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Abstract

Although there is a plethora of methods to estimate sensitivity indices
associated with individual inputs, there is much less work on interaction
effects of every order, especially when it comes to make inferences about
the true underlying values of the indices. To fill this gap, a method that
allows one to make such inferences simultaneously from a single Monte
Carlo sample is given. One advantage of this method is its simplicity: one
leverages the fact that Shapley and Sobol indices are only linear trans-
formations of total indices, so that standard asymptotic theory suffices
to get confidence intervals, p-values, and the possibility of carrying out
statistical tests. To do the numerical computations, Möbius inversion for-
mulas are used and linked to the fast Möbius transform algorithm. An
illustration on a model in cellular biology involving 12 inputs and 4096
input combinations and interaction effects is given.

Keywords: Möbius inversion, Möbius transform, Sobol index, global sensi-
tivity analysis, inference

1 Introduction

Sensitivity analysis seeks to quantify, for a given mathematical or computer
model f , the extent to which a change in the inputs contributes to a change in the
output. Contrary to local methods, which quantify rates of change at particular
points in the input space, global sensitivity analysis assesses the inputs’ contri-
butions over the whole input space [34, 35], often with statistical methods. One
then adopts a probabilistic framework in which the inputs X = (X1, . . . , Xd)
are seen as random variables. From now on, by sensitivity analysis we shall
mean global sensitivity analysis.

Different aspects of sensitivity analysis are captured by different kinds of
sensitivity indices. The Sobol index σ∗(A), A ⊂ {1, . . . , d} =: D, quantifies the
interaction effect of order |A| between the components of XA, the subvector of
X corresponding to the subset A. (See, e.g. [35].) In the special case A = {j},
j = 1, . . . , d, the quantity σ∗({j}) = Var E(f(X)|Xj), called the first-order
Sobol index of Xj , is interpreted as the expected variance reduction should Xj

be fixed [15, 20]. The total index τ(A) is defined as the sum over all interaction
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effects σ∗(B), B ∩ A 6= ∅, or, equivalently, as the output variability induced by
a random change in XA, averaged over the remaining inputs XD\A. Shapley
indices stem from the application of an allocation method coming from game
theory [37, 45]. One assigns a “value” to each of the players, based on the
performance of all the possible coalitions among them. By analogy, the Shapley
index θ({j}) of the individual input Xj summarizes its global importance, based
on all the possible input combinations.

Estimation of the above sensitivity indices has attracted much attention
in the literature. In particular, a plethora of methods have been proposed
to estimate first-order Sobol indices. Many methods rest on the fact that
Var E(f(X) − E[f(X)]|Xj) can be re-expressed as a simple expectation and
use the method-of-moments to estimate it from a Monte Carlo or quasi-Monte
Carlo sample of inputs [38, 19, 18, 8, 14, 32, 33, 27]. Asymptotic normality of
some estimators is studied in [8, 18]. To avoid the waste of data, more elab-
orate ways of combining outputs have been proposed [42, 10, 33, 32], the goal
being always to have the most efficient estimates with the least model runs [29].
See also [36] for another way of exploring the input space. Methods based on
U-statistics are found in [9]. There are also methods that offer a different look,
statistically speaking. For instance, nonparametric regression techniques, or
techniques based on kernels, are found in [5, 4, 39]. The use of meta-models
to compute sensitivity indices has been proposed as well [41]. It is a fact that
the estimation of first-order Sobol indices is an active area of research, and
many other methods have been, and continue to be, proposed. See, e.g. the
books [31, 5] for more details and possibly other estimation methods. A list of
methods is also available in [17]. A numerical comparison of some of the above
methods is given in [24].

Although a plethora of methods exist to estimate first-order indices, the
literature is more thin about the estimation of higher order interaction effects.
Attention has increased recently, though, as they are useful to compute Shapley
indices [3, 16, 30, 40, 11]. The full consideration of the possibility of making
inferences about the true underlying values for each of the interaction effects
based on sound statistical theory (e.g. confidence intervals, p-values, hypothesis
testing) is still lacking, however.

