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Abstract

Although there is a plethora of methods to estimate sensitivity indices associated
with individual inputs, there is much less work on interaction effects of every order,
especially when it comes to make inferences about the true underlying values of
the indices. To fill this gap, a method that allows one to make such inferences
simultaneously from a Monte Carlo sample is given. One advantage of this method
is its simplicity: it leverages the fact that Shapley effects and Sobol indices are only
linear transformations of total indices, so that standard asymptotic theory suffices to
get confidence intervals and to carry out statistical tests. To perform the numerical
computations efficiently, Möbius inversion formulas are used, and linked to the fast
Möbius transform algorithm. The method is illustrated on two dynamical systems,
both with an application in life sciences: a Boolean network modeling a cellular
decision-making process involving 12 inputs, and a system of ordinary differential
equations modeling some population dynamics involving 10 inputs.

Keywords: Sobol index, Möbius transform, higher order interaction effect, global sensitivity
analysis, inference, computation

1



1 Introduction

The sensitivity analysis of mathematical models is important to gain insight into one’s

model, eventually suggesting potential avenues for model reduction, refinement, or guidance

in the design of future experiments.

Sensitivity analysis seeks to quantify, for a given mathematical or computational model

f , the extent to which a change in the inputs contributes to a change in the output.

Contrary to local methods, which quantify rates of change around particular points in the

input space, global sensitivity analysis assesses the inputs’ contributions over the whole

input space (Saltelli et al., 2008, 2000), often with statistical methods. One then adopts a

probabilistic framework in which the inputs X = (X1, . . . , Xd) are seen as random variables.

From now on, by sensitivity analysis we shall mean global sensitivity analysis. We also

assume throughout that the inputs X1, . . . , Xd are mutually independent.

Different aspects of sensitivity analysis are captured by different kinds of sensitivity

indices. The Sobol index σ∗(A), A ⊂ {1, . . . , d} =: D, quantifies the interaction effect of

order |A| between the components of XA, the subvector of X corresponding to the subset

A (see, e.g. Saltelli et al. (2000)). In the special case where A = {j}, j = 1, . . . , d, the

quantity σ∗({j}) = Var E(f(X)|Xj), called the first-order Sobol index of Xj, is interpreted

as the expected variance reduction of the output, should the input Xj be fixed (Iman

and Hora, 1990; Janssen, 1994). The closed Sobol index τ ∗(A), given by Var E(f(X)|XA),

is a generalization of the first-order Sobol index to any subset A ⊂ D. We shall call it

the dual index for a reason explained later. The total index τ(A) is defined as the sum

over all interaction effects σ∗(B), B ∩ A 6= ∅, or, equivalently, as the output variability

induced by a random change in XA, averaged over the remaining inputs XD\A. Shapley

effects stem from the application of an allocation method coming from cooperative game

theory (Shapley, 1951; Winter, 2002). One assigns a “value” to each of the players, based
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on the performance of all the possible coalitions among them. By analogy, one assigns

a value—called the Shapley effect—to each of the inputs, based on all the possible input

combinations. The Shapley effect θ({j}) of the individual input Xj summarizes its global

importance. The sum of the Shapley effects sums up to the output variance. (This is not

true for the individual total indices or the individual Sobol indices.)

Estimation of sensitivity indices has attracted much attention in the literature. In

particular, numerous methods have been proposed to estimate first-order Sobol indices.

Many methods rest on the fact that Var E(f(X) − E[f(X)]|Xj) can be re-expressed as

a simple expectation and use the method-of-moments to estimate it from a Monte Carlo

or quasi-Monte Carlo sample of inputs (Sobol, 1993; Jansen, 1999; Janon et al., 2014;

Gamboa et al., 2016; Homma and Saltelli, 1996; Saltelli, 2002; Saltelli et al., 2010; Owen,

2013). Asymptotic normality of some estimators is studied in Gamboa et al. (2016); Janon

et al. (2014). To avoid the waste of data, more elaborate ways of combining outputs have

been proposed (Tissot and Prieur, 2015; Gilquin et al., 2019; Saltelli et al., 2010; Saltelli,

2002), the goal being always to have the most efficient estimates with the least model

runs (Piano et al., 2021). See also Saltelli et al. (1999) for another way of exploring the

input space. Methods based on U-statistics are found in Gamboa et al. (2021). There are

also methods that offer a different look, statistically speaking. For instance, nonparametric

regression techniques, or techniques based on kernels, are found in Da Veiga et al. (2023);

Da Veiga and Gamboa (2013); Soĺıs (2019). The use of meta-models to compute sensitivity

indices has been proposed as well (Sudret, 2008; Bénard et al., 2022). It is also possible to

do the estimation from “given data”, that is, from a standard sample of inputs and outputs

that was not primarily designed to perform a sensitivity analysis (Plischke et al., 2013). It

is a fact that the estimation of first-order Sobol indices is an active area of research, and

many other methods have been, and continue to be, proposed. For instance, the reader

is referred to Prieur and Tarantola (2015) or Da Veiga et al. (2023) for more details and
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possibly other estimation methods. A list of methods is also available in Iooss et al. (2020).

A numerical comparison of some of the above methods is given in Kucherenko and Song

(2017). Although a plethora of methods exist to estimate first-order indices, the literature

is thinner about the estimation of higher-order interaction effects. Attention has increased

recently, though, as they are useful to compute Shapley effects (Castro et al., 2009; Iooss

and Prieur, 2019; Plischke et al., 2021; Song et al., 2016; Goda, 2021; Broto et al., 2020).

Rather than narrowing the estimation to particular sensitivity indices or effects, we

can look at the problem of inference globally: the goal is then to extract, combine and

assess the information provided by the four kinds of sensitivity indices and effects of all

orders, thus paving the way for richer analyses. One advantage of such a global approach

is that it takes into account the effects of interactions between inputs. These effects,

indeed, carry important information when considering mathematical models of complex

natural phenomena (Ball, 2023; Boyle et al., 2017). For instance, they explain a significant

share of the total output variability in the two dynamical models (Calzone et al., 2010;

De Paepe et al., 2016) analysed in Section 5 below. The first is a Boolean network modeling

cell fate decision (Calzone et al., 2010) and the second is a differential system modeling

microbial population dynamics (De Paepe et al., 2016). While these models were originally

analysed with local and one-at-a-time approaches, we shall see that using a global approach

and estimating higher order sensitivity indices gives the modeler valuable insight about

the system’s dynamical behavior, emphasizing possibly complex interactions between the

system’s parameters. These interactions may be relevant to the modeled system, or they

can be mathematical artifacts of the model. In either case, estimating higher order indices

will provide useful information when analyzing a complex mathematical model.

To address the problem of inference globally, an approach that exploits the linear map-

pings between the four kinds of sensitivity indices is proposed. The asymptotic normality

of the estimator of the vector of total indices, the vector of dual indices, the vector of Sobol
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indices and the vector of Shapley effects is established. The formulas of the asymptotic

variance-covariance matrices of the estimators are given in closed form. Algorithms to

compute the estimators and their asymptotic variance-covariance matrices are presented,

analyzed, and discussed. To assess the statistical significance of the extracted information,

several statistical tests are built.

