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Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France

and
Laurent Tournier
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A Detailed calculations for the examples of

Section 2

We have

τ ∗(∅)
τ ∗({1})
τ ∗({2})
τ ∗({3})
τ ∗({1, 2})
τ ∗({1, 3})
τ ∗({2, 3})
τ ∗({1, 2, 3})


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 1 0 1 0 0 0
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0 1 1 1 1 1 1 1
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and 

τ(∅)
τ({1})
τ({2})
τ({3})
τ({1, 2})
τ({1, 3})
τ({2, 3})
τ({1, 2, 3})


=



1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 1 1 0 1 1 1 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1





σ∗(∅)
σ∗({1})
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and

θ({1})θ({2})
θ({3})

 =

0 1 0 0 1/2 1/2 0 1/3
0 0 1 0 1/2 0 1/2 1/3
0 0 0 1 0 1/2 1/2 1/3





σ∗(∅)
σ∗({1})
σ∗({2})
σ∗({3})
σ∗({1, 2})
σ∗({1, 3})
σ∗({2, 3})
σ∗({1, 2, 3})
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B A reminder about Shapley values in coop-

erative game theory and Shapley effects in

sensitivity analysis

Shapley effects assess the global importance of each individual input (Owen,
2014). They result from an allocation method of cooperative game the-
ory (Shapley, 1951; Winter, 2002). If D is seen as a set of players, then to
each coalition B ⊂ D there corresponds a real number, denoted by val(B),
which represents the “value” of B. It is assumed that val(∅) = 0. The
Shapley value of player j, j = 1, . . . , d, is defined as

θval({j}) =
1

d

∑
B⊂D\{j}

1(
d−1
|B|

)(val(B ∪ {j})− val(B)).

The value of player j is based on the change in value of the coalitions,
should that player be added in them. In fact, it was shown by Shapley (Shap-
ley, 1951) that this way of assigning values is the only possible way that
satisfy certain axioms, among which val(D) =

∑d
j=1 θval({j}). See Shap-

ley (1951); Winter (2002) for more details. The Shapley value can be re-
expressed (Harsanyi, 1963) as

θval({j}) =
∑

B∩{j}6=∅

∑
A⊂B(−1)|B\A|val(A)

|B|
,

a formula that will be useful later on. If val is replaced by its dual val∗(B) =
val(D) − val(D \ B) then θval({j}) = θval∗({j}) for all j = 1, . . . , d. We say
that the Shapley value is self-dual, see Funaki (1998); Oishi et al. (2016).

By an analogy between cooperative game theory and global sensitivity
analysis (the individual inputs Xj play the role of the players), we can choose
val(B) to be

Var E(f(X)|XB) = τ ∗(B) or E Var(f(X)|XD\B) = τ(B),

leading a priori to two sets of indices θτ∗({j}) and θτ ({j}). The first choice
was made in Owen (2014) and the second in Song et al. (2016). But since
τ and τ ∗ are duals of each other, it holds that θτ ({j}) = θτ∗({j}) for every
j = 1, . . . , d. This property was noticed in Song et al. (2016) and is a direct
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consequence of the self-duality of the Shapley value in cooperative game
theory. Thus, it makes sense to define

θ({j}) := θτ ({j}) = θτ∗({j}),

which are called Shapley effects in sensitivity analysis.

C Reminder about asymptotic confidence in-

tervals and p-values

Let ψ ∈ R2d be some unknown vector of interest with components indexed
by the subsets of D, that is, with components ψ(A), A ⊂ D. Let ψ̂ be

an estimator of ψ. Consider first the situation where it is known that ψ̂ fol-
lows a multivariate normal distribution with mean ψ and variance-covariance
matrix Ψ/n. Then, for any given A ⊂ D, we have that ψ̂(A) is normally
distributed with mean ψ(A) and variance Ψ(A,A)/n and hence we could
calculate a confidence interval of level, say 1 − α ∈ (0, 1) under the form

[ψ̂(A)± q1−α/2
√

Ψ(A,A)/n], where q1−α/2 is the quantile of order 1−α/2 of
a standard normal distribution.