A method to make inferences about the true underlying values of the sensi-
tivity indices of every order simultaneously from a single Monte Carlo sample
is given. The main advantage of this method is its simplicity: one leverages
the fact that Shapley and Sobol indices are only linear transformations of total
indices, so that the standard central limit theorem and delta method suffice
to get asymptotic confidence intervals, p-values, and the possibility of carrying
out statistical tests. In practice, one pitfall that may impede the calculation
of inferences using asymptotic theory is the requirement of analytic expressions
and/or efficient algorithms to compute the corresponding asymptotic variance-
covariance matrices [23]. Since the number of interaction effects grows exponen-
tially with the number of inputs, efficient algorithms must be found to do the
numerical computations. For this purpose, it is explained how Möbius inversion
formulas and the fast Möbius transform algorithm can be used to reduce the
computational expense. An application on a model in cellular biology involving
12 inputs and 4096 input combinations and interaction effects is presented.

The rest of the paper is organized as follows. Section 2 is a brief review of
sensitivity analysis. Section 3 presents the inference method. Section 4 presents
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the sensitivity analysis of a cellular biology model. The results are discussed in
a Conclusion.

2 Sensitivity analysis

Let f(X) be the output of some function f with random inputsX := (X1, . . . , Xd).
Denote D = {1, . . . , d}. Let 2D be the power set of D, that is, the set of
the subsets of D. For A ∈ 2D \ ∅, the symbol XA denotes the subvector of
X = XD = (X1, . . . , Xd) that corresponds to A. For instance if d = 4 and
A = {3, 1, 4} then XA = (X1, X3, X4).

2.1 Variance decomposition and Sobol indices

If the components of X are independent and E f(X)2 < ∞ then it holds that
f(X) =

∑
A⊂D fA(XA), where the functions fA satisfy

(1) E(fA(XA)|XB) = 0 if A 6⊂ B.

By convention, f(X∅; ∅) denotes a constant. Equation (1) characterizes the de-
composition of f(X): if there are functions f ′A that satisfy (1) and f(X) =∑
A⊂D f

′
A(XA) then each f ′A(XA) must be equal to fA(XA) almost surely. The

above decomposition is called the Sobol decomposition, or Sobol-Hoeffding de-
composition. For more details see [13, 38, 44].

The Sobol-Hoeffding decomposition entails a decomposition of the vari-
ance of f(X). Indeed, equation (1) implies that the random variables fA(XA)
are uncorrelated, and hence Var f(X) =

∑
A⊂D Var fA(XA). The quantities

σ∗(A) := Var fA(XA) are called the Sobol indices [31, 38]. Note that σ∗(∅) = 0.
The Sobol indices associated with the singletons are called first order Sobol in-
dices, or main effects, and the remaining indices are called interaction indices, or
interaction effects. The Sobol index vector, that is, the vector with components
σ∗(A), is denoted by σ∗.

First order indices have an easy interpretation. Indeed, it is easy to see that

(2)
∑
B⊂A

fB(XB) = E(f(X)|XA)

and hence, taking A = {j}, one gets σ∗(j) = σ∗({j}) = Var E(f(X)|Xj) =
Var f(X)−E Var(f(X)|Xj), which is the expected reduction in variance induced
by fixing Xj to a random value. Taking the variance in both sides of (2), one
gets similarly that

(3)
∑
B⊂A

σ∗(B) = Var E(f(X)|XA) =: τ∗(A).

The index τ∗(A) is sometimes called the closed Sobol index of A [32, 19]. We
shall call it the dual total index of A, or simply the dual of A. The reason stems
from the duality relatioship between τ∗(A) and the total index τ(A) defined in
the next section. (See (5.) The dual of A is the expected reduction in variance
induced by fixing the components of XA. The vector of dual indices will be
denoted by τ∗.
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2.2 Total indices

The total index τ(A) of A is defined as

(4) τ(A) =
∑

B∩A6=∅

σ∗(B).

The quantity τ(A) measures the sum of all interactions of XA [14]. Note that
τ(D) = Var f(X) and τ(∅) = 0. By (4), it holds

(5) τ(D)− τ(A) =
∑
B⊂D

σ∗(B)−
∑

B∩A6=∅

σ∗(B) = τ∗(D \A),

where the last equality holds because of (3). It follows [31]

(6) τ(A) = E Var(f(X)|XD\A).

Therefore, the total index of A is also interpreted as the output variance induced
by a random change in XA, averaged over all the remaining inputs. It is easy to
see that τ(A) = 0 if and only if the function f does not depend on XA. Thus,
total indices are used in a “factor fixing” setting [34, 38]. The vector of total
indices will be denoted by τ .