The method is applied to two published dynamical systems, both with application

in life sciences. The two systems are different in nature: the first one is a stochastic

Boolean network modeling a cellular decision-making process introduced by Calzone et al.

(2010); the second one is a deterministic differential system modeling population dynamics

introduced by De Paepe et al. (2016). Both systems were analyzed with local approaches;

here a global sensitivity analysis is proposed, including the estimation of total and Sobol

indices as well as Shapley effects, and the analysis of those indices based on statistical

testing. We show how such inferences can be used to gain insight on the systems’ dynamics.

The rest of the paper is organized as follows. Section 2 is a brief review of the four major

kinds of sensitivity indices. Section 3 presents the inference method, from the estimation of

the sensitivity indices to asymptotic normality and hypothesis testing. The computational

aspects are addressed in Section 4. Section 5 presents the sensitivity analysis of the two

dynamical systems. Section 6 summarizes the results and discusses limitations and possible

future developments.

2 Global sensitivity indices

The definition of the four major kinds of sensitivity indices—namely, Sobol, total, dual

indices and Shapley effects—are recalled in this section. Let f(X) be the output of some

real function f with real random inputs X := (X1, . . . , Xd). Recall that inputs are assumed

to be mutually independent. Denote D = {1, . . . , d}. Let 2D be the power set of D, that

5



is, the set of the subsets of D. For A ∈ 2D \ ∅, the symbol XA denotes the subvector of

X = XD = (X1, . . . , Xd) that corresponds to A. For instance if d = 4 and A = {3, 1, 4}

then XA = (X1, X3, X4).

If the components of X are mutually independent and E f(X)2 <∞ then it holds that

f(X) =
∑

A⊂D fA(XA), where the functions fA satisfy

E(fA(XA)|XB) = 0 if A 6⊂ B. (1)

Throughout, the subset symbol ⊂ is to be understood in the non-strict sense, meaning that

A ⊂ A always holds. By convention, f(X∅; ∅) is a constant. Equation (1) characterizes the

decomposition of f(X): if there are functions f ′A that satisfy (1) and f(X) =
∑

A⊂D f
′
A(XA)

then each f ′A(XA) must be equal to fA(XA) almost surely. The above decomposition

is called the Sobol decomposition, or Sobol-Hoeffding decomposition. For more details

see Hoeffding (1948); Sobol (1993); van der Vaart (1998). This decomposition is the starting

point to define the sensitivity indices.

Sobol indices. The Sobol-Hoeffding decomposition entails a decomposition of the vari-

ance of f(X). Indeed, equation (1) implies that the random variables fA(XA) are

uncorrelated, and hence Var f(X) =
∑

A⊂D Var fA(XA). The quantities σ∗(A) :=

Var fA(XA) are called the Sobol indices (Prieur and Tarantola, 2015; Sobol, 1993).

Sometimes Sobol indices refer to the normalized quantities σ∗(A)/Var f(X) ; in the

present manuscript they mean the raw quantities. Note that σ∗(∅) = 0. The Sobol

indices associated with the singletons are called first order Sobol indices, or main

effects, and the remaining indices are called interaction indices, or interaction effects.

First order indices have an easy interpretation. Indeed, it is easy to see that

∑
B⊂A

fB(XB) = E(f(X)|XA) (2)

and hence, taking A = {j}, one gets σ∗({j}) = Var E(f(X)|Xj) = Var f(X) −
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E Var(f(X)|Xj), which is the expected reduction in variance induced by fixing Xj to

a random value.

Example 1. Let f(X) = f(X1, X2, X3) = sinX1 + a sin2X2 + bX4
3 sinX1, where

X1, X2, X3 are independent random variables uniformly distributed on the interval

(−π, π). The Sobol indices are given by σ∗({1}) = 1/2 + bπ4/5 + b2π8/50, σ∗({2}) =

a2/8, σ∗({1, 3}) = (1/18−1/50)b2π8, σ∗({3}) = σ∗({1, 2}) = σ∗({2, 3}) = σ∗({1, 2, 3}) =

σ∗(∅) = 0, see e.g. Sobol and Levitan (1999).

We shall denote by σ∗ the vector with components σ∗(A) and call it the Sobol index

vector. The arrangement of the components in this vector is chosen arbitrarily. A

specific arrangement will be chosen later on (Section 4) to facilitate computations.

Dual indices (closed Sobol indices). Taking the variance in both sides of (2), one gets

that ∑
B⊂A

σ∗(B) = Var E(f(X)|XA) =: τ ∗(A). (3)

The index τ ∗(A) is sometimes called the closed Sobol index (Saltelli, 2002; Jansen,

1999) or subset importance (Liu and Owen, 2006) of A. We shall call it the dual

total index of A, or simply the dual index of A. The reason stems from the duality

relationship between τ ∗(A) and the total index τ(A) defined in the next section, see

equation (5) below. (See also Herin et al. (2024).) The dual index of A is the expected

reduction in variance induced by fixing the components of XA.

Example 2 (Continuation of Example 1). The dual index of {1, 2} is given by

τ ∗({1, 2}) = σ∗({1}) + σ∗({2}) + σ∗({1, 2}) = 1
2

+ bπ4

5
+ b2π8

50
+ a2

8
. The calculations

for the remaining components are given in Section A of the supplementary file.

The vector of dual indices will be denoted by τ ∗.
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Total indices. The total index τ(A) of A is defined as

τ(A) =
∑

B∩A 6=∅

σ∗(B). (4)

Total indices were introduced in Homma and Saltelli (1996) for singletons. The

quantity τ(A) measures the sum of all interactions of XA (Prieur and Tarantola,

2015). Note that τ(D) = Var f(X) and τ(∅) = 0. By (4), it holds

τ(D)− τ(A) =
∑
B⊂D

σ∗(B)−
∑

B∩A 6=∅

σ∗(B) = τ ∗(D \ A), (5)

where the last equality holds because of (3). It follows (Prieur and Tarantola, 2015)

τ(A) = E Var(f(X)|XD\A). (6)

Therefore, the total index of A is also interpreted as the output variance induced by

a random change in XA, averaged over all the remaining inputs. It is easy to see that

τ(A) = 0 if and only if the function f does not depend on XA. Thus, total indices

are used in a “factor fixing” setting (Saltelli et al., 2008; Sobol, 1993).

Example 3 (Continuation of Example 1). The total index of {1, 2} is given by

τ({1, 2}) = σ∗({1}) + σ∗({2}) + σ∗({1, 2}) + σ∗({1, 3}) + σ∗({2, 3}) + σ∗({1, 2, 3}) =

1
2

+ bπ4

5
+ b2π8

18
+ a2

8
. The calculations for the remaining components are given in

Section A of the supplementary file.

The vector of total indices will be denoted by τ .

