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A Generation of datasets for the estimation

of sensitivity indices

Cell fate Boolean model of Section 5.1. The reduced version of 11 vari-
ables V1, . . . , V11 presented in Calzone et al. (2010) was used. This
model is taken as the reference, where each Boolean variable has the
same relative speed. In the reference model, the probabilities of all tran-
sitions involving the activation of variable Vj (i.e. Vj going from 0 to 1)
are multiplied by some weight w+

j , and the probabilities of all transi-
tions involving the deactivation of variable Vj (i.e. Vj going from 1 to 0)
are multiplied by some weight w−j . Each row of the probability matrix
is then divided by its sum, ensuring the process is still a Markov chain.
In the global sensitivity analysis, the inputs are the weights w+

j and w−j
for six chosen variables (C8, RIP1, NFkB, cIAP, MOMP and MPT),
leading to the 12 inputs listed in Table 1. Since there is no a priori in-
formation about the relative speed of the regulatory processes involved
in the cell, all weights are drawn independently. Each input is drawn
according to the log-uniform distribution logU(10−0.5, 100.5). Thus, for

each i = 1, . . . , n and j = 1, . . . , d, we independently draw X
(i)
j ∼

logU(10−0.5, 100.5), meaning that logX
(i)
j ∼ U(log 10−0.5, log 100.5).

The last step of the simulation consists in the execution of the updated
Markov chain from a given initial condition, until it reaches one of the
three steady states: apoptosis, necrosis or survival. The chosen initial
condition is the same as in Calzone et al. (2010): all variables at 0
except for ATP, cIAP and TNF at 1.

ODE model of Section 5.2. The inputs and their distributions are listed
in Table 2. Here again the inputs are drawn independently, since we
do not have any a priori information.

We performed n = 5000 simulations; among them 13 presented at least
one numerical anomaly (for instance the explosion of one variable) and
were taken out, leaving a sample of size n = 4987. The simulations
were carried out with the routine ode45 of MATLAB. To determine
when a steady state had been reached, we tested whether ∆N/N was
below the threshold value 10−10 (recall that N denotes total bacterial
population: N = L + S + Sl). The last step consisted in extracting
the logarithms of steady state populations, expressed in CFU colony
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forming unit. If Y ∗ designates one of the five populations in steady
state, we applied the following transformation:

Y =

{
log10(Y

∗) if Y ∗ > 1,
0 if Y ∗ ≤ 1,

in order to obtain populations on a logarithmic scale. Very small pop-
ulations (Y ∗ ≤ 1 CFU) were simply ignored as in practice, they are
below detection thresholds.

B Proofs

Proof of Proposition 2

We only show the second statement of the proposition. Let A1, . . . , A2d−1 be

some enumeration of the elements of 2D \∅. Since Var f(X) =
∑2d−1

i=1 σ∗(Ai),

the null hypothesis is equivalent to “H0 :
∑2d−1

i=1 ciσ
∗(Ai) ≤ 0”, which is

further rewritten as “H0 : c>σ∗ ≤ 0”. Because of Proposition 1, it is clear that
under H0, it holds that limn→∞ PH0(Sn > r) ≤ limn→∞ P (N > q1−α) ≤ α,
where here N is a standard normal random variable.

Proof of Proposition 3

We show that M∗ = ⊗dM∗
1 . Let ω be the inverse of the one-to-one map that

with each A ∈ 2D associates
∑d

i=1 bi 2
d−i ∈ {0, . . . , 2d − 1}, where bi = 1 if

i ∈ A and bi = 0 otherwise. (Note that ω depends on d. For instance, for
d = 2, ω(3) = {1, 2} but ω(3) = {2, 3} for d = 3.) The arrangement of the
components of τ ∗ described at the beginning of Section 4 implies that

τ ∗i = τ ∗(ω(i)),

for all i = 0, . . . , 2d − 1, where in the left-hand side τ ∗i denotes the ith
component (starting at zero) of the dual total index vector and in the right-
hand side τ ∗(ω(i)) denotes the dual total index of the set ω(i). The same
holds for σ∗.