2.3 Shapley indices

Shapley indices assess the global importance of each individual input [28]. They
result from an allocation method of game theory [37, 45]. If D denotes the set of
players, then to each coalition B ⊂ D there corresponds a real number, denoted
by val(B), that represents the “value” of B. It is assumed that val(∅) = 0. The
Shapley value of player j, j = 1, . . . , d, is defined as

θ({j}) =
1

d

∑
B⊂D\{j}

1(
d−1
|B|
) (val(B ∪ {j})− val(B)).

The value of player j is based on the change in value of the coalitions, should the
player be added in them. In fact, it was shown by Shapley [37] that this way of
assigning values is the only possible way that satisfy certain axioms; see [37, 45]
for more details. By an analogy between game theory and global sensitivity
analysis (the individual inputs Xj play the role of the players), val(B) was set
to Var E(f(X)|XB) in [28] and E Var(f(X)|XD\B) in [40]. It was shown in [40]
that both choices lead to the same Shapley indices. Shapley indices have the
advantage that their sum equals the model output variance. Moreover, it holds
that

(7) θ({j}) =
∑

B∩{j}6=∅

σ∗(B)

|B|
,

for every j = 1, . . . , d. (See, e.g. Lemma 1 of [28].) The vector of Shapley
indices, that is, the vector with components θ({j}), is denoted by θ.
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3 An inference method

Consider the following steps:

1. Estimate the total indices and the duals using Janssen’s formula [20].

2. Compute the variance decomposition and Sobol indices using Möbius in-
version formulas and the fast Möbius transform.

3. Use the fact that the vector of Sobol indices is a linear transformation of
the vector of total indices to make inferences.

4. Make inferences about Shapley values using this same idea.

The steps above are described in more detail below.

3.1 Estimation of the total indices and the duals

Let X ′ = (X ′1, . . . , X
′
d) be an independent copy of X. If A ∈ 2D, denote by

X\A the vector made out of X and X ′ such that the components of X indexed
by the members of A are replaced by those of X ′. For instance, if d = 4 and
A = {3, 1, 4} then X\A = (X ′1, X2, X

′
3, X

′
4), X\∅ = X and X\D = X ′.

Janssen’s formula reads

(8) τ(A) = E
1

2

(
f(X)− f(X\A)

)2
.

Janssen’s formula has the advantage that total indices are expressed as simple
expectations, and hence simple and yet efficient moment estimators are avail-
able. It suffices to draw a sample from (X,X ′), say of size n, and substitute the
empirical average for the expectation in (8). One then obtains an estimator τ̂
of the vector τ . The central limit theorem immediately yields that

√
n(τ̂ − τ)

d→ N(0, T ),

where T is the variance-covariance matrix with elements

Cov((f(X)− f(X\A))2/2, (f(X)− f(X\B))2/2),

A,B ⊂ D. The matrix T can be estimated by taking empirical covariances. To
avoid possible complications due to the fact that the entries of T corresponding
to the empty set will be null, we may remove from τ̂ and τ the component
corresponding to the empty set.

Asymptotic p-values and confidence intervals are easily built. For instance,
letting T (A,B) stand for the element of T at the row and column correspond-
ing to the sets A and B, respectively, an asymptotic confidence interval for
τ(A) of level 1 − α, α ∈ (0, 1) (that is, a random interval containing the
true value τ(A) with probability approaching 1 − α as n increases) is given by
[τ̂(A)± q1−α/2

√
T (A,A)/n], where here q1−α/2 is the quantile of order 1−α/2

of the standard normal distribution. An asymptotic p-value for testing the null
hypothesis “τ(A) = 0” against “τ(A) > 0” is given by the probability that a
standard normal random variable exceeds the value

√
nτ̂(A)/

√
T (A,A) actually

observed in the data.
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Estimation of the dual index vector τ∗ can be done from (5). There is a
matrix L such that τ̂∗ = Lτ̂ . A standard delta-method yields that

(9)
√
n(τ̂∗ − τ∗) d→ N(0, T ∗),

where

(10) T ∗ = LTL>.

Confidence intervals and p-values can be built are before.

3.2 Computation of the variance decomposition and Sobol
indices

3.2.1 Möbius inversion formulas

A decomposition of the variance Var f(X) is easily obtained from Möbius in-
version formulas [26]. Remember that τ∗(A) can be estimated as in Section 3.1.
Now define

(11) σ∗(A) =
∑
B⊂A

(−1)|A\B|τ∗(B),

for every A ∈ 2D. Möbius inversion formulas state that, for arbitrary real maps
τ∗ and σ∗ defined on 2D with τ∗(∅) = σ∗(∅) = 0, equation (11) holds if and
only if

(12) τ∗(A) =
∑
B⊂A

σ∗(B)

for every A ∈ 2D. Since τ∗(D) = Var f(X), taking A = D in (12) de facto
provides a decomposition of the variance Var f(X). It is not difficult to show
that, in fact, the quantities σ∗(A) coincide with the Sobol indices of Section 2.
The maps τ∗ and σ∗ are sometimes known as Möbius transforms of one an-
other [1, 12, 21].