In all but the most simple cases, however, it is unknown whether ψ̂ actu-
ally follows a multivariate normal distribution. But if we can establish that
ψ̂ approximately follows a multivariate normal distribution, that is, if we can
establish that √

n(ψ̂ − ψ)
d→ N(0,Ψ)

for some asymptotic variance-covariance matrix Ψ, then we could do as above
and get an approximate confidence interval.

The same goes for hypothesis testing, which is another way of making
inferences. Remember that to decide between a null hypothesis H0 and an
alternative H1, one computes a statistic Sn from the data and rejects H0 if
Sn belongs to some “rejection set”. For simplicity, assume that rejection set
is of the form (r,∞), so that rejection occurs if Sn > r. The so-called type
I and type II errors of the test are given by PrH0(Sn > r) (probability of
rejecting H0 while it is true) and PrH1(Sn ≤ r) (probability of accepting H0

while H1 is true), respectively. The p-value of the test is given by PrH0(Sn >

s
(obs)
n ) (probability under H0 of observing a statistic beyond the one actually

observed in the data), where s
(obs)
n stands for the statistic actually observed
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in the dataset at hand. Given some level of significance 1 − α ∈ (0, 1), one
seeks the least critical value r such that PrH0(Sn > r) ≤ α. If it is known
that Sn obeys a standard normal distribution then r = q1−α and the test can
be carried out. Otherwise, as for confidence intervals, one wants to establish
that Sn is approximately normal and get approximate critical values.

To establish that ψ̂ and Sn are approximately normal, one uses limit theo-
rems of asymptotic statistics. The obtained approximate confidence intervals
and p-values are then sometimes said to be asymptotic. The approximation
improves as the sample size n increases.

D Building better estimators of the vector of

total indices

While the estimator τ̂ in Section 3.1 is conceptually simple and widely used,
we can construct more efficient estimators. Efficiency can be improved in
two ways: one builds an estimator with a smaller variance or one builds
an estimator with the same variance but with a smaller number of function
evaluations. We shall do both.

D.1 Estimators with a smaller variance

Let τ̂ (α)(A) = ατ̂ (1)(A) + (1− α)τ̂ (0)(A), where α ∈ [0, 1], A ⊂ D and

τ̂ (1)(A) =
1

n

n∑
i=1

1

2
(f(X(i))− f(X(i)\A))2,

τ̂ (0)(A) =
1

n

n∑
i=1

1

2
(f(X ′ (i))− f(X ′ (i)\A))2.

Note that τ̂ (1)(A) is Jansen’s estimator mentioned in Section 3.1, that is,
τ̂ (1)(A) = τ̂(A). Note also that E τ̂ (0)(A) = E τ̂ (1)(A) = τ(A) and Var τ̂ (0)(A) =
Var τ̂ (1)(A). Let τ̂ (α) be the vector formed by stacking all τ̂ (α)(A) with A ⊂ D.
If M is a matrix then denote by tr(M) the trace of M , that is, the sum of
its diagonal elements.

Proposition D.1. The following statements hold:

(i) E[τ̂ (α)(A)] = τ(A) and Var[τ̂ (α)(A)] ≤ Var[τ̂(A)] for every α ∈ [0, 1];
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(ii) the variance of τ̂ (α)(A) is minimum when α = 1/2 and

0 ≤ Var[τ̂(A)]− Var[τ̂ (1/2)(A)] =
Var[τ̂(A)]− Cov[τ̂(A), τ̂ (0)(A)]

2
;

(iii)
√
n(τ̂ (α) − τ)

d→ N(0, Tα), with Tα = (2α2 − 2α + 1)T + 2α(1 − α)C,
where T was defined in Proposition 1 and C is the matrix of size 2d×2d

given by

C(A,B) = Cov

[
1

2
(f(X ′)− f(X ′\A))2,

1

2
(f(X)− f(X\B))2

]
.