Shapley effects. Shapley effects assess the global importance of each individual input (Owen,

2014). They result from an allocation method of cooperative game theory in which

each player is assigned a value based on the effects of adding or removing that player

in each possible coalition. If D is seen as a set of players, then to each coalition B ⊂ D

there corresponds a real number, denoted by val(B), which represents the “value” of
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B. It is assumed that val(∅) = 0. The Shapley value of player j, j = 1, . . . , d, is given

by (Harsanyi, 1963)

θval({j}) =
∑

B∩{j}6=∅

∑
A⊂B(−1)|B\A|val(A)

|B|
. (7)

The Shapley values satisfy val(D) =
∑d

j=1 θval({j}). See (Shapley, 1951; Winter,

2002) and Section B of the supplementary file for more details. If val is replaced by

its dual val∗(B) = val(D)− val(D \B) then θval({j}) = θval∗({j}) for all j = 1, . . . , d.

We say that the Shapley value is self-dual, see Funaki (1998); Oishi et al. (2016).

By an analogy between cooperative game theory and global sensitivity analysis (the

individual inputs Xj play the role of the players), we can choose val(B) to be

Var E(f(X)|XB) = τ ∗(B) or E Var(f(X)|XD\B) = τ(B),

as in Owen (2014) and Song et al. (2016), respectively. Both choices lead to the same

sets of indices

θ({j}) := θτ ({j}) = θτ∗({j})

by duality between τ and τ ∗. The quantities θ({j}) are called Shapley effects in

sensitivity analysis and can be expressed in terms of Sobol indices as

θ({j}) =
∑

B∩{j}6=∅

σ∗(B)

|B|
; (8)

see Owen (2014). This formula is a consequence of (7) and the Möbius inversion

formula discussed in Section 3 below.

Example 4 (Continuation of Example 1). The Shapley effect of {3} is given by

θ({3}) = σ∗({3})+ 1
2
σ∗({1, 3})+ 1

2
σ∗({2, 3})+ 1

3
σ∗({1, 2, 3}) = 4b2π8

225
. The calculations

for the remaining components are given in Section A of the supplementary file.

Shapley effects in sensitivity analysis are interesting because they allow one to assess

the global importance of the individual inputs by taking interactions into account in a
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“fair” way. Indeed, as seen in (8), the interaction effects captured by the Sobol indices

are divided by the size of the interaction. This leads to a fair allocation of the output

variance: we have that Var f(X) =
∑d

j=1 θ({j}). Another advantage of Shapley

effects is that they can be used when the inputs are not mutually independent (Owen

and Prieur, 2017). We shall denote by θ the vector of Shapley effects.

3 A global inference method

In global sensitivity analysis, Sobol indices are defined first and, then, total indices are

defined as cumulative effects of Sobol indices. It is more convenient, however, to go the

other way around: in the following total indices are first estimated as global effects of

combinations of inputs and Sobol index estimates ensue through a linear transformation of

the vector of total index estimates. Estimation and inference is then made straightforward

even for higher-order Sobol indices. In summary, we consider the following steps:

1. Compute the vector of total indices.

2. Compute the vector of dual indices as a linear transformation of the vector of total

indices.

3. Compute the vector of Sobol indices as a linear transformation of the vector of dual

indices.

4. If needed, compute the vector of Shapley effects as a linear transformation of the

vector of Sobol indices.

Remark 1. The mention “if needed” above is to emphasize that the proposed inference

method should not have as its primary goal the estimation of Shapley indices. For if that

were the objective then there are methods that may be more appropriate as they bypass
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the estimation of Sobol indices altogether (Goda, 2021). Here, the estimation of Shapley

indices should be seen as a by-product: once the Sobol indices are calculated, the estimation

of Shapley effects is almost free.

By inference it is meant the ability to take into account the Monte Carlo error in the

insights, statements and conclusions drawn from the data. This shall take the form of

confidence intervals and p-values associated with statistical tests of hypotheses.

The steps above are described in more detail below. Section 3.1 presents the estimators

and Section 3.2 presents results and methods to make inferences.

3.1 Estimation of the sets of indices

The estimation of the four kinds of sensitivity index vectors by following the four steps

above is addressed next.

Total indices. Let X ′ = (X ′1, . . . , X
′
d) be an independent copy of X. If A ∈ 2D, denote by

X\A the vector made out of X and X ′ such that the components of X indexed by the

members of A are replaced by those of X ′. For instance, if d = 4 and A = {3, 1, 4}

then X\A = (X ′1, X2, X
′
3, X

′
4), X

\∅ = X and X\D = X ′. Since we assumed mutually

independent inputs, the total index associated with A given in (6) can be rewritten

as

τ(A) = E
1

2

(
f(X)− f(X\A)

)2
. (9)

The above formula, known as Jansen’s formula (Jansen, 1999), has the advantage

that total indices are expressed as simple expectations, and hence simple moment

estimators are available. It suffices to draw a sample from (X,X ′), say of size n,

and substitute the empirical average for the expectation in (9). More precisely, for

each i = 1, . . . , n, draw two independent copies X(i) = (X
(i)
1 , . . . , X

(i)
d ) and X ′(i) =

11



(X
′(i)
1 , . . . , X

′(i)
d ) and then perform the steps below:

for each A ∈ 2D

make X(i)\A out of X(i) and X ′(i)

compute f(X(i)\A).

(10)

One then obtains an estimator

τ̂(A) =
1

n

n∑
i=1

1

2

(
f(X(i))− f(X(i)\A)

)2
(11)

for each A ⊂ D. Denote by τ̂ the estimator of the vector τ obtained as above.

Dual indices. Estimation of the dual index vector τ ∗ can be done from (5). Note that

there is a matrix L such that τ ∗ = Lτ . More precisely, if L(A,B) denotes the element

of L at the row and column corresponding to the nonempty sets A and B, respectively,

then

L(A,B) =


−1 if B = D \ A

1 if B = D

0 otherwise.

(By convention we may choose L(∅, ∅) = 1 and L(∅, B) = 0 for all B 6= ∅. For

instance, if d = 2 then

0

τ ∗({2})

τ ∗({1})

τ ∗({1, 2})


=



1 0 0 0

0 0 −1 1

0 −1 0 1

0 0 0 1





0

τ({2})

τ({1})

τ({1, 2})


.

Note that the expression of matrix L depends on the chosen order of the components

of τ . We shall denote by τ̂ ∗ the estimator of the vector τ ∗.

Sobol indices. A decomposition of the output variance Var f(X) is easily obtained from

the vector of dual indices τ ∗, see Liu and Owen (2006). Let τ ∗ and σ∗ momentarily
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denote arbitrary real maps defined on 2D, with τ ∗(∅) = σ∗(∅) = 0. Then it holds

that

τ ∗(A) =
∑
B⊂A

σ∗(B) (for every A ∈ 2D) (12)

and

σ∗(A) =
∑
B⊂A

(−1)|A\B|τ ∗(B) (for every A ∈ 2D) (13)

are equivalent. The pair of equations (12) and (13) is known as Möbius inversion

formulas. The equivalence is a direct consequence of a result from Rota (1964) on

finite partially ordered sets. Now, let us come back to sensitivity analysis and let the

total index vector be defined through (9). Let τ ∗ be the dual index vector of τ . Both

vectors can be estimated directly as seen above. Then let σ∗ be defined through (13).