Remark 1. Notice that, since Möbius inversion formulas hold for arbitrary
maps, and since τ(A) has been defined in Section 3.1 along with τ∗(A), we can
define σ from τ the same way σ∗ was defined from τ∗. Since τ(D) is also equal
to Var f(X), this defines another variance decomposition.

From (11), it is clear that

(13) σ∗ = M∗τ∗,

where M∗ is the matrix with entries

M∗(A,B) =

{
(−1)A\B if B ⊂ A,

0 otherwise.

Let nnz(M∗) denote the number of nonzero elements of M∗. Recall the “Big
Theta” notation [22]: two functions f and g of d satisfy g(d) = Θ(f(d)) if
g(d)/f(d) goes to a positive constant as d goes to infinity. Since, asymptotically
as d → ∞, nnz(M∗) = Θ(3d) (see, e.g. [25]), standard sparse multiplication
yields that the computation cost of (13), measured by the number of arithmetic
operations, is Θ(3d).
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3.2.2 The fast Möbius transform

The computation cost of (13) can be as little as Θ(d2d). To achieve such a low
cost, arrange the elements of the powerset in the following order: associate with
each A ∈ 2D a Boolean vector of size d and order the Boolean vectors according
to the lexicographical order. An example is given in Table 1.

(0,0,0) ∅
(0,0,1) {3}
(0,1,0) {2}
(0,1,1) {2, 3}
(1,0,0) {1}
(1,0,1) {1, 3}
(1,1,0) {1, 2}
(1,1,1) {1, 2, 3}

Table 1: Arrangement of the subsets of D = {1, . . . , d} according to the lexico-
graphical order in the Boolean space {0, 1}d for d = 3.

Assuming that the components of τ∗ and σ∗ are arranged as described above,
it can be shown that the matrix M∗ in (13) is a d-fold Kronecker autoproduct
of the 2× 2 matrix

(14) M∗1 =

(
1 0
−1 1

)
.

In symbols, we write

(15) M∗ = ⊗dM∗1 = M∗1 ⊗ · · · ⊗M∗1 ,

where ⊗ denotes the Kronecker product. A proof of (15) is given in Appendix A.
See also [12].

Efficient recursive algorithms to compute arbitrary Kronecker auto-products
can then be used [1, 6, 7, 12, 21, 46]. Let τ∗ be an arbitrary vector of size 2d

and M∗1 be an arbitrary nonnull matrix of size 2× 2. Let σ∗(0), σ∗(1), . . . , σ∗(d)

be defined through the recurrence relations

(16)

{
σ∗(0) = τ∗

σ∗(j) = (I2d−j ⊗M∗1 ⊗ I2j−1)σ∗(j−1) (j = 1, . . . , d),

where and I2d−j and I2j−1 denote the identity matrices of size 2d−j and 2j−1,
respectively. (In general, if k is an integer then Ik will denote the identity matrix
of size k.) The recurrence relations (16) define an algorithm in which σ∗(j) is
first initialized to the vector τ∗ and then updated at each iteration j = 1, . . . , d.
(Notice that each σ∗(j) must be a vector of length 2d.) It can be shown that
the last update of (16) is equal to

(17) σ∗(d) = (⊗dM∗1 )τ∗ = M∗τ∗ = σ∗

and that the total number of arithmetic operations needed to reach σ∗(d) is
Θ(d2d). For completeness, a proof of these facts is given in Appendix A. Since

nnz(⊗dM∗1 ) = nnz(M1∗)d, Algorithm (16) is less costly than standard sparse
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matrix multiplication as soon as nnz(M∗1 ) > 2. In terms of computer memory
usage, algorithm (16) is also preferable because it does not need to store the
whole matrix ⊗dM∗1 .

Taking for τ∗ the actual dual total index vector and M∗1 the actual ma-
trix (14) yields that the Sobol index vector σ∗ can be computed from τ∗ with
computation cost Θ(d2d).