Moreover, 0 ≤ tr(T )− tr(Tα) ≤ tr(T )− tr(T1/2) = 1
2

tr(T −C) for every
α ∈ [0, 1].

The proof of Proposition D.1 follows from elementary calculations and
the standard delta method. Proposition D.1 implies that τ̂ (1/2) is componen-
twise more efficient—both at finite and infinite sample sizes—than any τ̂ (α),
including τ̂ itself.

D.2 An estimator with a smaller number of function
evaluations

Instead of looking for an estimator with a smaller variance as above, we
can, in the spirit of Saltelli (2002), turn the problem around and look for
an estimator that requires fewer evaluations of function f . Consider the
following sampling scheme. For each i = 1, . . . , n, draw two independent
copies X(i) = (X

(i)
1 , . . . , X

(i)
d ) and X ′ (i) = (X

′ (i)
1 , . . . , X

′ (i)
d ) and then perform

the steps below: 
compute f(X(i)), f(X ′(i))

for k = 1, . . . , bd/2c
for A ∈ 2D : |A| = k

compute f(X(i)\A).

(D.1)

Then, define for every A ⊂ D,

τ̂ ′(A) =


1
n

∑n
i=1

1
2

(
f(X(i))− f(X(i)\A)

)2
if |A| ≤ bd/2c

1
n

∑n
i=1

1
2

(
f(X ′(i))− f(X

(i)\Ac

i )
)2

otherwise,
(D.2)

where Ac stands for D \ A, the complement of A in D. To shorten the
notation, denote YA,B = (f(X\A)− f(X\B))2/2 for every A,B ⊂ D.
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Proposition D.2. The following statements are true:

(i) it holds that
√
n(τ̂ ′ − τ)

d→ N(0, T ′),

where T ′ is the variance-covariance matrix given by

T ′(A,B) =


Cov(Y∅,A, Y∅,B) if |A| ≤ bd/2c, |B| ≤ bd/2c,
Cov(Y∅,A, YD,Bc) if |A| ≤ bd/2c, |B| > bd/2c,
Cov(YD,A, Y∅,B) if |A| < bd/2c, |B| ≤ bd/2c,
Cov(YD,Ac , YD,Bc) if |A| > bd/2c, |B| > bd/2c.

Moreover, it holds tr(T ′) = tr(T ), where T is defined in Proposition 1.

(ii) The number of evaluations of f needed to compute the estimator (D.2)
is equivalent to n2d−1, asymptotically as d goes to infinity.

Proof. The proof of the first statement is a direct application of the central
limit theorem. To show the “moreover” part, put Z(A) = 1

2
(f(X)−f(X\A))2,

Z ′(A) = 1
2
(f(X ′)− f(X\A

c
))2 and

Z̃(A) =

{
Z(A) if |A| ≤ bd/2c,
Z ′(A) otherwise,

for every A ⊂ D. With this notation, T (A,B) = Cov(Z(A), Z(B)) and

T ′(A,B) = Cov(Z̃(A), Z̃(B)). If |A| ≤ bd/2c and |B| ≤ bd/2c then obviously
T (A,B) = T ′(A,B). If |A| > bd/2c and |B| > bd/2c then the equality is
also true because X and X ′ play the same role.

To show the second statement, notice that the outputs needed in the top
row of (D.2) are precisely those computed in (D.1). The outputs needed in
the bottom of (D.2) also have been computed in (D.1), since |A| ≥ bd/2c+ 1
implies |Ac| ≤ d − bd/2c − 1 ≤ bd/2c. But the number of simulations
in (D.1) is clearly 2d−1, which has to multiplied by n to get the final number
of evaluations.