Since τ ∗(D) = Var f(X), taking A = D in (12) de facto provides a decomposition of

the output variance Var f(X). It is not difficult to show that, in fact, the quantities

σ∗(A) coincide with the Sobol indices as defined in Section 2. The maps τ ∗ and σ∗

are sometimes known as Möbius transforms of one another (Björklund et al., 2007;

Grabisch et al., 2000; Kennes, 1992).

Remark 2. Since Möbius inversion formulas hold for arbitrary maps, we can define

a vector σ from the vector τ the same way σ∗ was defined from τ ∗. Since τ(D) is

also equal to Var f(X), this defines another variance decomposition. By the same

reasoning, every real map τ defined on 2D with τ(∅) = 0 and τ(D) = Var f(X) leads

to a variance decomposition. According to Il Idrissi et al. (2023), the choice (13)

is justified because of the Sobol-Hoeffding decomposition for mutually independent

inputs.

From (13), it is then clear that

σ∗ = M∗τ ∗, (14)
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where M∗ is the matrix with entries

M∗(A,B) =

 (−1)A\B if B ⊂ A,

0 otherwise.

(As noted in Grabisch et al. (2000); Plischke et al. (2021), the absolute value of M∗> is

equal to the Sierpinski matrix, a fractal matrix.) We shall denote by σ̂∗ the estimator

of the vector σ∗ obtained by substituting τ̂ ∗ for τ ∗ in (14).

Shapley effects. In view of (8), there is a matrix N∗ of size d× 2d such that

θ = N∗σ∗. (15)

From (8), it is easily seen that if {k} and B are the ith and jth elements in some

arbitrary list of the subsets of D, then the entry at the ith row and jth column of

N∗ is given by

N∗({k}, B) =

 1/ |B| if {k} ∩B 6= ∅,

0 otherwise.

We shall denote by θ̂ the estimator of the vector θ obtained by substituting σ̂∗ for σ∗

in (15).

3.2 Making the inferences

The asymptotic normality of the estimators is established and utilized to calculate asymp-

totic confidence intervals, p-values, and test various hypotheses. A reminder about asymp-

totic confidence intervals and hypothesis testing is given in Section C of the supplementary

file. For numerical examples and illustrations, see Section 5.

Asymptotic normality and confidence intervals

It is established below that the sensitivity index estimators converge to multivariate normal

distributions as the sample size grows. Based on this result, various tests are then built.
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Proposition 1. It holds that

(i)
√
n(τ̂ − τ)

d→ N(0, T ), where T is the variance-covariance matrix with elements

T (A,B) = Cov((f(X)− f(X\A))2/2, (f(X)− f(X\B))2/2), A,B ⊂ D;

(ii)
√
n(τ̂ ∗ − τ ∗) d→ N(0, T ∗), where T ∗ = LTL>;

(iii)
√
n(σ̂∗ − σ∗) d→ N(0, Σ∗), where Σ∗ = M∗T ∗M∗>.

(iv)
√
n(θ̂ − θ) d→ N(0, Θ), where Θ = N∗Σ∗N∗>.

The proof of Proposition 1 follows from a direct application of the central limit theorem

and the linear relationships between the estimators; see e.g. van der Vaart (1998).

Remark 3. While the estimator τ̂ is conceptually simple, there exist more efficient asymp-

totically normal estimators. Two examples are offered in Section D of the supplementary

file. One of them generalizes an estimator considered Azzini et al. (2021).

The matrix T can be estimated by computing empirical covariances. Let us denote by

T̂ the estimate of T . From T̂ , estimates T̂ ∗, Σ̂∗ and Θ̂ of T ∗, Σ∗ and Θ, respectively, can

be constructed by applying the formulas in Proposition 1. To avoid possible complications

due to the fact that the entries of T corresponding to the empty set will be null, we may

remove from τ̂ and τ the component corresponding to the empty set. Proposition 1 allows

us to build asymptotic confidence intervals as explained in Section C of the supplementary

file.

Hypothesis testing

Let us introduce some notation. If β ∈ (0, 1), let qβ denote the quantile of order β of

a standard normal distribution. Let Φ denote the cumulative distribution function of a

standard normal distribution. Remember that to decide between a null hypothesis H0 and

an alternative H1, one computes a statistic Sn from the data and rejects H0 if Sn belongs
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to some “rejection set” assumed to be of the form (r,∞). The so-called type I and type II

errors of the test are given by PrH0(Sn > r) (probability of rejecting H0 while it is true) and

PrH1(Sn ≤ r) (probability of accepting H0 while H1 is true), respectively. The p-value of

the test is given by PrH0(Sn > s
(obs)
n ) (probability under H0 of observing a statistic beyond

the one actually observed in the data), where s
(obs)
n stands for the statistic actually observed

in the dataset at hand. Given some level of significance 1− α ∈ (0, 1), one seeks the least

critical value r such that PrH0(Sn > r) ≤ α. If it is known that Sn obeys a standard

normal distribution then r = q1−α and the test can be carried out. Otherwise one wants to

establish that Sn is approximately normal and get approximate critical values.

Based on the asymptotic normality established in Proposition 1, various tests are built

below.

Nullity of a given sensitivity index. Let ψ denote any of τ , τ ∗, σ∗, θ and let ψ̂ denote

its estimate. Let Ψ denote the asymptotic variance-covariance matrix of ψ̂, that is,

√
n(ψ̂ − ψ)

d→ N(0,Ψ). Let Ψ̂ denote a consistent estimate of Ψ. A formal test is

given by

H0 : ψ(A) = 0 versus H1 : ψ(A) 6= 0. (16)

To carry out this test, we can take the statistic Sn =
√
nψ̂(A)/

√
Ψ̂(A,A) and the

critical value r = q1−α/2. The p-value is given by 1−Φ(Sn). Note: it may have been

noticed that if τ(A) = 0 then the estimator is also zero. But the purpose of the test

above is not so much to know whether a quantity is exactly zero as to know whether

it can be assumed to be zero in regard to the data at hand.

Presence of interactions between a given input and the other ones. It is well known

that τ ∗({j}) ≤ τ({j}) and that τ({j})−τ ∗({j}) quantifies the strength of interactions

involving input {j}. A formal test is given by

H0 : τ ∗({j}) = τ({j}) versus H1 : τ ∗({j}) < τ({j}). (17)
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To carry out this test, we can take the statistic Sn =
√
na>j τ̂ /

√
a>j T̂ aj, where aj is

the vector of length 2d comprising only zeros, except at the positions corresponding

to {j}, D \ {j} and D where the components are equal to 1, 1 and −1, respectively.

The critical value is given by r = q1−α. The p-value is given by 1− Φ(Sn).