Remark 2. Algorithm (16) with M1 the absolute value of (14) is refered to
as the fast Möbius transform in [1, 21]. Indeed, If σ∗ is a real map defined
on 2D then the map defined by τ∗ : 2D → R, τ∗(A) =

∑
B⊂A σ

∗(B) is the
Möbius transform of σ∗, see [1, 21]. The fast Möbius transform is then a “fast”
algorithm to compute the Möbius transform from its inverse (as the fast Fourier
transform computes the Fourier transform rapidly, hence the name). Comput-
ing the inverse from the Möbius transform (that is, algorithm (16) with M1 as
in (14)) is, in essence, the same algorithm. An early version was given in [46].

Remark 3. As noted in [12, 30], the absolute value of M> is equal to the
Sierpinski matrix, a fractal matrix.

3.3 Making the inferences

Sobol indices

From (13) and (9), it follows that the estimator σ̂∗ = M∗τ̂∗ satisfies

(18)
√
n(σ̂∗ − σ∗) d→ N(0, Σ∗),

where

(19) Σ∗ = M∗T ∗M∗>.

The matrix Σ∗ can be computed with algorithm (16): for each j = 1, . . . , 2d,
apply algorithm (16) to multiply M∗ by the jth column of T ∗. Once all columns
of M∗T ∗ have been calculated, compute M∗(M∗T ∗)> similarly. The total com-
putation cost of Σ∗ is thus Θ(2d) × Θ(d2d) = Θ(d4d). Notice that the cost of
standard sparse matrix multiplication is Θ(6d). Also observe that an estimate

Σ̂∗ of Σ∗ is readily obtained by substituting T̂ ∗ for T ∗ in (19), where T̂ ∗ is an

estimate of T ∗ obtained by substituting T̂ for T in (10).
The asymptotic normality in (18) allows us to make inferences about the

values of the Sobol indices, interactions included. An example is given below.
Suppose we want to report, with “confidence” (1−α)100%, the contribution of
k Sobol indices σ∗(A1), . . . , σ∗(Ak) to the total variance Var f(X), where here
A1, . . . , A2d−1 is some enumeration of the elements of 2D \ ∅. Let us consider
the test

“H0: the contribution is less than or equal to (1− η)100%”

against the alternative “H1: the contribution is more than (1− η)100%”; more
formally, the null hypothesis is given by

H0 :

k∑
i=1

σ∗(Ai) ≤ (1− η) Var f(X).
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Let us rearrange the Sobol indices so that the ith component of σ∗ becomes
σ∗(Ai). Put ci = η/(1− η) if i = 1, . . . , k and −1 otherwise. Since Var f(X) =∑2d−1
i=1 σ∗(Ai), the null hypothesis is equivalent to “H0 :

∑2d−1
i=1 ciσ

∗(Ai) ≤ 0”,
which is further rewritten as “H0 : c>σ ≤ 0”, where here c is the vector
with components ci. We reject the hypothesis H0 if the test statistic T :=
√
nc>σ̂∗/

√
c>Σ̂∗c is greater than q1−α, where q1−α is the quantile of the stan-

dard normal distribution of order (1− α). The type-I error is controlled, since
limn→∞ PH0

(T > q1−α) ≤ limn→∞ PH0
(N > q1−α) ≤ α, where here N is a

standard normal random variable. Replace q1−α by the actual value of the test
statistic to get a bound for the p-value π = PH0(N > T obs), where T obs is the
value of the test statistic observed on the actual set of simulations. The test
depends on η. The higher the contribution level 1− η, the less we will tend to
reject H0. Indeed, conditionally on the data, T = T (η) is an increasing function
of η on [0, 1] and π = π(η) is a decreasing function of η on [0, 1].

Shapley indices

In view of (7), there is a matrix N∗ of size d×2d such that θ = N∗σ∗. From (7),
it is easily seen that if {k} and B are the ith and jth elements in some arbitrary
list of the subsets of D, then the entry at the ith row and jth column of N∗ is
given by

N∗({k}, B) =

{
1/ |B| if {k} ∩B 6= ∅,

0 otherwise.

Therefore, it holds that the estimator θ̂ := N∗σ̂∗ satisfies

√
n(θ̂ − θ) d→ N(0, Θ),

where Θ = N∗Σ∗N∗>. An estimate Θ̂ of Θ is obtained by substituting Σ̂∗ for
Σ. Confidence intervals and p-values can be obtained as usual.