We show that M∗ in (15) coincides with ⊗dM∗
1 where M∗

1 is as in (21).
In this proof, d, and hence ω, since it depends on d, are fixed. A few results
are collected in the following lemma.
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Input Description: relative probability of
X1 = w+

1 (C8+) activation of caspase 8
X2 = w−1 (C8−) deactivation of caspase 8
X3 = w+

2 (RIP1+) activation of RIP1
X4 = w−2 (RIP1−) deactivation of RIP1
X5 = w+

3 (NFkB+) activation of NFkB
X6 = w−3 (NFkB−) deactivation of NFkB
X7 = w+

4 (cIAP+) activation of cIAP
X8 = w−4 (cIAP−) deactivation of cIAP
X9 = w+

5 (MOMP+) activation of MOMP
X10 = w−5 (MOMP−) deactivation of MOMP
X11 = w+

6 (MPT+) activation of MPT
X12 = w−6 (MPT−) deactivation of MPT

Table 1: Description of the inputs of the Boolean network (part 5.1). Each
input is drawn according to the log-uniform distribution logU(10−0.5, 100.5).

Input (unit) Description Distribution
d (h−1) dilution rate of the mouse gut U(0.1, 0.4)
r (h−1) maximal growth rate of bacteria U(0.2, 1.5)

k (CFU/g) carrying capacity of bacteria logU(3.5 109, 1010)
x (h−1) lysis induction rate logU(10−4, 0.1)
l (h−1) lytic cells’ mortality rate U(0.2, 1.5)
y (∅) burst size U(1, 50)

a ([PFU/g]−1h−1) adsorption constant logU(10−10, 10−7)
g (∅) probability of lysogeny logU(10−4, 0.7)

L0 (CFU/g) initial lysogens logU(105, 107)
S0 (CFU/g) initial susceptible logU(105, 107)

Table 2: Description of the inputs of the ODE system (part 5.2).
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Lemma 1. Let 1 ≤ n ≤ d and i, j ∈ {0, . . . , 2n+1− 1}. If 0 ≤ i ≤ 2n− 1 and
2n ≤ j ≤ 2n+1 − 1 then the following statements are true:

(i) ω(i) ⊂ ω(j) if and only if ω(i) ⊂ ω(j − 2n).

(ii) |ω(j − 2n) \ ω(i)| is even if and only if |ω(j) \ ω(i)| is odd.

(iii) ω(i) 6⊂ ω(j)

We need to show that

(⊗dM∗
1 )ij =


−1 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is odd,

1 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is even,
0 otherwise.

(B.1)

Let us show a slightly more general result. Let M∗
n, n = 1, . . . , d, be a

finite sequence of matrices of increasing size defined by

M∗
1 =

(
1 0
−1 1

)
, M∗

n = M∗
1 ⊗ · · · ⊗M∗

1︸ ︷︷ ︸
n times

(n = 1, . . . , d).

Let us show that M∗
n satisfies (B.1) for every i, j ∈ {0, . . . 2n − 1} and all

1 ≤ n ≤ d. This will show in particular that M∗
d = M∗. The proof is by

mathematical induction. If n = 1 then it is clear that (B.1) holds because
ω(0) = ∅ and ω(1) = {d}. Let n ≥ 1 and suppose that M∗

n satisfies (B.1) for
every i, j ∈ {0, . . . 2n − 1}. Let us show that M∗

n+1 satisfies (B.1) for every
i, j ∈ {0, . . . 2n+1 − 1}. By definition,

M∗
n+1 = M∗

1 ⊗M∗
n =

(
M∗

n 0
−M∗

n M∗
n

)
. (B.2)

Case i, j ∈ {0, . . . , 2n − 1}: We have that (M∗
n+1)i,j is equal to (M∗

n)i,j,
which satisfies (B.1) by assumption.

