total index τ (A) defined in the next section. (See (5.) The dual of A is the expected reduction in variance induced by fixing the components of X A . The vector of dual indices will be denoted by τ * .

Total indices

The total index τ (A) of A is defined as

(4) τ (A) = B∩A =∅ σ * (B).
The quantity τ (A) measures the sum of all interactions of X A [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF]. Note that τ (D) = Var f (X) and τ (∅) = 0. By (4), it holds

(5) τ (D) -τ (A) = B⊂D σ * (B) - B∩A =∅ σ * (B) = τ * (D \ A),
where the last equality holds because of (3). It follows [START_REF] Prieur | Variance-based sensitivity analysis: theory and estimation algorithms[END_REF] (6)

τ (A) = E Var(f (X)|X D\A ).
Therefore, the total index of A is also interpreted as the output variance induced by a random change in X A , averaged over all the remaining inputs. It is easy to see that τ (A) = 0 if and only if the function f does not depend on X A . Thus, total indices are used in a "factor fixing" setting [START_REF] Saltelli | Global Sensitivity Analysis[END_REF][START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]. The vector of total indices will be denoted by τ .

Shapley indices

Shapley indices assess the global importance of each individual input [START_REF] Owen | Sobol' Indices and Shapley Value[END_REF]. They result from an allocation method of game theory [START_REF] Shapley | The value of an n-person game[END_REF][START_REF] Winter | Chapter 53 The Shapley value[END_REF]. If D denotes the set of players, then to each coalition B ⊂ D there corresponds a real number, denoted by val(B), that represents the "value" of B. It is assumed that val(∅) = 0. The Shapley value of player j, j = 1, . . . , d, is defined as

θ({j}) = 1 d B⊂D\{j} 1 d-1 |B| (val(B ∪ {j}) -val(B)).
The value of player j is based on the change in value of the coalitions, should the player be added in them. In fact, it was shown by Shapley [START_REF] Shapley | The value of an n-person game[END_REF] that this way of assigning values is the only possible way that satisfy certain axioms; see [START_REF] Shapley | The value of an n-person game[END_REF][START_REF] Winter | Chapter 53 The Shapley value[END_REF] for more details. By an analogy between game theory and global sensitivity analysis (the individual inputs X j play the role of the players), val(B) was set to Var E(f (X)|X B ) in [START_REF] Owen | Sobol' Indices and Shapley Value[END_REF] and E Var(f (X)|X D\B ) in [START_REF] Song | Shapley Effects for Global Sensitivity Analysis: Theory and Computation[END_REF]. It was shown in [START_REF] Song | Shapley Effects for Global Sensitivity Analysis: Theory and Computation[END_REF] that both choices lead to the same Shapley indices. Shapley indices have the advantage that their sum equals the model output variance. Moreover, it holds that

(7) θ({j}) = B∩{j} =∅ σ * (B) |B| ,
for every j = 1, . . . , d. (See, e.g. Lemma 1 of [START_REF] Owen | Sobol' Indices and Shapley Value[END_REF].) The vector of Shapley indices, that is, the vector with components θ({j}), is denoted by θ.

An inference method

Consider the following steps:

1. Estimate the total indices and the duals using Janssen's formula [START_REF] Janssen | Assessing sensitivities and uncertainties in models: a critical evaluation[END_REF].

2. Compute the variance decomposition and Sobol indices using Möbius inversion formulas and the fast Möbius transform.

3. Use the fact that the vector of Sobol indices is a linear transformation of the vector of total indices to make inferences.

4. Make inferences about Shapley values using this same idea.

The steps above are described in more detail below.

Estimation of the total indices and the duals

Let X = (X 1 , . . . , X d ) be an independent copy of X. If A ∈ 2 D , denote by X \A the vector made out of X and X such that the components of X indexed by the members of A are replaced by those of X . For instance, if d = 4 and

A = {3, 1, 4} then X \A = (X 1 , X 2 , X 3 , X 4 ), X \∅ = X and X \D = X . Janssen's formula reads (8) τ (A) = E 1 2 f (X) -f (X \A ) 2 .
Janssen's formula has the advantage that total indices are expressed as simple expectations, and hence simple and yet efficient moment estimators are available. It suffices to draw a sample from (X, X ), say of size n, and substitute the empirical average for the expectation in [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF]. One then obtains an estimator τ of the vector τ . The central limit theorem immediately yields that