4 Sensitivity analysis of a Boolean model of cell
fate decision

We consider a mathematical model, originally proposed in [2], of the decision-
making process of a eukaryote cell between different “death pathways”. When
subject to specific membrane receptors such as TNFα (Tumor Necrosis Factor),
cells can trigger inner antagonistic signaling pathways ultimately leading to the
programmed death of the cell or, on the contrary, to its survival. Two types
of death are considered here: apoptosis, which is the classical programmed cell
death, and necroptosis, which is a programmed death sharing apoptotic path-
ways yet presenting some necrotic features (thereafter, this phenotype will be
abusively designated by “necrosis”). The mathematical model of [2] consists
in an asynchronous Boolean model modeling the main regulatory network re-
sponsible for the decision between the three phenotypes: apoptosis, necrosis
and survival. In a Boolean network, signaling molecules are represented by
Boolean variables denoting their absence or presence, and regulatory processes
are modeled through logical functions. In an asynchronous network, variables
update asynchronously implying that a state may transition to several possible
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successors. When associating probabilities to such transitions, the transition
graph of the network straightforwardly translates to a Markov chain (see e.g.
[43] for more details on the construction and analysis of asynchronous Boolean
networks).

Using the model of [2], it is thus possible to compute the probability to enter
apoptosis, necrosis and survival starting from a given “physiological” initial con-
dition. (In the computational experiments, a reduced version of [2] was used.)
However, the direct interpretation of these probabilities is difficult since they
are based on the assumption that, for any given state, all asynchronous succes-
sors have an equal probability. A suitable way to circumvent this assumption
would be to adjust these probabilities taking into account the relative velocities
of all the regulatory mechanisms involved. Nevertheless, such experimental in-
formation is generally unavailable as too many complex biochemical processes
are intertwined. Therefore, a global sensitivity analysis is well suited to detect
which regulatory mechanisms or combinations of regulatory mechanisms have
the most impact on the model’s dynamics, and are therefore priority targets for
further investigations.

A first sensitivity analysis of the model was performed in [47], although a
“one-at-a-time” approach was used. The idea was to affect a positive weight to
each variable: a weight greater than 1 means that the processes involving the
variable are rapid, so the transitions updating the variable are favored, while
a weight lower than 1 means that the processes are slow and the transitions
are hindered. Here, we refine this approach by considering two weights for each
variable instead of one: one weight for the variable’s activation (i.e. from 0 to
1) and one weight for its deactivation (i.e. from 1 to 0). This comes from the
basic observation that in cell biology, the production and the degradation of a
given compound may have very different time scales.

In the following computational experiments, we choose six variables central
to the decision process: C8 (caspase 8), RIP1, NFkB, cIAP, MOMP and MPT.
The reader is referred to [2] for a comprehensive description of these biological
variables and the regulatory processes they are involved in. This leads us to
d = 2× 6 = 12 inputs. We then generate a dataset of n2d = 1000× 4096 model
simulations. Each simulation consists in the computation of three outputs: the
probabilities of the three expected phenotypes (apoptosis, necrosis and survival).
Total, Sobol and Shapley indices are then estimated for each output, as depicted
in Figure 1.

The first observation that can be made is that necrosis seems qualitatively
different from the other two, with generally lower index values, indicating a
globally low variability of this output. We confirmed this result by drawing
histograms of the three outputs in Figure 2. By inspecting highest Sobol index
estimates (Fig. 1, middle row) we find that the three most important variables
are C8, RIP1 and NFkB, as was originally observed in [47]. Nevertheless, here
we get a more comprehensive view. The activations of proteins C8 and RIP1
(denoted by C8+ and RIP1+) seem determinant in the choice between apopto-
sis and survival, as these inputs contribute to more than 85% (p-value < 0.03)
and 60% (p-value < 0.002) of the total variance for the “apoptosis” and “sur-
vival” outputs, respectively. Although the combination {C8+,RIP1+} stands
out both in apoptosis and in survival (in the latter, it is the fourth highest
Sobol index), statistical inference has revealed that its effect is nonsignificant.
The activation of transcription factor NFkB appears to play a critical role in
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Figure 1: Global sensitivity indices of the probability of each phenotype, com-
puted from the model in [2]. The first row shows total index estimates for all
2d = 4096 combinations of inputs, arranged in ascending order. The second row
shows the 10 highest Sobol index estimates, with the corresponding input com-
bination indicated only for the most important ones. The third row shows the
10 highest Shapley index estimates (again the corresponding input is only indi-
cated for the most important). Each estimate is drawn with its 95% confidence
interval.
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the choice between necrosis and survival. Indeed, the input NFkB+ is the sole
significant detected effect in the sensitivity analysis for the output “necrosis”.
and belongs to the three significant detected effects for the output “survival”.
The share of the total variance explained by these three inputs is more than
85% (p-value < 0.01), while it was only 60% without NFkB+. Intriguingly,
however, it was calculated that while NFkB+ can be said to contribute to more
than 45% of the total variance for the output “necrosis” with high confidence
(p-value < 0.025), a higher level of contribution is no more significant. (For
instance, testing for a contribution less than or equal to 50% leads to a p-value
greater than 0.32.) Therefore, half of the total variance for the “necrosis” is left
unexplained. This suggests that the choice between necrosis and non-necrosis,
although strongly influenced by the activation of NFkB, cannot be reduced to
that sole input. The choices between apoptosis and non-apoptosis, and between
survival and non-survival, seem to be less complex, as they almost exclusively
depend on a few key inputs. From the bottom row of Figure 1, similar insights
can be drawn from Shapley index estimates.
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400
necrosis
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400
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100
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Figure 2: Histograms of 1000 independent model simulations.