Case i /∈ {0, . . . , 2n − 1} and j ∈ {0, . . . , 2n − 1}: We have (M∗
n+1)i,j =

(−M∗
n)i−2n,j. By assumption,

(−M∗
n)i−2n,j =


1 if ω(j) ⊂ ω(i− 2n) and |ω(i− 2n) \ ω(j)| is odd,
−1 if ω(j) ⊂ ω(i− 2n) and |ω(i− 2n) \ ω(j)| is even,

0 otherwise.

Notice that, compared to (B.1), “1” and “−1” have been interchanged. By
Lemma 1, it holds that ω(j) ⊂ ω(i) is equivalent to ω(j) ⊂ ω(i− 2n). Thus,
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it remains to show that |ω(i − 2n) \ ω(j)| is even if and only if |ω(i) \ ω(j)|
is odd. But again this is true from Lemma 1.

Case i /∈ {0, . . . , 2n − 1} and j /∈ {0, . . . , 2n − 1}: Here (M∗
n+1)i,j =

(M∗
n)i−2n,j−2n . That (M∗

n)i−2n,j−2n satisfies (B.1) follows from the same con-
siderations as in the previous case.

Case i ∈ {0, . . . , 2n − 1} and j /∈ {0, . . . , 2n − 1}: We know from (B.2)
that (M∗

n+1)i,j = 0. To show that (B.1) is satisfied, it suffices to see that
ω(j) 6⊂ ω(i). But this is true from Lemma 1, since j > i.

Proof Proposition 4

We show that σ∗(d) = (⊗dM∗
1 )σ∗(0).

We shall show that, in general,

σ∗(j) = (I2d−j ⊗ (⊗jM∗
1 ))σ∗(0), (B.3)

for all j = 1, . . . , d. The proof is by mathematical induction. Equation (B.3)
is true for j = 1 because of (23). Suppose that it is true for a given j and let
us show it is true for j + 1. From (23) and (B.3), we have

σ∗(j+1) = (I2d−j−1 ⊗M∗
1 ⊗ I2j)σ∗(j)

= ((I2d−j−1 ⊗M∗
1 )⊗ I2j)

(
I2d−j ⊗ (⊗jM∗

1 )
)
σ∗(0)

= ((I2d−j−1 ⊗M∗
1 )I2d−j)⊗

(
I2j(⊗jM∗

1 )
)
σ∗(0)

= (I2d−j−1 ⊗M∗
1 )⊗

(
⊗jM∗

1

)
σ∗(0)

= (I2d−j−1 ⊗ (⊗j+1M∗
1 ))σ∗(0).

To show that the computation cost is Θ(d2d), notice that each matrix
I2d−j ⊗M∗

1 ⊗ I2j−1 is a block-diagonal matrix of the formM
∗
1 ⊗ I2j−1

. . .

M∗
1 ⊗ I2j−1

 .
Let mij denote the element at the ith row and jth column of M∗

1 (i, j ∈
{1, 2}). There are 2d−j block-rows of the form

M∗
1 ⊗ I2j−1 =

[
m11I2j−1 m12I2j−1

m21I2j−1 m22I2j−1

]
,
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and, if multiplied by a column vector to the right, each of them leads to
Θ(nnz(M∗

1 ⊗ I2j−1)) = Θ(nnz(M∗
1 )2j−1) = Θ(2j−1) arithmetic operations,

yielding 2d−jΘ(2j−1) = Θ(2d−1) = Θ(2d) operations per update. Since there
are d updates, the proof is complete.

C Building better estimators of the vector of

total indices

While the estimator τ̂ in Section 3.1 is conceptually simple and widely used,
we can construct more efficient estimators. Efficiency can be improved in
two ways: one builds an estimator with a smaller variance or one builds
an estimator with the same variance but with a smaller number of function
evaluations. We shall do both.