According to Proposition D.2, the estimator τ̂ ′ is as efficient as τ̂ but
requires only half the number of function evaluations of τ̂ .
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E Further details for the fast and extended

fast Möbius transform algorithms

E.1 Implementation based on “bit-shift” manipulations

Let us introduce some notation first. If σ∗ denotes a vector of size 2d then
let σ∗(ai,1 · · · ai,d) denote its component corresponding to the subset of D
represented by the Boolean vector (ai,1 · · · ai,d). The components of σ∗ are
assumed to be arranged in the lexicographical order of the Boolean vectors
(ai,1 · · · ai,d), as in Table 1.

To compute σ∗(d) in (22), proceed as follows:

for each j = 1, . . . , d
for each i = 1, . . . , 2d

if ai,d−j+1 = 1
σ∗(j)(ai,1 · · · ai,d)← σ∗(j−1)(ai,1 · · · ai,d−j, 1, ai,d−j+2 · · · ai,d)

−σ∗(j−1)(ai,1 · · · ai,d−j, 0, ai,d−j+2 · · · ai,d)
else
σ∗(j)(ai,1 · · · ai,d)← σ∗(j−1)(ai,1 · · · ai,d).

This implementation saves more memory as storing the matrices (I2d−j ⊗
M∗

1 ⊗ I2j−1) becomes unnecessary. A flow diagram with d = 3 is depicted in
Figure 1 of this supplementary file.
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To compute Σ∗(d), proceed in two steps:

S1. For each j = 1, . . . , d
for each i = 1, . . . , 2d

if ai,d−j+1 = 1
row(j)(ai,1 · · · ai,d)← row(j−1)(ai,1 · · · ai,d−j1ai,d−j+2 · · · ai,d)

− row(j−1)(ai,1 · · · ai,d−j0ai,d−j+2 · · · ai,d)
else

row(j)(ai,1 · · · ai,d)← row(j−1)(ai,1 · · · ai,d);

here row(j)(ai,1 · · · ai,d) stands for the row of Σ∗(j) that corresponds to
the index (ai,1 · · · ai,d).

S2. Repeat S1 above but with “col” in place of “row”, where col(j)(ai,1 · · · ai,d)
stands for the column of Σ∗(j) that corresponds to the index (ai,1 · · · ai,d).

The above algorithm coincides with (24) when M∗
1 is the matrix (20). As

above, this implementation saves memory usage as there is no need to store
the matrices in (24) anymore.

E.2 Computation times

To test in practice the fast Möbius and the extended fast Möbius transform
algorithms with bit-shift implementation, and to compare them with straight-
forward matrix multiplications, a version was coded in MATLAB (2023b).
Computational times were monitored, and the results are depicted in Figure 2
below. These times are computed from random datasets with increasing d;
they encompass the computation time of Sobol indices σ∗ from total indices
τ ∗ (left panels) and the additional computation time of the corresponding
2d × 2d covariance matrices Σ∗ from T ∗ (right panels).

The top panels show clear gains of the fast Möbius algorithm in terms
of computation time. These gains have to be put into perspective, however.
They remain modest for the computation of σ∗ (mere seconds, left panel).
They are higher when including the computation of covariance matrices (right
panel), with a gain of around 100 seconds for d = 15. Nevertheless, going
beyond about d = 15 becomes excessively expensive because of the manipu-
lation of enormous 2d × 2d matrices (in practice, considering d = 16 involves
manipulating > 30 Gigabyte matrices). In any case, it is important to note
that, all in all, most of the computational expense of a global sensitivity
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Figure 2: Comparison of execution times of the fast and extended fast Möbius
transform algorithms (plain lines) and straightforward sparse matrix multi-
plications (dotted lines). Left panels: computation times for σ∗; right panels:
computation times for σ∗ and Σ∗. Top row: linear scale; Bottom row: loga-
rithmic scale.
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analysis is likely to come from the generation of the dataset of the model
outputs.