Finally, it is interesting to note that total index estimates (Fig. 1, top row)
appear to be relatively well separated into small numbers of clusters, especially
for apoptosis and survival. Furthermore, there seems to be a striking relation-
ship between those plateaus and highest Sobol indices. For instance, the highest
plateau of apoptosis (top left, τ > 0.03) exactly corresponds to all 1024 com-
binations of inputs that contain both C8+ and RIP1+ at the same time. A
more thorough examination of the relationship between total and Sobol indices
is currently investigated.

5 Discussion

An inference method for global sensitivity analysis was designed and practically
tested on a model with 12 inputs. Although many estimation methods already
exist in the literature, they largely focus on first-order Sobol indices only, or,
when interactions are considered, the asymptotic normality of the estimators
is rarely considered to quantify the uncertainties of the estimates. Thus, the
method designed in this paper bridges a gap in the literature: this is a method
to perform the inferences for everything from a single Monte Carlo sample,
thanks to the established asymptotic normality of the estimators. In particular,
it was designed a procedure to test the contribution of an arbitrary number of
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Sobol indices of arbitrary orders. Computational aspects were also addressed
with the fast Möbius transform algorithm. The method is general: although
total indices were used in step 1 of the method, they can be replaced by any
sensitivity measure for which there is an asymptotically normal estimator. The
major limitation of the method is that it cannot deal with a large number of
inputs. Beyond, say 20 inputs, the method may be computationally unfeasible.
Moreover, for a large number of inputs, the statistical performance of the es-
timators is probably poor, unless a very large sample is generated. Finally, it
should be noted that, for a large number of inputs, model runtime will impede
the method to get a chance to be applied anyway.

A Proofs of the statements of Section 3.2.2

A.1 Proof that σ∗(d) = (⊗dM∗
1 )σ

∗(0)

We shall show that, in general,

(20) σ∗(j) = (I2d−j ⊗ (⊗jM∗1 ))σ∗(0),

for all j = 1, . . . , d. The proof is by mathematical induction. Equation (20) is
true for j = 1 because of (16). Suppose that it is true for a given j and let us
show it is true for j + 1. From (16) and (20), we have

σ∗(j+1) = (I2d−j−1 ⊗M∗1 ⊗ I2j )σ∗(j)

= ((I2d−j−1 ⊗M∗1 )⊗ I2j )
(
I2d−j ⊗ (⊗jM∗1 )

)
σ∗(0)

= ((I2d−j−1 ⊗M∗1 )I2d−j )⊗
(
I2j (⊗jM∗1 )

)
σ∗(0)

= (I2d−j−1 ⊗M∗1 )⊗
(
⊗jM∗1

)
σ∗(0)

= (I2d−j−1 ⊗ (⊗j+1M∗1 ))σ∗(0).

To show that the computation cost is Θ(d2d), notice that each matrix I2d−j⊗
M∗1 ⊗ I2j−1 is a block-diagonal matrix of the formM

∗
1 ⊗ I2j−1

. . .

M∗1 ⊗ I2j−1

 .
Let mij denote the element at the ith row and jth column of M∗1 (i, j ∈ {1, 2}).
There are 2d−j block-rows of the form

M∗1 ⊗ I2j−1 =

[
m11I2j−1 m12I2j−1

m21I2j−1 m22I2j−1

]
,

and, if multiplied by a column vector to the right, each of them leads to
Θ(nnz(M∗1 ⊗ I2j−1)) = Θ(nnz(M∗1 )2j−1) = Θ(2j−1) arithmetic operations, yield-
ing 2d−jΘ(2j−1) = Θ(2d−1) = Θ(2d) operations per update. Since there are d
updates, the proof is complete.