Contribution of a given set of Sobol indices to the total variance. Suppose we want

to test whether a given set of Sobol indices contributes to less than a certain share

of the total variance. The above test can be formulated as

H0 :
k∑
i=1

σ∗(Ai) ≤ (1− η) Var f(X), versus

H1 :
k∑
i=1

σ∗(Ai) > (1− η) Var f(X), (18)

where η ∈ (0, 1) is some desired threshold and σ∗(A1), . . . , σ
∗(Ak) are chosen Sobol

indices. Here A1, . . . Ak can be any subsets of D (except the empty set). To carry

out this test, proceed as follows. Let ji denote the position of σ∗(Ai) in the vector

σ∗. Define the vector c = (c1, . . . , c2d−1), where cji = η/(1 − η) for i = 1, . . . , k, and

−1 otherwise. Take the test statistic and the critical value

Sn =

√
nc>σ̂∗√
c>Σ̂∗c

, r = q1−α, (19)

respectively. Note that the test depends on η. The higher the contribution level 1−η,

the less we will tend to reject H0. Indeed, conditionally on the data, Sn = Sn(η) is

an increasing function of η on [0, 1].

Proposition 2. With the given Sn and r, it holds that:

(i) The tests (16) and (17) satisfy limn→∞ PrH0(Sn > r) = α.

(ii) The test (18) satisfies limn→∞ PrH0(Sn > r) ≤ α.
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The first statement of Proposition 2 is a direct application of standard theory. The

second statement is proved in Section G of the supplementary file.

Examples of applications of the above tests are given in Section 5.

4 Computational aspects

Estimators and their asymptotic variance-covariance matrices have been defined in Sec-

tion 3. However, it may not be immediately apparent from the given formulas how to

actually perform the computations, and at what expense. In this section, we assume that

the sample of model outputs has already been generated. Thus, in the following compu-

tation expense is understood as the expense of the inference method per se, and not the

expense of the sensitivity analysis as a whole. A discussion about the computation expense

of the sensitivity analysis as a whole is given in Section 6.

In what follows, computation expense will be synonymous with number of arithmetic

operations. Also, we shall use the “Big Theta” notation (Knuth, 1997) : two functions f

and g of d satisfy g(d) = Θ(f(d)) if |g(d)/f(d)| remains bounded from above and away

from zero, as d goes to infinity. For instance, the computation expense of τ̂ is Θ(n2d),

meaning that it is proportional to n2d as d → ∞. Finally, if M is a matrix, let nnz(M)

denote the number of nonzero elements of M .

The computations and their implementation is greatly facilitated once the elements of

the power set have been arranged in some specific order: associate with each A ∈ 2D a

Boolean vector of size d and order the Boolean vectors according to the lexicographical

order, most significant bit first. An example is given in Table 1.

With the above arrangement, “building” the matrix M∗ in (14) becomes straightfor-

ward, as shows Proposition 3.

Proposition 3. If the components of τ ∗ and σ∗ are arranged as described above then the
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(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

∅ {3} {2} {2, 3} {1} {1, 3} {1, 2} {1, 2, 3}

Table 1: Arrangement of the subsets of D = {1, . . . , d} according to the lexicographical

order in the Boolean space {0, 1}d for d = 3.

matrix M∗ in (14) is a d-fold Kronecker autoproduct of the 2× 2 matrix

M∗
1 =

 1 0

−1 1

 . (20)

In other words,

M∗ = ⊗dM∗
1 = M∗

1 ⊗ · · · ⊗M∗
1 , (21)

where ⊗ denotes the Kronecker product.

A proof of (21) is given in Section G of the supplementary file. See also Grabisch

et al. (2000). To compute σ∗ = M∗τ ∗ from τ ∗, one can simply perform the product

between the sparse matrix M∗ and the vector τ ∗. Indeed, the matrix M∗ is sparse since

nnz(M∗) = nnz(⊗dM∗
1 ) = nnz(M∗

1 )d = 3d; see also, e.g. La Haye (2009). The expense of

computing σ∗ from τ ∗ is then Θ(nnz(M∗)) = Θ(3d). Similarly, the matrix Σ∗ = M∗T ∗M∗>

defined in Proposition 1 can be computed by multiplying T ∗ to the left by M∗ and then

multiplying the result to the right by M∗>. By the same token, the expense for computing

Σ∗ from T ∗ is Θ(6d).

It turns out that there are—at least in principle—less expensive algorithms to compute

σ∗ from τ ∗ and Σ∗ from T ∗. These algorithms are presented below.

4.1 The fast Möbius transform

The so-called fast Möbius transform can be used to compute σ∗ from τ ∗. Suppose momen-

tarily that τ ∗ is an arbitrary vector of size 2d and M∗
1 is an arbitrary matrix of size 2× 2.
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Let σ∗(0), σ∗(1), . . . , σ∗(d) be defined through the recurrence relations σ∗(0) = τ ∗

σ∗(j) = (I2d−j ⊗M∗
1 ⊗ I2j−1)σ∗(j−1), j = 1 . . . d,

(22)

where I2d−j and I2j−1 denote the identity matrices of size 2d−j and 2j−1, respectively. (In

general, if k is an integer then Ik will denote the identity matrix of size k.) The recurrence

relations (22) define an algorithm in which the vector σ∗(j) is first initialized to the vector

τ ∗ and then updated at each iteration j = 1, . . . , d.

Proposition 4. If τ ∗ is a vector of size 2d and M∗
1 is a nonnull matrix of size 2× 2 then

the last update of (22) is equal to

σ∗(d) = (⊗dM∗
1 )τ ∗. (23)

Moreover, the total number of arithmetic operations needed to reach σ∗(d) is Θ(d2d).

A proof of Proposition 4 is given in Section G of the supplementary file. See also Björklund

et al. (2007); Dayar and Orhan (2015); Fernandes et al. (1998); Grabisch et al. (2000);

Kennes (1992); Yates (1937).

It follows from Proposition 4 that the computation of (⊗dM∗
1 )τ ∗ is less expensive

with (22) than with standard sparse matrix multiplication as soon as nnz(M∗
1 ) > 2, because

nnz(⊗dM∗
1 ) = nnz(M∗

1 )d. In terms of computer memory usage, algorithm (22) is preferable

because it does not need to store the whole matrix ⊗dM∗
1 .

Remember that in Proposition 4 the vector τ ∗ and the matrix M∗
1 were arbitrary. Now

take τ ∗ to be the actual dual index vector with components arranged as in Table 1 and

M∗
1 the matrix (20). Then, in view of (14) and Proposition 4, the vector σ∗(d) is the Sobol

index vector with components arranged as in Table 1. Note that instead of using matricial

operations, the recurrence relations (22) can be implemented more efficiently by using “bit-

shift” manipulations; see Section E.1 of the supplementary file. A numerical experiment
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with reported computational gains is given in Section E.2. A Matlab implementation is

available as part of the Supplementary Material.

Remark 4. Algorithm (22) with M∗
1 the absolute value of (20) is referred to as the fast

Möbius transform in Björklund et al. (2007); Kennes (1992). Indeed, if σ∗ is a real map

defined on 2D then the map defined by τ ∗ : 2D → R, τ ∗(A) =
∑

B⊂A σ
∗(B) is the Möbius

transform of σ∗, see Björklund et al. (2007); Kennes (1992). The fast Möbius transform

is then a “fast” algorithm to compute the Möbius transform from its inverse (as the fast

Fourier transform computes the Fourier transform rapidly, hence the name). Computing

the inverse from the Möbius transform (that is, algorithm (22) with M∗
1 as in (20)) is, in

essence, the same algorithm. An early version was given in Yates (1937).