F Generation of datasets for the estimation

of sensitivity indices

Cell fate Boolean model of Section 5.1. The reduced version of 11 vari-
ables V1, . . . , V11 presented in Calzone et al. (2010) was used. This
model is taken as the reference, where each Boolean variable has the
same relative speed. In the reference model, the probabilities of all tran-
sitions involving the activation of variable Vj (i.e. Vj going from 0 to 1)
are multiplied by some weight w+

j , and the probabilities of all transi-
tions involving the deactivation of variable Vj (i.e. Vj going from 1 to 0)
are multiplied by some weight w−j . Each row of the probability matrix
is then divided by its sum, ensuring the process is still a Markov chain.
In the global sensitivity analysis, the inputs are the weights w+

j and w−j
for six chosen variables (C8, RIP1, NFkB, cIAP, MOMP and MPT),
leading to the 12 inputs listed in Table 1. Since there is no a priori in-
formation about the relative speed of the regulatory processes involved
in the cell, all weights are drawn independently. Each input is drawn
according to the log-uniform distribution logU(10−0.5, 100.5). Thus, for

each i = 1, . . . , n and j = 1, . . . , d, we independently draw X
(i)
j ∼

logU(10−0.5, 100.5), meaning that logX
(i)
j ∼ U(log 10−0.5, log 100.5).

The last step of the simulation consists in the execution of the updated
Markov chain from a given initial condition, until it reaches one of the
three steady states: apoptosis, necrosis or survival. The chosen initial
condition is the same as in Calzone et al. (2010): all variables at 0
except for ATP, cIAP and TNF at 1.

ODE model of Section 5.2. The inputs and their distributions are listed
in Table 2. Here again the inputs are drawn independently, since we
do not have any a priori information.

We performed n = 5000 simulations; among them 13 presented at least
one numerical anomaly (for instance the explosion of one variable) and
were taken out, leaving a sample of size n = 4987. The simulations
were carried out with the routine ode45 of MATLAB. To determine

13



Input Description: relative probability of
X1 = w+

1 (C8+) activation of caspase 8
X2 = w−1 (C8−) deactivation of caspase 8
X3 = w+

2 (RIP1+) activation of RIP1
X4 = w−2 (RIP1−) deactivation of RIP1
X5 = w+

3 (NFkB+) activation of NFkB
X6 = w−3 (NFkB−) deactivation of NFkB
X7 = w+

4 (cIAP+) activation of cIAP
X8 = w−4 (cIAP−) deactivation of cIAP
X9 = w+

5 (MOMP+) activation of MOMP
X10 = w−5 (MOMP−) deactivation of MOMP
X11 = w+

6 (MPT+) activation of MPT
X12 = w−6 (MPT−) deactivation of MPT

Table 1: Description of the inputs of the Boolean network (part 5.1). Each
input is drawn according to the log-uniform distribution logU(10−0.5, 100.5).
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Figure 3: Histograms of 1000 independent model simulations.
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when a steady state had been reached, we tested whether ∆N/N was
below the threshold value 10−10 (recall that N denotes total bacterial
population: N = L + S + Sl). The last step consisted in extracting
the logarithms of steady state populations, expressed in CFU colony
forming unit. If Y ∗ designates one of the five populations in steady
state, we applied the following transformation:

Y =

{
log10(Y

∗) if Y ∗ > 1,
0 if Y ∗ ≤ 1,

in order to obtain populations on a logarithmic scale. Because of the
logarithmic transformation, very small populations (Y ∗ ≤ 1 CFU) were
truncated in order to ignore unwanted effects (such low population
counts are below detection thresholds anyway).