A.2 Proof that M∗ = ⊗dM∗
1

Let ω be the inverse of the one-to-one map that with each A ∈ 2D associates∑d
i=1 bi 2d−i ∈ {0, . . . , 2d−1}, where bi = 1 if i ∈ A and bi = 0 otherwise. (Note
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that ω depends on d. For instance, for d = 2, ω(3) = {1, 2} but ω(3) = {2, 3} for
d = 3.) The arrangement of the components of τ∗ described at the beginning
of Section 3.2.2 implies that

τ∗i = τ∗(ω(i)),

for all i = 0, . . . , 2d−1, where in the left-hand side τ∗i denotes the ith component
(starting at zero) of the dual total index vector and in the right-hand side
τ∗(ω(i)) denotes the dual total index of the set ω(i). The same holds for σ∗.

We show that M∗ in (13) coincides with ⊗dM∗1 where M∗1 is as in (14). In
this proof, d, and hence ω, since it depends on d, are fixed. A few results are
collected in the following lemma.

Lemma 1. Let 1 ≤ n ≤ d and i, j ∈ {0, . . . , 2n+1 − 1}. If 0 ≤ i ≤ 2n − 1 and
2n ≤ j ≤ 2n+1 − 1 then the following statements are true:

(i) ω(i) ⊂ ω(j) if and only if ω(i) ⊂ ω(j − 2n).

(ii) |ω(j − 2n) \ ω(i)| is even if and only if |ω(j) \ ω(i)| is odd.

(iii) ω(i) 6⊂ ω(j)

We need to show that

(21) (⊗dM∗1 )ij =

 −1 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is odd,
1 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is even,
0 otherwise.

Let us show a slightly more general result. Let M∗n, n = 1, . . . , d, be a finite
sequence of matrices of increasing size defined by

M∗1 =

(
1 0
−1 1

)
, M∗n = M∗1 ⊗ · · · ⊗M∗1︸ ︷︷ ︸

n times

(n = 1, . . . , d).

Let us show that M∗n satisfies (21) for every i, j ∈ {0, . . . 2n−1} and all 1 ≤ n ≤
d. This will show in particular that M∗d = M∗. The proof is by mathematical
induction. If n = 1 then it is clear that (21) holds because ω(0) = ∅ and ω(1) =
{d}. Let n ≥ 1 and suppose that M∗n satisfies (21) for every i, j ∈ {0, . . . 2n−1}.
Let us show that M∗n+1 satisfies (21) for every i, j ∈ {0, . . . 2n+1 − 1}. By
definition,

(22) M∗n+1 = M∗1 ⊗M∗n =

(
M∗n 0
−M∗n M∗n

)
.

Case i, j ∈ {0, . . . , 2n − 1}: We have that (M∗n+1)i,j is equal to (M∗n)i,j ,
which satisfies (21) by assumption.

Case i /∈ {0, . . . , 2n − 1} and j ∈ {0, . . . , 2n − 1}: We have (M∗n+1)i,j =
(−M∗n)i−2n,j . By assumption,

(−M∗n)i−2n,j =

 1 if ω(j) ⊂ ω(i− 2n) and |ω(i− 2n) \ ω(j)| is odd,
−1 if ω(j) ⊂ ω(i− 2n) and |ω(i− 2n) \ ω(j)| is even,

0 otherwise.
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Notice that, compared to (21), “1” and “−1” have been interchanged. By
Lemma 1, it holds that ω(j) ⊂ ω(i) is equivalent to ω(j) ⊂ ω(i− 2n). Thus, it
remains to show that |ω(i− 2n) \ω(j)| is even if and only if |ω(i) \ω(j)| is odd.
But again this is true from Lemma 1.

Case i /∈ {0, . . . , 2n−1} and j /∈ {0, . . . , 2n−1}: Here (M∗n+1)i,j = (M∗n)i−2n,j−2n .
That (M∗n)i−2n,j−2n satisfies (21) follows from the same considerations as in the
previous case.

Case i ∈ {0, . . . , 2n − 1} and j /∈ {0, . . . , 2n − 1}: We know from (22) that
(M∗n+1)i,j = 0. To show that (21) is satisfied, it suffices to see that ω(j) 6⊂ ω(i).
But this is true from Lemma 1, since j > i.
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