4.2 The extended fast Möbius transform

Along with the sensitivity index estimates, we need to compute their asymptotic variance-

covariance matrices, too. Algorithm (22) can be extended to compute Σ∗ from T ∗ the same

way σ∗ was computed from τ ∗. As before suppose momentarily that T ∗ is an arbitrary

matrix of size 2d× 2d and M∗
1 is an arbitrary matrix of size 2× 2. Let Σ∗(0),Σ∗(1), . . . ,Σ∗(d)

be defined through the recurrence relations Σ∗(0) = T ∗

Σ∗(j) = (I2d−j ⊗M∗
1 ⊗ I2j−1)Σ∗(j−1)(I2d−j ⊗M∗>

1 ⊗ I2j−1) (j = 1, . . . , d),

(24)

The difference between (22) and (24) is that we now consider a matrix which is updated

with both left and right multiplications. A proposition similar to Proposition 4 holds.

Proposition 5. If T ∗ is an arbitrary matrix of size 2d×2d and M∗
1 is an arbitrary nonnull

matrix of size 2× 2 then the last update of (24) is equal to

Σ∗(d) = (⊗dM∗
1 )T ∗(⊗dM∗>

1 ). (25)

Moreover, the total number of arithmetic operations needed to reach Σ∗(d) is Θ(d4d).
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The proof of Proposition 5 is an easy adaptation of the proof of Proposition 4 and is not

given. The expense Θ(d4d) is to be compared with Θ(6d) that was obtained with sparse

matrix multiplication.

As in Section 4.1, it now suffices to take T ∗ to be the variance-covariance matrix defined

in Proposition 1 with its rows and columns arranged as in Table 1 and M∗
1 the matrix (20).

We then get that Σ∗(d) = (⊗dM∗
1 )T ∗(⊗dM∗>

1 ) = (⊗dM∗
1 )T ∗(⊗dM∗

1 )> = M∗T ∗M∗> coin-

cides with the matrix Σ∗ of Proposition 1. As for (22), a direct implementation is possible

but there is a “bit-shift”, more efficient, version; see Section E.1 of the supplementary

file. A numerical experiment with reported computational gains is given in Section E.2. A

Matlab implementation is available as part of the Supplementary Material.

5 Application to the sensitivity analysis of two dy-

namical systems

In this section we apply the inference method to analyze the sensitivity of two different

dynamical systems, both with an application in life sciences. The first one is a discrete

system, more precisely a stochastic Boolean model of a cellular regulatory network, and

the second one is a system of deterministic ordinary differential equations (ODE) modeling

some population dynamics. In both cases, after identifying d key parameters, a n × 2d

dataset is simulated according to part 3.1. The different sets of sensitivity indices are

then estimated and are used, both qualitatively and quantitatively, to gain insight on

the systems’ dynamical behavior. All the following computations were performed with

MATLAB (R2023b).
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5.1 A Boolean network modeling cell fate decision

First we consider a Boolean network, originally proposed by Calzone et al. (2010), modeling

the decision-making process of a eukaryote cell between different “death pathways”. When

subject to specific membrane receptors such as TNFα (Tumor Necrosis Factor), cells can

trigger inner antagonistic signaling pathways ultimately leading to the programmed death

of the cell or, on the contrary, to its survival. Two types of death are considered: apopto-

sis, which is the classical programmed cell death, and necroptosis, which is a programmed

death sharing apoptotic regulators yet presenting necrotic features (thereafter, this phe-

notype will be abusively denoted by “necrosis”). The model of Calzone et al. (2010) is

an asynchronous Boolean network modeling the main regulatory pathways responsible for

the decision between three phenotypes: apoptosis, necrosis and survival. In such networks,

signaling molecules are represented by Boolean variables denoting their absence or pres-

ence, and regulatory processes are modeled through logical functions. Variables update

asynchronously, implying that a state may transition to several possible successors. When

associating probabilities to such transitions, the transition graph of the network straight-

forwardly translates to an absorbing Markov chain. It then becomes possible to compute

the probability to enter apoptosis, necrosis or survival, starting from any given initial con-

dition. More details on asynchronous Boolean networks and their translation into Markov

chains can be found for instance in Tournier and Chaves (2009).

A critical point in the interpretation of the model’s outputs lies in the choice of the

transition probabilities and by default, all successors of a state are assumed equiprobable.

In reality those probabilities are linked to the relative speeds of the regulatory processes

involved. Defining them from biological experiments for such a complex network, with

multiple and heterogeneous intertwined pathways, is out of reach. This makes a global

sensitivity analysis particularly appealing, to help detect which regulatory mechanisms, or
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combinations of regulatory mechanisms, have the most impact on the dynamics, and are

therefore priority targets for further investigation. A first sensitivity analysis of the model

was performed by Zinovyev et al. (2012). The idea was to affect a positive weight to each

Boolean variable: a weight greater than 1 means that processes involving the variable are

rapid and the transitions updating the variable are favored, while a weight lower than 1

means that the processes are slow and the transitions are hindered. Mathematically, this

boils down to parameterize the transition matrix of the Markov chain. Since the network

is asynchronous, each nonnull entry corresponds to a switch of a single variable, and now

contains the (normalized) weight associated with that variable. A local sensitivity analysis

around the reference vector (1, . . . , 1) was performed by using a “one-at-a-time” approach,

each weight varying independently around its reference value 1.

Here, we refine this approach by considering two types of weights instead of one: one

controls the variable’s activation (from 0 to 1) and one its deactivation (from 1 to 0). This

comes from the basic observation that in cell biology, production and degradation of a given

compound may have very different time scales. Also, we now perform a global sensitivity

analysis, which is preferable because it does not give any particular importance to the

reference vector (1, . . . , 1). Six variables central to the decision process are chosen: C8

(caspase 8), RIP1, NFkB, cIAP, MOMP and MPT. This leads to d = 2 × 6 = 12 inputs,

corresponding to the 12 weights that parameterize the transition matrix of the Markov

chain. The reader is referred to Calzone et al. (2010) for a comprehensive description of

these biological variables and the regulatory processes they are involved in.

A dataset of n2d = 1000 × 4096 model simulations was generated according to (10).

The inputs were drawn independently from log-uniform distributions. See Table 1 in the

supplementary file for details. Each simulation consists in the computation of three outputs:

the probabilities to reach the three expected phenotypes (apoptosis, necrosis and survival)

starting from a given initial condition. The detailed procedure is described in Section F of
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the supplementary file. For each output, total and Sobol indices as well as Shapley effects

are then estimated as described in Section 3. The estimates and their asymptotic variance-

covariance matrices are computed with the “bit-shift” versions of the fast Möbius transform

and the extended fast Möbius transform algorithms, respectively, given in Section 4. The

choice of the size n of the Monte Carlo sample was arbitrary, but the obtained confidence

intervals are narrow enough (see Figure 1) to draw reliable inferences. (Remember that to

halve the standard error, four times more simulations are needed.)