G Proofs

Proof of Proposition 2

We only show the second statement of the proposition. Let A1, . . . , A2d−1 be

some enumeration of the elements of 2D \∅. Since Var f(X) =
∑2d−1

i=1 σ∗(Ai),

the null hypothesis is equivalent to “H0 :
∑2d−1

i=1 ciσ
∗(Ai) ≤ 0”, which is

further rewritten as “H0 : c>σ∗ ≤ 0”. Because of Proposition 1, it is clear that
under H0, it holds that limn→∞ PH0(Sn > r) ≤ limn→∞ P (N > q1−α) ≤ α,
where here N is a standard normal random variable.

Proof of Proposition 3

We show that M∗ = ⊗dM∗
1 . Let ω be the inverse of the one-to-one map that

with each A ∈ 2D associates
∑d

i=1 bi 2
d−i ∈ {0, . . . , 2d − 1}, where bi = 1 if

i ∈ A and bi = 0 otherwise. (Note that ω depends on d. For instance, for
d = 2, ω(3) = {1, 2} but ω(3) = {2, 3} for d = 3.) The arrangement of the
components of τ ∗ described at the beginning of Section 4 implies that

τ ∗i = τ ∗(ω(i)),

for all i = 0, . . . , 2d − 1, where in the left-hand side τ ∗i denotes the ith
component (starting at zero) of the dual total index vector and in the right-
hand side τ ∗(ω(i)) denotes the dual total index of the set ω(i). The same
holds for σ∗.
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We show that M∗ in (14) coincides with ⊗dM∗
1 where M∗

1 is as in (20).
In this proof, d, and hence ω, since it depends on d, are fixed. A few results
are collected in the following lemma.

Lemma 1. Let 1 ≤ n ≤ d and i, j ∈ {0, . . . , 2n+1− 1}. If 0 ≤ i ≤ 2n− 1 and
2n ≤ j ≤ 2n+1 − 1 then the following statements are true:

(i) ω(i) ⊂ ω(j) if and only if ω(i) ⊂ ω(j − 2n).

(ii) |ω(j − 2n) \ ω(i)| is even if and only if |ω(j) \ ω(i)| is odd.

(iii) ω(i) 6⊂ ω(j)

We need to show that

(⊗dM∗
1 )ij =


−1 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is odd,

1 if ω(j) ⊂ ω(i) and |ω(i) \ ω(j)| is even,
0 otherwise.

(G.1)

Let us show a slightly more general result. Let M∗
n, n = 1, . . . , d, be a

finite sequence of matrices of increasing size defined by

M∗
1 =

(
1 0
−1 1

)
, M∗

n = M∗
1 ⊗ · · · ⊗M∗

1︸ ︷︷ ︸
n times

(n = 1, . . . , d).

Let us show that M∗
n satisfies (G.1) for every i, j ∈ {0, . . . 2n − 1} and all

1 ≤ n ≤ d. This will show in particular that M∗
d = M∗. The proof is by

mathematical induction. If n = 1 then it is clear that (G.1) holds because
ω(0) = ∅ and ω(1) = {d}. Let n ≥ 1 and suppose that M∗

n satisfies (G.1) for
every i, j ∈ {0, . . . 2n − 1}. Let us show that M∗

n+1 satisfies (G.1) for every
i, j ∈ {0, . . . 2n+1 − 1}. By definition,

M∗
n+1 = M∗

1 ⊗M∗
n =

(
M∗

n 0
−M∗

n M∗
n

)
. (G.2)

Case i, j ∈ {0, . . . , 2n − 1}: We have that (M∗
n+1)i,j is equal to (M∗

n)i,j,
which satisfies (G.1) by assumption.