C.1 Estimators with a smaller variance

Let τ̂ (α)(A) = ατ̂ (1)(A) + (1− α)τ̂ (0)(A), where α ∈ [0, 1], A ⊂ D and

τ̂ (1)(A) =
1

n

n∑
i=1

1

2
(f(X(i))− f(X(i)\A))2,

τ̂ (0)(A) =
1

n

n∑
i=1

1

2
(f(X ′ (i))− f(X ′ (i)\A))2.

Note that τ̂ (1)(A) is Jansen’s estimator mentioned in Section 3.1, that is,
τ̂ (1)(A) = τ̂(A). Note also that E τ̂ (0)(A) = E τ̂ (1)(A) = τ(A) and Var τ̂ (0)(A) =
Var τ̂ (1)(A). Let τ̂ (α) be the vector formed by stacking all τ̂ (α)(A) with A ⊂ D.
If M is a matrix then denote by tr(M) the trace of M , that is, the sum of
its diagonal elements.

Proposition C.1. The following statements hold:

(i) E[τ̂ (α)(A)] = τ(A) and Var[τ̂ (α)(A)] ≤ Var[τ̂(A)] for every α ∈ [0, 1];

(ii) the variance of τ̂ (α)(A) is minimum when α = 1/2 and

0 ≤ Var[τ̂(A)]− Var[τ̂ (1/2)(A)] =
Var[τ̂(A)]− Cov[τ̂(A), τ̂ (0)(A)]

2
;
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(iii)
√
n(τ̂ (α) − τ)

d→ N(0, Tα), with Tα = (2α2 − 2α + 1)T + 2α(1 − α)C,
where T was defined in Proposition 1 and C is the matrix of size 2d×2d

given by

C(A,B) = Cov

[
1

2
(f(X ′)− f(X ′\A))2,

1

2
(f(X)− f(X\B))2

]
.

Moreover, 0 ≤ tr(T )− tr(Tα) ≤ tr(T )− tr(T1/2) = 1
2

tr(T −C) for every
α ∈ [0, 1].

The proof of Proposition C.1 follows from elementary calculations and
the standard delta method. Proposition C.1 implies that τ̂ (1/2) is componen-
twise more efficient—both at finite and infinite sample sizes—than any τ̂ (α),
including τ̂ itself.

C.2 An estimator with a smaller number of function
evaluations

Instead of looking for an estimator with a smaller variance as above, we
can, in the spirit of Saltelli (2002), turn the problem around and look for
an estimator that requires fewer evaluations of function f . Consider the
following sampling scheme. For each i = 1, . . . , n, draw two independent
copies X(i) = (X

(i)
1 , . . . , X

(i)
d ) and X ′ (i) = (X

′ (i)
1 , . . . , X

′ (i)
d ) and then perform

the steps below: 
compute f(X(i)), f(X ′(i))

for k = 1, . . . , bd/2c
for A ∈ 2D : |A| = k

compute f(X(i)\A).

(C.1)

Then, define for every A ⊂ D,

τ̂ ′(A) =


1
n

∑n
i=1

1
2

(
f(X(i))− f(X(i)\A)

)2
if |A| ≤ bd/2c

1
n

∑n
i=1

1
2

(
f(X ′(i))− f(X

(i)\Ac

i )
)2

otherwise,
(C.2)

where Ac stands for D \ A, the complement of A in D. To shorten the
notation, denote YA,B = (f(X\A)− f(X\B))2/2 for every A,B ⊂ D.

Proposition C.2. The following statements are true:
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(i) it holds that
√
n(τ̂ ′ − τ)

d→ N(0, T ′),

where T ′ is the variance-covariance matrix given by

T ′(A,B) =


Cov(Y∅,A, Y∅,B) if |A| ≤ bd/2c, |B| ≤ bd/2c,
Cov(Y∅,A, YD,Bc) if |A| ≤ bd/2c, |B| > bd/2c,
Cov(YD,A, Y∅,B) if |A| < bd/2c, |B| ≤ bd/2c,
Cov(YD,Ac , YD,Bc) if |A| > bd/2c, |B| > bd/2c.