√ n( τ -τ ) d → N(0, T ),
where T is the variance-covariance matrix with elements

Cov((f (X) -f (X \A )) 2 /2, (f (X) -f (X \B )) 2 /2),
A, B ⊂ D. The matrix T can be estimated by taking empirical covariances. To avoid possible complications due to the fact that the entries of T corresponding to the empty set will be null, we may remove from τ and τ the component corresponding to the empty set. Asymptotic p-values and confidence intervals are easily built. For instance, letting T (A, B) stand for the element of T at the row and column corresponding to the sets A and B, respectively, an asymptotic confidence interval for τ (A) of level 1 -α, α ∈ (0, 1) (that is, a random interval containing the true value τ (A) with probability approaching 1 -α as n increases) is given by [ τ (A) ± q 1-α/2 T (A, A)/n], where here q 1-α/2 is the quantile of order 1 -α/2 of the standard normal distribution. An asymptotic p-value for testing the null hypothesis "τ (A) = 0" against "τ (A) > 0" is given by the probability that a standard normal random variable exceeds the value √ n τ (A)/ T (A, A) actually observed in the data.

Estimation of the dual index vector τ * can be done from [START_REF] Veiga | New estimation of Sobol'indices using kernels[END_REF]. There is a matrix L such that τ * = L τ . A standard delta-method yields that

(9) √ n( τ * -τ * ) d → N(0, T * ), where (10) 
T * = LT L .

Confidence intervals and p-values can be built are before.

Computation of the variance decomposition and Sobol indices

Möbius inversion formulas

A decomposition of the variance Var f (X) is easily obtained from Möbius inversion formulas [START_REF] Liu | Estimating mean dimensionality of analysis of variance decompositions[END_REF]. Remember that τ * (A) can be estimated as in Section 3. Remark 1. Notice that, since Möbius inversion formulas hold for arbitrary maps, and since τ (A) has been defined in Section 3.1 along with τ * (A), we can define σ from τ the same way σ * was defined from τ * . Since τ (D) is also equal to Var f (X), this defines another variance decomposition.

From [START_REF] Goda | A simple algorithm for global sensitivity analysis with Shapley effects[END_REF], it is clear that

(13) σ * = M * τ * ,
where M * is the matrix with entries

M * (A, B) = (-1) A\B if B ⊂ A, 0 otherwise.
Let nnz(M * ) denote the number of nonzero elements of M * . Recall the "Big Theta" notation [START_REF] Knuth | The art of computer programming[END_REF]: two functions f and g of d satisfy g

(d) = Θ(f (d)) if g(d)/f (d)
goes to a positive constant as d goes to infinity. Since, asymptotically as d → ∞, nnz(M * ) = Θ(3 d ) (see, e.g. [START_REF] Haye | Binary relations on the power set of an n-element set[END_REF]), standard sparse multiplication yields that the computation cost of [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF], measured by the number of arithmetic operations, is Θ(3 d ).

The fast Möbius transform

The computation cost of ( 13) can be as little as Θ(d2 d ). To achieve such a low cost, arrange the elements of the powerset in the following order: associate with each A ∈ 2 D a Boolean vector of size d and order the Boolean vectors according to the lexicographical order. An example is given in Table 1.

(0,0,0) ∅ (0,0,1) Assuming that the components of τ * and σ * are arranged as described above, it can be shown that the matrix M * in ( 13) is a d-fold Kronecker autoproduct of the 2 × 2 matrix ( 14)

{3} (0,1,0) {2} (0,1,1) {2, 3} (1,0,0) {1} (1,0,1) {1, 3} (1,1,0) {1, 2} (1,1,1) {1, 2, 3}
M * 1 = 1 0 - 1 1 . 
In symbols, we write (15)

M * = ⊗ d M * 1 = M * 1 ⊗ • • • ⊗ M * 1 ,
where ⊗ denotes the Kronecker product. A proof of ( 15) is given in Appendix A.