Case i /∈ {0, . . . , 2n − 1} and j ∈ {0, . . . , 2n − 1}: We have (M∗
n+1)i,j =

(−M∗
n)i−2n,j. By assumption,

(−M∗
n)i−2n,j =


1 if ω(j) ⊂ ω(i− 2n) and |ω(i− 2n) \ ω(j)| is odd,
−1 if ω(j) ⊂ ω(i− 2n) and |ω(i− 2n) \ ω(j)| is even,

0 otherwise.
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Notice that, compared to (G.1), “1” and “−1” have been interchanged. By
Lemma 1, it holds that ω(j) ⊂ ω(i) is equivalent to ω(j) ⊂ ω(i− 2n). Thus,
it remains to show that |ω(i − 2n) \ ω(j)| is even if and only if |ω(i) \ ω(j)|
is odd. But again this is true from Lemma 1.

Case i /∈ {0, . . . , 2n − 1} and j /∈ {0, . . . , 2n − 1}: Here (M∗
n+1)i,j =

(M∗
n)i−2n,j−2n . That (M∗

n)i−2n,j−2n satisfies (G.1) follows from the same con-
siderations as in the previous case.

Case i ∈ {0, . . . , 2n − 1} and j /∈ {0, . . . , 2n − 1}: We know from (G.2)
that (M∗

n+1)i,j = 0. To show that (G.1) is satisfied, it suffices to see that
ω(j) 6⊂ ω(i). But this is true from Lemma 1, since j > i.

Proof Proposition 4

We show that σ∗(d) = (⊗dM∗
1 )σ∗(0).

We shall show that, in general,

σ∗(j) = (I2d−j ⊗ (⊗jM∗
1 ))σ∗(0), (G.3)

for all j = 1, . . . , d. The proof is by mathematical induction. Equation (G.3)
is true for j = 1 because of (22). Suppose that it is true for a given j and let
us show it is true for j + 1. From (22) and (G.3), we have

σ∗(j+1) = (I2d−j−1 ⊗M∗
1 ⊗ I2j)σ∗(j)

= ((I2d−j−1 ⊗M∗
1 )⊗ I2j)

(
I2d−j ⊗ (⊗jM∗

1 )
)
σ∗(0)

= ((I2d−j−1 ⊗M∗
1 )I2d−j)⊗

(
I2j(⊗jM∗

1 )
)
σ∗(0)

= (I2d−j−1 ⊗M∗
1 )⊗

(
⊗jM∗

1

)
σ∗(0)

= (I2d−j−1 ⊗ (⊗j+1M∗
1 ))σ∗(0).

To show that the computation cost is Θ(d2d), notice that each matrix
I2d−j ⊗M∗

1 ⊗ I2j−1 is a block-diagonal matrix of the formM
∗
1 ⊗ I2j−1

. . .

M∗
1 ⊗ I2j−1

 .
Let mij denote the element at the ith row and jth column of M∗

1 (i, j ∈
{1, 2}). There are 2d−j block-rows of the form

M∗
1 ⊗ I2j−1 =

[
m11I2j−1 m12I2j−1

m21I2j−1 m22I2j−1

]
,
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and, if multiplied by a column vector to the right, each of them leads to
Θ(nnz(M∗

1 ⊗ I2j−1)) = Θ(nnz(M∗
1 )2j−1) = Θ(2j−1) arithmetic operations,

yielding 2d−jΘ(2j−1) = Θ(2d−1) = Θ(2d) operations per update. Since there
are d updates, the proof is complete.
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Input (unit) Description Distribution
d (h−1) dilution rate of the mouse gut U(0.1, 0.4)
r (h−1) maximal growth rate of bacteria U(0.2, 1.5)

k (CFU/g) carrying capacity of bacteria logU(3.5 109, 1010)
x (h−1) lysis induction rate logU(10−4, 0.1)
l (h−1) lytic cells’ mortality rate U(0.2, 1.5)
y (∅) burst size U(1, 50)

a ([PFU/g]−1h−1) adsorption constant logU(10−10, 10−7)
g (∅) probability of lysogeny logU(10−4, 0.7)

L0 (CFU/g) initial lysogens logU(105, 107)
S0 (CFU/g) initial susceptible logU(105, 107)

Table 2: Description of the inputs of the ODE system (part 5.2).
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