The estimates are depicted in Figure 1. The first observation that can be made is that

the “necrosis” phenotype seems qualitatively different from the other two, with generally

lower index values, indicating a globally low variability of this output. We confirmed this

result by drawing histograms of the three outputs in Figure 3 of the supplementary file. By

inspecting highest Sobol index estimates in “apoptosis” and “survival” phenotypes (Fig. 1,

middle row), we find that the three most important inputs are C8+, RIP1+ and NFkB+,

as was originally observed by Zinovyev et al. (2012). To go beyond this qualitative ob-

servation, we apply Test (18) above and find these three inputs contribute to more than

85% of the total variance in each case, with respective p-values 2.5× 10−3 and 9.8× 10−3.

Although the combination A = {C8+,RIP1+} stands out as the fourth highest Sobol in-

dex in both cases, statistical inference invalidates this result. Indeed, testing the nullity

of σ({C8+,RIP1+})∗ (test (16) above) leads to high p-values: p > 0.12 for apoptosis and

p > 0.15 for survival, indicating the uncertainty on the estimation is too high to be con-

clusive. The interpretation of the “necrosis” phenotype is slightly more delicate. If on a

qualitative level input NFkB+ stands out as the sole significant one, it can only be shown

to contribute to 45% of total variance with high confidence (p-value < 0.05). To explain

more than 85% of the variance with p-value < 0.05, one has to consider the seven highest

main or interaction effects σ∗({NFkB+}), σ∗({C8+}), σ∗({MPT+}), σ∗({NFkB+,C8+}),

σ∗({RIP1+}), σ∗({NFkB+,RIP1+}) and σ∗({RIP1+,MPT+}). This indicates that, al-
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Figure 1: Global sensitivity analysis of the cell fate Boolean model by Calzone et al.

(2010). The first row shows total index estimates for all 2d = 4096 combinations of inputs,

arranged in ascending order. The second row shows the 10 highest Sobol index estimates

in ascending order; the third row shows Shapley effect estimates, also in ascending order.

Each estimate is drawn within its 95% confidence interval. For reference, total output

variances are respectively 0.0368 (apoptosis), 0.0056 (necrosis) and 0.0331 (survival), as

indicated by the rightmost values in the top graphs.
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though the variability of the phenotype is globally lower (Fig. 3), it is much more spread

out than for the other two phenotypes. The choices between apoptosis and non-apoptosis,

and between survival and non-survival are less complex, as they almost exclusively depend

on a few key inputs, namely C8+ and RIP1+. Looking at the bottom row of Figure 1, very

similar interpretations can be drawn from Shapley effect estimates, although the seemingly

complex interactions between inputs for necrosis are globally missed.

Finally, it is interesting to note that total index estimates (Fig. 1, top row) are rela-

tively well separated into small numbers of clusters, especially for apoptosis and survival.

Furthermore, there seems to be a striking relationship between those plateaus and highest

Sobol indices. For instance, the highest plateau of apoptosis (top left, τ > 0.03) exactly

corresponds to all 1024 combinations of inputs that contain both C8+ and RIP1+ at the

same time. A more thorough examination of the relationship between total and Sobol

indices is currently investigated.

5.2 A differential system modeling population dynamics

We consider now a system of five nonlinear ordinary differential equations (ODE) modeling

the dynamics of infection of a bacterial population of E. coli by the bacteriophage λ in

the mouse gut, originally proposed by De Paepe et al. (2016). Lambda is a temperate

phage, meaning that an infected bacterium has two opposite outcomes: either it enters

the “lysogenic” phase where it retains viral DNA in a dormant phase, (it is then called a

lysogen); or it enters the “lytic” phase where the virus replicates itself, eventually leading

to the destruction of the host and the release of new viral particles. Lysogens continue

to grow and survive normally, until a future change in external conditions may induce the

lytic phase, leading to the bacterium’s demise and release of free viruses. In the model two

bacterial populations exist initially: L denotes lysogens, containing the virus in a dormant

phase, and S denotes “susceptible”, uninfected bacteria. Newly lysogenized susceptible
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are denoted by Sl, to distinguish them from originally resident lysogens L. Once infected,

susceptible bacteria enter lytic phase (variable Q) with probability (1− g). As for lysogens

L and Sl, they enter lytic phase at constant rate x. After some time, lytic bacteria Q die

and release free viruses, denoted by variable V . The system consists in five ODE:

dL/dt = r(1−N/k)L− xL− dL,

dS/dt = r(1−N/k)S − aV S − dS,

dSl/dt = r(1−N/k)Sl − xSl + gaV S − dSl,

dQ/dt = x(L+ Sl) + (1− g)aV S − lQ− dQ,

dV/dt = ylQ− aV (N +Q)− dV,

(26)

where N denotes total bacterial population: N = L+S+Sl. In total, the system contains

eight parameters, denoted by small letters and listed in Table 2 of the supplementary

file. Viable bacterial populations L, S and Sl grow according to the same logistic term

with parameters r and d, while lytic bacteria Q do not grow. Besides induction rate x

and lysogenisation probability g, key infection parameters are the burst size y, which is the

average number of released free viruses after lysis, and the adsorption constant a, governing

the attachment of a free virus to a bacterium. A detailed description of the parameters can

be found in the original paper by De Paepe et al. (2016) and its supplementary material,

along with an extensive presentation of the equations and the modeling choices behind

them.

The analysis of the system was carried out in the original paper. Four equilibria exist,

they are characterized by the extinction or persistence of populations L and S: first, a

“wash-out” equilibrium where all microbial populations vanish; second, an equilibrium

where L = L∗ > 0 is maintained while S = 0; third, an equilibrium where S = S∗ > 0

is maintained while L = 0; and finally, an equilibrium where both L = L∗ > 0 and

S = S∗ > 0 coexist. In this analysis parameters were treated symbolically, leading to

explicit formulas for equilibria as well as explicit relations between parameters determining
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equilibria’s reachability. For conciseness, those explicit formulas are not reproduced here

but can be found in De Paepe et al. (2016).

While this type of symbolic computations is relatively classical to analyze such systems,

it is worth noting that it can rapidly become cumbersome, even impossible if the dimension

is too high or if the system contains highly nonlinear terms. Here we propose to use a

global sensitivity analysis as an alternative to such calculations. Although the output will

necessarily be less informative than explicit formulas, in the following we show that global

sensitivity indices capture interesting properties and provide valuable information about

the effects of the parameters on the dynamics. Such analyses can thus become particularly

helpful in the analysis of complex and large ODE systems, pointing for instance to specific

groups of parameters that can be further investigated with dedicated tools.

We consider the system’s eight parameters, to which we add the initial values of

populations L and S, denoted by L0 and S0, leading to d = 10 inputs. A dataset of

n2d = 4987 × 1024 model simulations was then generated, according to (10). The inputs

were drawn independently from uniform or log-uniform distributions. See Table 2 of the

supplementary file for details. Each simulation was carried out by the matlab routine

ode45, until a steady state was reached. The (base 10) logarithm was applied to the ob-

tained population values, in line with the original paper; additionally, small populations

were truncated in order to avoid unwanted numerical effects. The detailed procedure can

be found in Section F of the supplementary file. As before total, Sobol and Shapley indices

were estimated from the dataset as in Section 3 and the computations were done with the

Möbius transform and extended Möbius transform algorithms presented in Section 4. The

size n was again arbitrary and initially set to 5000 but some simulations had to be discarded

because of numerical anomalies (see the supplementary file for more information). In view

of the obtained confidence intervals, it was assessed that no more simulations was needed.