See also [START_REF] Grabisch | Equivalent Representations of Set Functions[END_REF]. Efficient recursive algorithms to compute arbitrary Kronecker auto-products can then be used [START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF][START_REF] Dayar | On Vector-Kronecker Product Multiplication with Rectangular Factors[END_REF][START_REF] Fernandes | Efficient descriptor-vector multiplications in stochastic automata networks[END_REF][START_REF] Grabisch | Equivalent Representations of Set Functions[END_REF][START_REF] Kennes | Computational aspects of the Mobius transformation of graphs[END_REF][START_REF] Yates | The design and analysis of factorial experiments[END_REF]. Let τ * be an arbitrary vector of size 2 d and M * 1 be an arbitrary nonnull matrix of size 2 × 2. Let σ * (0) , σ * (1) , . . . , σ * (d) be defined through the recurrence relations [START_REF] Iooss | Shapley effects for sensitivity analysis with correlated inputs: Comparisons with Sobol' indices, numerical estimation and applications[END_REF] σ

* (0) = τ * σ * (j) = (I 2 d-j ⊗ M * 1 ⊗ I 2 j-1 )σ * (j-1) (j = 1, . . . , d),
where and I 2 d-j and I 2 j-1 denote the identity matrices of size 2 d-j and 2 j-1 , respectively. (In general, if k is an integer then I k will denote the identity matrix of size k.) The recurrence relations ( 16) define an algorithm in which σ * (j) is first initialized to the vector τ * and then updated at each iteration j = 1, . . . , d.

(Notice that each σ * (j) must be a vector of length 2 d .) It can be shown that the last update of ( 16) is equal to

(17) σ * (d) = (⊗ d M * 1 )τ * = M * τ * = σ *
and that the total number of arithmetic operations needed to reach σ * (d) is Θ(d2 d ). For completeness, a proof of these facts is given in Appendix A. Since nnz(⊗ d M * 1 ) = nnz(M 1 * ) d , Algorithm ( 16) is less costly than standard sparse matrix multiplication as soon as nnz(M * 1 ) > 2. In terms of computer memory usage, algorithm ( 16) is also preferable because it does not need to store the whole matrix ⊗ d M * 1 . Taking for τ * the actual dual total index vector and M * 1 the actual matrix [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF] yields that the Sobol index vector σ * can be computed from τ * with computation cost Θ(d2 d ).

Remark 2. Algorithm ( 16) with M 1 the absolute value of ( 14) is refered to as the fast Möbius transform in [START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF][START_REF] Kennes | Computational aspects of the Mobius transformation of graphs[END_REF]. Indeed, If σ * is a real map defined on 2 D then the map defined by τ * :

2 D → R, τ * (A) = B⊂A σ * (B)
is the Möbius transform of σ * , see [START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF][START_REF] Kennes | Computational aspects of the Mobius transformation of graphs[END_REF]. The fast Möbius transform is then a "fast" algorithm to compute the Möbius transform from its inverse (as the fast Fourier transform computes the Fourier transform rapidly, hence the name). Computing the inverse from the Möbius transform (that is, algorithm [START_REF] Iooss | Shapley effects for sensitivity analysis with correlated inputs: Comparisons with Sobol' indices, numerical estimation and applications[END_REF] with M 1 as in ( 14)) is, in essence, the same algorithm. An early version was given in [START_REF] Yates | The design and analysis of factorial experiments[END_REF]. Remark 3. As noted in [START_REF] Grabisch | Equivalent Representations of Set Functions[END_REF][START_REF] Plischke | Computing Shapley effects for sensitivity analysis[END_REF], the absolute value of M is equal to the Sierpinski matrix, a fractal matrix.

Making the inferences

Sobol indices

From ( 13) and ( 9), it follows that the estimator

σ * = M * τ * satisfies (18) √ n( σ * -σ * ) d → N(0, Σ * ), where (19) 
Σ * = M * T * M * .