Moreover, it holds tr(T ′) = tr(T ), where T is defined in Proposition 1.

(ii) The number of evaluations of f needed to compute the estimator (C.2)
is equivalent to n2d−1, asymptotically as d goes to infinity.

Proof. The proof of the first statement is a direct application of the central
limit theorem. To show the “moreover” part, put Z(A) = 1

2
(f(X)−f(X\A))2,

Z ′(A) = 1
2
(f(X ′)− f(X\A

c
))2 and

Z̃(A) =

{
Z(A) if |A| ≤ bd/2c,
Z ′(A) otherwise,

for every A ⊂ D. With this notation, T (A,B) = Cov(Z(A), Z(B)) and

T ′(A,B) = Cov(Z̃(A), Z̃(B)). If |A| ≤ bd/2c and |B| ≤ bd/2c then obviously
T (A,B) = T ′(A,B). If |A| > bd/2c and |B| > bd/2c then the equality is
also true because X and X ′ play the same role.

To show the second statement, notice that the outputs needed in the top
row of (C.2) are precisely those computed in (C.1). The outputs needed in
the bottom of (C.2) also have been computed in (C.1), since |A| ≥ bd/2c+ 1
implies |Ac| ≤ d − bd/2c − 1 ≤ bd/2c. But the number of simulations
in (C.1) is clearly 2d−1, which has to multiplied by n to get the final number
of evaluations.

According to Proposition C.2, the estimator τ̂ ′ is as efficient as τ̂ but
requires only half the number of function evaluations of τ̂ .

D Supplementary figure

9



σ
∗(
0
)

0
σ
∗(
0
)

1
σ
∗(
0
)

2
σ
∗(
0
)

3
σ
∗(
0
)

4
σ
∗(
0
)

5
σ
∗(
0
)

6
σ
∗(
0
)

7

σ
∗(
1
)

0
σ
∗(
1
)

1
σ
∗(
1
)

2
σ
∗(
1
)

3
σ
∗(
1
)

4
σ
∗(
1
)

5
σ
∗(
1
)

6
σ
∗(
1
)

7

σ
∗(
2
)

0
σ
∗(
2
)

1
σ
∗(
2
)

2
σ
∗(
2
)

3
σ
∗(
2
)

4
σ
∗(
2
)

5
σ
∗(
2
)

6
σ
∗(
2
)

7

σ
∗(
3
)

0
σ
∗(
3
)

1
σ
∗(
3
)

2
σ
∗(
3
)

3
σ
∗(
3
)

4
σ
∗(
3
)

5
σ
∗(
3
)

6
σ
∗(
3
)

7

1
1

1
1

1
1

1
1

−
1

−
1

−
1

−
1

F
ig

u
re

1:
F

lo
w

d
ia

gr
am

of
th

e
al

go
ri

th
m

(2
3)

w
it

h
d

=
3

an
d
M
∗ 1

as
in

(2
1)

.
H

er
e
σ
∗(
j)

i
is

th
e
it

h
el

em
en

t
of

th
e

ve
ct

or
σ
∗(
j)

an
d

h
en

ce
co

in
ci

d
es

w
it

h
σ
∗(
j)

(a
i,
1
··
·a

i,
d
)

in
th

e
m

ai
n

te
x
t.

A
lt

h
ou

gh
n
ot

sh
ow

n
fo

r
im

p
ro

ve
d

re
ad

ab
il
it

y,
al

l
ve

rt
ic

al
an

d
d
ia

go
n
al

li
n
es

h
av

e
w

ei
gh

ts
1

an
d
−

1,
re

sp
ec

ti
ve

ly
.

10