Figure 2 presents the ten highest Sobol index estimates. A rapid inspection of those
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indices shows that L is mainly impacted by parameters r and d, while S is mainly impacted

by x and y. More precisely, the abundance of L is mostly dependent on the interaction

between r and d, emphasized by the significantly high value of σ∗({r, d}). This was partly

observed in De Paepe et al. (2016), as the first and second equilibria are separated according

to the relative position of r and d. Parameters r and d mainly govern bacterial growth,

while x and y mainly govern viral infection, therefore the fact that susceptible are more

sensitive to infection than lysogens is relatively unsurprising. However, the sensitivity

analysis reveals a higher importance of x and y with respect to other viral parameters such

as the adsorption constant a, for instance. This was rather unexpected.

Additional observations can be made about Figure 2. First, the viral population V

depends on more parameters that bacterial populations: parameters r and d suffice to con-

tribute to more than 80% of the variance of N (Test (18) with the two highest Sobol indices

σ∗({r, d}) and σ∗({r}) returned a p-value < 1.5× 10−3), whereas five parameters r, d, a, x

and y are necessary to contribute to more than 80% of the variance of V (Test (18) with

the five highest Sobol indices σ∗({r, d}), σ∗({r}), σ∗({a}), σ∗({x}) and σ∗({y}) returned

a p-value < 1.5 × 10−2). Interestingly, this phenomenon can be observed when looking at

the explicit formulas in the original paper. Second, parameters S0 and L0, which are part

of the initial condition, only appear with significant nonzero values for variable Sl, newly

lysogenized bacteria. Usually in a non-degenerate ODE system, this type of dependence

should not appear: equilibria are generally independent of the initial condition. Neverthe-

less in the original paper, a singular property of the system was noted: rewriting (26) in

the system of variables (N,S, Sl, Q, V ) implies that Sl does not influence the rest of the

system and can be omitted, thus dropping the dimension to 4 instead of 5. This implies

that no explicit formula can be retrieved for the equilibrium of Sl, but instead for the sum

L+Sl. In the sensitivity analysis, the significant effect of the initial condition on the steady

state of Sl is a hint that such phenomenon may occur. Those two observations: multiple
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dependencies of variable V and dependence of Sl with respect to initial conditions, illus-

trate the interest of using a global sensitivity analysis as a first step to study this type of

dynamical systems. It becomes particularly interesting for systems where explicit formulas

are unavailable.

Contrary to the previous Boolean model where interactions of inputs were relatively in-

significant, here they are more relevant. We noted earlier the significance and importance

of the interaction effects {r, d} or {x, y}. As a matter of fact, this system seems to exhibit

a generally high influence of interactions between parameters. To quantify this, we imple-

mented Test (17) described above. The results are presented in Figure 3. If for a singleton

{i}, one observes a significant difference τ({i}) − τ ∗({i}) (grey area of the bar), then one

concludes that the influence of the input {i} is strongly dependent on interactions with

other inputs. This is notably the case for parameters r and d, which we already know from

Figure 2. To a lesser extent, interaction effects are also important for other parameters as

well, see Figure 3. A notable counterexample is the effect of parameter g for variable Sl.

This parameter denotes the probability of lysogenisation for an newly infected bacterium.

The fact that it has a high effect on the population of new lysogens is therefore expected;

however, statistical testing indicates this effect is relatively isolated from other parameters,

which is a new result.

6 Discussion

An inference method for global sensitivity analysis was designed and practically tested on

two dynamical systems. Although many estimation methods already exist in the literature,

they largely focus on first-order Sobol indices only, or, when interactions are considered, the

asymptotic normality of the estimators is rarely considered to quantify the uncertainties of

the estimates. Thus, the method designed in this paper bridges a gap in the literature: it
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Figure 2: Ten highest Sobol index estimates of system (26) steady state (after log-

transformation, see main text). Interactions containing more than 6 inputs are omitted.
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Figure 3: Importance of interactions in System (26). The bars compare τ ∗({i}) (white)

and τ({i}) (white+grey) for the five highest τ({i}). P-values of test (17) indicated on top.

32



performs the inferences for everything thanks to the established asymptotic normality of

the estimators. In particular, a procedure to test the contribution of an arbitrary number

of Sobol indices of arbitrary orders was designed. To compute the estimates and their

asymptotic variance-covariance matrices, the fast Möbius transform and the extended fast

Möbius transform algorithms were proposed and implemented. The method is general:

although total indices were used in step 1 of the method, they can be replaced by any

sensitivity measure for which there is an asymptotically normal estimator.

Questions remain, however. Potential limitations and extensions are discussed below.

Dimension of the input space. Calculating the index estimates of all input combina-

tions is feasible if the number of inputs is not too large. If the model runs fast, then

perhaps up to a dozen inputs can be considered. Otherwise, owing to the sparsity-of-

effects principle—aka Pareto principle (Becker, 2020)—it is reasonable to expect that

a sufficiently large number of total indices will be close to zero. Thus, we may still

apply the inference method proposed, but to a well-chosen selection of inputs. For

instance, we might proceed as follows. First, we perform a screening experiment by

calculating estimates of the total indices and their duals associated with individual

inputs only. Second, we spot the inputs for which total index estimates are below

some threshold and fix the corresponding inputs to some arbitrary values. Finally,

we apply the inference method proposed to the remaining inputs only.

Global sensitivity analysis with dependent inputs. If the inputs are not mutually

independent then the Sobol-Hoeffding decomposition presented in Section 2 no longer

holds and hence Sobol indices are undefined. Interpretation of the right-hand side

of (6) remains valid whether or not the inputs are mutually independent: in either

case, it is the output variance induced by a random change in XA, averaged over

all the remaining inputs. Therefore, we can define τ(A) through (6) and, in turn,
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define and calculate Sobol indices through the identity τ(D)− τ(A) = τ ∗(D \A) and

the Möbius inversion formula (13), respectively. The inference method of Section 3

remains valid as long as we have an asymptotically normal estimator of the vector

of total indices. The estimator given in Section 3.1 cannot be used anymore but

one may use, adapt and/or extend other estimation methods (Da Veiga et al., 2023;

Gamboa et al., 2022).

Improving the efficiency of estimators. Computational aspects and efficiency of esti-

mators are intimately connected in sensitivity analysis: building more efficient es-

timators leads to computational savings, since we need less data for a given level

of precision. To this aim, it might be interesting to consider adaptive estimation

as in Broto et al. (2020). Quasi-Monte Carlo samples may also improve estimates,

although controlling the statistical error is more difficult.
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the Shapley effects, as well as all the variance-covariance matrices, with the fast and

extended fast Möbius transform algorithms (.m files).

Datasets: Datasets of outputs from the two models (.mat files).
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