The matrix Σ * can be computed with algorithm ( 16): for each j = 1, . . . , 2 d , apply algorithm [START_REF] Iooss | Shapley effects for sensitivity analysis with correlated inputs: Comparisons with Sobol' indices, numerical estimation and applications[END_REF] to multiply M * by the jth column of T * . Once all columns of M * T * have been calculated, compute M * (M * T * ) similarly. The total computation cost of Σ * is thus Θ(2 d ) × Θ(d2 d ) = Θ(d4 d ). Notice that the cost of standard sparse matrix multiplication is Θ(6 d ). Also observe that an estimate Σ * of Σ * is readily obtained by substituting T * for T * in [START_REF] Jansen | Analysis of variance designs for model output[END_REF], where T * is an estimate of T * obtained by substituting T for T in [START_REF] Gilquin | Making the best use of permutations to compute sensitivity indices with replicated orthogonal arrays[END_REF]. The asymptotic normality in [START_REF] Janon | Asymptotic normality and efficiency of two Sobol index estimators[END_REF] allows us to make inferences about the values of the Sobol indices, interactions included. An example is given below. Suppose we want to report, with "confidence" (1 -α)100%, the contribution of k Sobol indices σ * (A 1 ), . . . , σ * (A k ) to the total variance Var f (X), where here A 1 , . . . , A 2 d -1 is some enumeration of the elements of 2 D \ ∅. Let us consider the test "H 0 : the contribution is less than or equal to (1 -η)100%" against the alternative "H 1 : the contribution is more than (1 -η)100%"; more formally, the null hypothesis is given by

H 0 : k i=1 σ * (A i ) ≤ (1 -η) Var f (X).
Let us rearrange the Sobol indices so that the ith component of σ * becomes σ * (A i ). Put c i = η/(1 -η) if i = 1, . . . , k and -1 otherwise. Since Var f (X) = 2 d -1 i=1 σ * (A i ), the null hypothesis is equivalent to "H 0 :

2 d -1 i=1 c i σ * (A i ) ≤ 0"
, which is further rewritten as "H 0 : c σ ≤ 0", where here c is the vector with components c i . We reject the hypothesis H 0 if the test statistic T := √ nc σ * / c Σ * c is greater than q 1-α , where q 1-α is the quantile of the standard normal distribution of order (1 -α). The type-I error is controlled, since lim n→∞ P H0 (T > q 1-α ) ≤ lim n→∞ P H0 (N > q 1-α ) ≤ α, where here N is a standard normal random variable. Replace q 1-α by the actual value of the test statistic to get a bound for the p-value π = P H0 (N > T obs ), where T obs is the value of the test statistic observed on the actual set of simulations. The test depends on η. The higher the contribution level 1 -η, the less we will tend to reject H 0 . Indeed, conditionally on the data, T = T (η) is an increasing function of η on [0, 1] and π = π(η) is a decreasing function of η on [0, 1].

Shapley indices

In view of ( 7), there is a matrix N * of size d × 2 d such that θ = N * σ * . From [START_REF] Fernandes | Efficient descriptor-vector multiplications in stochastic automata networks[END_REF], it is easily seen that if {k} and B are the ith and jth elements in some arbitrary list of the subsets of D, then the entry at the ith row and jth column of N * is given by

N * ({k}, B) = 1/ |B| if {k} ∩ B = ∅, 0 otherwise.
Therefore, it holds that the estimator θ :

= N * σ * satisfies √ n( θ -θ) d → N(0, Θ),
where Θ = N * Σ * N * . An estimate Θ of Θ is obtained by substituting Σ * for Σ. Confidence intervals and p-values can be obtained as usual.

Sensitivity analysis of a Boolean model of cell fate decision

We consider a mathematical model, originally proposed in [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF], of the decisionmaking process of a eukaryote cell between different "death pathways". When subject to specific membrane receptors such as TNFα (Tumor Necrosis Factor), cells can trigger inner antagonistic signaling pathways ultimately leading to the programmed death of the cell or, on the contrary, to its survival. Two types of death are considered here: apoptosis, which is the classical programmed cell death, and necroptosis, which is a programmed death sharing apoptotic pathways yet presenting some necrotic features (thereafter, this phenotype will be abusively designated by "necrosis"). The mathematical model of [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF] consists in an asynchronous Boolean model modeling the main regulatory network responsible for the decision between the three phenotypes: apoptosis, necrosis and survival. In a Boolean network, signaling molecules are represented by Boolean variables denoting their absence or presence, and regulatory processes are modeled through logical functions. In an asynchronous network, variables update asynchronously implying that a state may transition to several possible successors. When associating probabilities to such transitions, the transition graph of the network straightforwardly translates to a Markov chain (see e.g. [START_REF] Tournier | Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics[END_REF] for more details on the construction and analysis of asynchronous Boolean networks).

Using the model of [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF], it is thus possible to compute the probability to enter apoptosis, necrosis and survival starting from a given "physiological" initial condition. (In the computational experiments, a reduced version of [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF] was used.) However, the direct interpretation of these probabilities is difficult since they are based on the assumption that, for any given state, all asynchronous successors have an equal probability. A suitable way to circumvent this assumption would be to adjust these probabilities taking into account the relative velocities of all the regulatory mechanisms involved. Nevertheless, such experimental information is generally unavailable as too many complex biochemical processes are intertwined. Therefore, a global sensitivity analysis is well suited to detect which regulatory mechanisms or combinations of regulatory mechanisms have the most impact on the model's dynamics, and are therefore priority targets for further investigations.

A first sensitivity analysis of the model was performed in [START_REF] Zinovyev | Cell death and life in cancer: mathematical modeling of cell fate decisions[END_REF], although a "one-at-a-time" approach was used. The idea was to affect a positive weight to each variable: a weight greater than 1 means that the processes involving the variable are rapid, so the transitions updating the variable are favored, while a weight lower than 1 means that the processes are slow and the transitions are hindered. Here, we refine this approach by considering two weights for each variable instead of one: one weight for the variable's activation (i.e. from 0 to 1) and one weight for its deactivation (i.e. from 1 to 0). This comes from the basic observation that in cell biology, the production and the degradation of a given compound may have very different time scales.

In the following computational experiments, we choose six variables central to the decision process: C8 (caspase 8), RIP1, NFkB, cIAP, MOMP and MPT. The reader is referred to [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF] for a comprehensive description of these biological variables and the regulatory processes they are involved in. This leads us to d = 2 × 6 = 12 inputs. We then generate a dataset of n2 d = 1000 × 4096 model simulations. Each simulation consists in the computation of three outputs: the probabilities of the three expected phenotypes (apoptosis, necrosis and survival). Total, Sobol and Shapley indices are then estimated for each output, as depicted in Figure 1.

The first observation that can be made is that necrosis seems qualitatively different from the other two, with generally lower index values, indicating a globally low variability of this output. We confirmed this result by drawing histograms of the three outputs in Figure 2. By inspecting highest Sobol index estimates (Fig. 1, middle row) we find that the three most important variables are C8, RIP1 and NFkB, as was originally observed in [START_REF] Zinovyev | Cell death and life in cancer: mathematical modeling of cell fate decisions[END_REF]. Nevertheless, here we get a more comprehensive view. The activations of proteins C8 and RIP1 (denoted by C8+ and RIP1+) seem determinant in the choice between apoptosis and survival, as these inputs contribute to more than 85% (p-value < 0.03) and 60% (p-value < 0.002) of the total variance for the "apoptosis" and "survival" outputs, respectively. Although the combination {C8+, RIP1+} stands out both in apoptosis and in survival (in the latter, it is the fourth highest Sobol index), statistical inference has revealed that its effect is nonsignificant. The activation of transcription factor NFkB appears to play a critical role in the choice between necrosis and survival. Indeed, the input NFkB+ is the sole significant detected effect in the sensitivity analysis for the output "necrosis". and belongs to the three significant detected effects for the output "survival". The share of the total variance explained by these three inputs is more than 85% (p-value < 0.01), while it was only 60% without NFkB+. Intriguingly, however, it was calculated that while NFkB+ can be said to contribute to more than 45% of the total variance for the output "necrosis" with high confidence (p-value < 0.025), a higher level of contribution is no more significant. (For instance, testing for a contribution less than or equal to 50% leads to a p-value greater than 0.32.) Therefore, half of the total variance for the "necrosis" is left unexplained. This suggests that the choice between necrosis and non-necrosis, although strongly influenced by the activation of NFkB, cannot be reduced to that sole input. The choices between apoptosis and non-apoptosis, and between survival and non-survival, seem to be less complex, as they almost exclusively depend on a few key inputs. From the bottom row of Figure 1, similar insights can be drawn from Shapley index estimates. Finally, it is interesting to note that total index estimates (Fig. 1, top row) appear to be relatively well separated into small numbers of clusters, especially for apoptosis and survival. Furthermore, there seems to be a striking relationship between those plateaus and highest Sobol indices. For instance, the highest plateau of apoptosis (top left, τ > 0.03) exactly corresponds to all 1024 combinations of inputs that contain both C8+ and RIP1+ at the same time. A more thorough examination of the relationship between total and Sobol indices is currently investigated.

Discussion

An inference method for global sensitivity analysis was designed and practically tested on a model with 12 inputs. Although many estimation methods already exist in the literature, they largely focus on first-order Sobol indices only, or, when interactions are considered, the asymptotic normality of the estimators is rarely considered to quantify the uncertainties of the estimates. Thus, the method designed in this paper bridges a gap in the literature: this is a method to perform the inferences for everything from a single Monte Carlo sample, thanks to the established asymptotic normality of the estimators. In particular, it was designed a procedure to test the contribution of an arbitrary number of Sobol indices of arbitrary orders. Computational aspects were also addressed with the fast Möbius transform algorithm. The method is general: although total indices were used in step 1 of the method, they can be replaced by any sensitivity measure for which there is an asymptotically normal estimator. The major limitation of the method is that it cannot deal with a large number of inputs. Beyond, say 20 inputs, the method may be computationally unfeasible. Moreover, for a large number of inputs, the statistical performance of the estimators is probably poor, unless a very large sample is generated. Finally, it should be noted that, for a large number of inputs, model runtime will impede the method to get a chance to be applied anyway.

A Proofs of the statements of Section 3.2.2

A.1 Proof that σ * (d) = (⊗ d M * 1 )σ * (0)
We shall show that, in general,

(20) σ * (j) = (I 2 d-j ⊗ (⊗ j M * 1 
))σ * (0) , for all j = 1, . . . , d. The proof is by mathematical induction. Equation ( 20) is true for j = 1 because of ( 16). Suppose that it is true for a given j and let us show it is true for j + 1. From ( 16) and ( 20), we have

σ * (j+1) = (I 2 d-j-1 ⊗ M * 1 ⊗ I 2 j ) σ * (j) = ((I 2 d-j-1 ⊗ M * 1 ) ⊗ I 2 j ) I 2 d-j ⊗ (⊗ j M * 1 ) σ * (0) = ((I 2 d-j-1 ⊗ M * 1 )I 2 d-j ) ⊗ I 2 j (⊗ j M * 1 ) σ * (0) = (I 2 d-j-1 ⊗ M * 1 ) ⊗ ⊗ j M * 1 σ * (0) = (I 2 d-j-1 ⊗ (⊗ j+1 M * 1 
))σ * (0) .

To show that the computation cost is Θ(d2 d ), notice that each matrix

I 2 d-j ⊗ M * 1 ⊗ I 2 j-1 is a block-diagonal matrix of the form    M * 1 ⊗ I 2 j-1 . . . M * 1 ⊗ I 2 j-1    .
Let m ij denote the element at the ith row and jth column of M * 1 (i, j ∈ {1, 2}). There are 2 d-j block-rows of the form

M * 1 ⊗ I 2 j-1 = m 11 I 2 j-1 m 12 I 2 j-1 m 21 I 2 j-1 m 22 I 2 j-1 ,
and, if multiplied by a column vector to the right, each of them leads to Θ(nnz(M * 1 ⊗ I 2 j-1 )) = Θ(nnz(M * 1 )2 j-1 ) = Θ(2 j-1 ) arithmetic operations, yielding 2 d-j Θ(2 j-1 ) = Θ(2 d-1 ) = Θ(2 d ) operations per update. Since there are d updates, the proof is complete. for all i = 0, . . . , 2 d -1, where in the left-hand side τ * i denotes the ith component (starting at zero) of the dual total index vector and in the right-hand side τ * (ω(i)) denotes the dual total index of the set ω(i). The same holds for σ * .

We show that M * in (13) coincides with ⊗ d M * 1 where M * 1 is as in [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF]. In this proof, d, and hence ω, since it depends on d, are fixed. A few results are collected in the following lemma.

Lemma 1. Let 1 ≤ n ≤ d and i, j ∈ {0, . . . , 2 n+1 -1}. If 0 ≤ i ≤ 2 n -1 and 2 n ≤ j ≤ 2 n+1 -1 then the following statements are true: (i) ω(i) ⊂ ω(j) if and only if ω(i) ⊂ ω(j -2 n ).

(ii) |ω(j -2 n ) \ ω(i)| is even if and only if |ω(j) \ ω(i)| is odd.

(iii) ω(i) ⊂ ω(j)

We need to show that Case i, j ∈ {0, . . . , 2 n -1}: We have that (M * n+1 ) i,j is equal to (M * n ) i,j , which satisfies [START_REF] Kennes | Computational aspects of the Mobius transformation of graphs[END_REF] by assumption.

Case i / ∈ {0, . . . , 2 n -1} and j ∈ {0, . . . , 2 n -1}: We have (M * n+1 ) i,j = (-M * n ) i-2 n ,j . By assumption, (-M * n ) i-2 n ,j =    1 if ω(j) ⊂ ω(i -2 n ) and |ω(i -2 n ) \ ω(j)| is odd, -1 if ω(j) ⊂ ω(i -2 n ) and |ω(i -2 n ) \ ω(j)| is even, 0 otherwise.

  1. Now define (11) σ * (A) = B⊂A (-1) |A\B| τ * (B), for every A ∈ 2 D . Möbius inversion formulas state that, for arbitrary real maps τ * and σ * defined on 2 D with τ * (∅) = σ * (∅) = 0, equation (11) holds if and only if (12) τ * (A) = B⊂A σ * (B) for every A ∈ 2 D . Since τ * (D) = Var f (X), taking A = D in (12) de facto provides a decomposition of the variance Var f (X). It is not difficult to show that, in fact, the quantities σ * (A) coincide with the Sobol indices of Section 2. The maps τ * and σ * are sometimes known as Möbius transforms of one another [1, 12, 21].

Figure 1 :

 1 Figure1: Global sensitivity indices of the probability of each phenotype, computed from the model in[START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF]. The first row shows total index estimates for all 2 d = 4096 combinations of inputs, arranged in ascending order. The second row shows the 10 highest Sobol index estimates, with the corresponding input combination indicated only for the most important ones. The third row shows the 10 highest Shapley index estimates (again the corresponding input is only indicated for the most important). Each estimate is drawn with its 95% confidence interval.
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 2 Figure 2: Histograms of 1000 independent model simulations.

A. 2

 2 Proof that M * = ⊗ d M * 1 Let ω be the inverse of the one-to-one map that with each A ∈ 2 D associates d i=1 b i 2 d-i ∈ {0, . . . , 2 d -1}, where b i = 1 if i ∈ A and b i = 0 otherwise. (Note that ω depends on d. For instance, for d = 2, ω(3) = {1, 2} but ω(3) = {2, 3} for d = 3.) The arrangement of the components of τ * described at the beginning of Section 3.2.2 implies that τ * i = τ * (ω(i)),
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 11 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is odd, 1 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is even, 0 otherwise.Let us show a slightly more general result. Let M * n , n = 1, . . . , d, be a finite sequence of matrices of increasing size defined by . . . , d).Let us show that M * n satisfies (21) for every i, j ∈ {0, . . . 2 n -1} and all 1 ≤ n ≤ d. This will show in particular that M * d = M * . The proof is by mathematical induction. If n = 1 then it is clear that (21) holds because ω(0) = ∅ and ω(1) = {d}. Let n ≥ 1 and suppose that M * n satisfies[START_REF] Kennes | Computational aspects of the Mobius transformation of graphs[END_REF] for every i, j ∈ {0, . . . 2 n -1}. Let us show that M * n+1 satisfies (21) for every i, j ∈ {0, . . . 2 n+1 -1}. By definition,

Table 1 :

 1 Arrangement of the subsets of D = {1, . . . , d} according to the lexicographical order in the Boolean space {0, 1} d for d = 3.

Notice that, compared to [START_REF] Kennes | Computational aspects of the Mobius transformation of graphs[END_REF], "1" and "-1" have been interchanged. By Lemma 1, it holds that ω(j) ⊂ ω(i) is equivalent to ω(j) ⊂ ω(i -2 n ). Thus, it remains to show that |ω(i -

But again this is true from Lemma 1.

Case i / ∈ {0, . . . , 2 n -1} and j / ∈ {0, . . . , 2 n -1}: [START_REF] Kennes | Computational aspects of the Mobius transformation of graphs[END_REF] follows from the same considerations as in the previous case.

Case i ∈ {0, . . . , 2 n -1} and j / ∈ {0, . . . , 2 n -1}: We know from ( 22) that (M * n+1 ) i,j = 0. To show that ( 21) is satisfied, it suffices to see that ω(j) ⊂ ω(i). But this is true from Lemma 1, since j > i.