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Abstract

A graph structure is commonly used to characterize the depen-
dence between variables, which may be induced by time, space, biologi-
cal networks or other factors. Incorporating this dependence structure
into the variable selection procedure can improve the identification of
relevant variables, especially those with subtle effects. For example,
in genetic and genomic studies, the integration of such information
can help identify genomic regions or sets of markers associated with
complex traits. The Bayesian approach provides a natural framework
to integrate the graph information through the prior distributions. In
this work we propose combining two priors that have been well studied
separately, the Gaussian Markov random field (GMRF) prior and the
horseshoe prior, to perform selection on graph-structured variables.
Local shrinkage parameters that capture the dependence between con-
nected covariates are specified for the regression coefficients with the
option of incorporating the sign of their empirical correlations. This
encourages a similar amount of shrinkage for the regression coefficients
while allowing them to have opposite signs. For non-connected vari-
ables, a standard horseshoe prior is specified. After evaluating the
performance of the method using different simulated scenarios, we an-
alyze the quantitative trait loci mapping study that motivated the
proposed method. We also present two other real data applications,
one in near-infrared spectroscopy with sequential dependence struc-
ture across all wavelengths and the other in gene expression study
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with a general dependence structure among transcripts.

Keywords: Gaussian Markov random field, Horseshoe prior, Structured
variable selection

1 Introduction

The identification of genetic markers associated with complex traits is an im-
portant research problem in genetic and genomic studies. In the Arabidopsis
thaliana shoot growth study that motivated the proposed method, there is
interest in identifying genomic regions associated with particular phenotypes
(Marchadier et al., 2019). Univariate analyses that evaluate each marker sep-
arately remain the predominant approach, despite the fact that they do not
take into account the joint effect of multiple markers and miss markers with
small or no marginal effects, thus leading to reduced power and increased
false positive detections. Alternative methods to overcome these limitations
have been proposed. In particular, penalized regression methods are com-
monly used to jointly model multiple markers. These methods have further
been extended to take into account the dependence between markers. In
quantitative trait loci (QTL) mapping and in genome-wide association stud-
ies (GWAS), there is strong correlation between contiguous markers, which
are generally grouped into haplotype/linkage disequilibrium (LD) blocks. In
transcriptomic and other -omic studies, the dependence structure between
markers may correspond to experimentally elucidated biological pathways
(e.g., metabolic, regulatory or signaling pathways) or may be inferred com-
putationally (e.g., based on co-expression). This has led to penalty functions
that encourage the selection of marker-sets, as in group Lasso (Yuan and Lin,
2006). However, the inference of haplotype/LD blocks is subject to uncer-
tainty and it may thus be desirable to account for the dependence without
forming groups. One such approach is the elastic net, which combines an L1

penalty with an L2 penalty, thereby allowing the selection of sets of highly
correlated variables (Zou and Hastie, 2005). For variables with pre-specified
ordering, as with adjacent genetic markers, the fused lasso achieves sparsity
and local smoothness by penalizing the coefficients and their successive first-
order differences with an L1 penalty (Tibshirani et al., 2005). In situations
where markers are grouped into sets, not all markers in a group are relevant
and a bi-level selection can be performed (Stingo et al., 2011; Simon et al.,
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2013). For network-structured variables, Li and Li (2008, 2010) proposed a
graph-constrained estimation method that specifies a penalty defined on the
Laplacian matrix of the graph to identify subgroups of connected variables
while encouraging smoothness of the regression coefficients over the graph.
Pan et al. (2010) extended this approach using a group penalty based on
Lγ norm with γ > 1. In the same spirit, Kim et al. (2013) used a network-
based penalty to encourage selection of neighboring variables while allow-
ing different effect sizes between neighbors. Incorporating these dependence
structures into statistical models encourages the identification of groups of
covariates with subtle individual effects that act jointly on the response vari-
able, thereby increasing the power to detect associations and improving the
predictive performance (Li and Li, 2010; Zhou and Zheng, 2013).

In the Bayesian framework, variable selection can be achieved by specify-
ing shrinkage priors on the regression coefficients. These shrinkage priors fall
into two broad classes: spike-and-slab priors (George and McCulloch, 1993)
and continuous shrinkage priors (Polson and Scott, 2010). Using spike-and-
slab priors, the structure information can be incorporated through the priors
on the variable selection indicators. Smith and Fahrmeir (2007) used the
spatial correlation in brain imaging to specify a binary Markov random field
(MRF) or Ising prior for the latent variable selection indicators. In genomic
applications, the gene-gene network has been used to specify an Ising prior (Li
and Zhang, 2010; Stingo et al., 2011). The dependence structure is viewed
as an undirected graph with nodes representing the covariates and edges
representing links between the covariates. It should be noted that the Ising
prior regulates the smoothness of the binary variable selection indicators over
the graph, but not the smoothness of the regression coefficients. A practi-
cal challenge in applying the Ising prior is its high sensitivity to the choice
of hyperparameters, which results in phase transitions (Stanley, 1987). In
variable selection this is characterized by a small change in hyperparameter
values leading to a massive increase in the number of selected covariates (Li
and Zhang, 2010; Stingo et al., 2011).

With continuous shrinkage priors, Kyung et al. (2010) proposed a Bayesian
version of the fused lasso by placing a Laplace prior on the first order differ-
ences. Methods that incorporate the covariate structure information at the
level of the shrinkage hyperparameters have also been proposed. Rockova and
Lesaffre (2014) put forward a Bayesian lasso prior with a gamma hyperprior
that incorporates information on pathway membership to encourage simul-
taneous shrinkage of covariates in the same pathway. Similarly, Chang et al.
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(2018) specified a Bayesian Lasso with a log-normal hyperprior to capture the
information on pathway membership and used an EM-based approach. The
use of a single hyperparameter in the Laplace prior makes it restrictive and
this has led to the development of global-local shrinkage priors, which can si-
multaneously induce shrinkage to zero of small coefficients while leaving large
coefficients untouched (Polson and Scott, 2010). Griffin and Brown (2012)
achieved this by specifying a multivariate correlated normal-gamma distribu-
tion on the regression coefficients to shrink the effects of serially dependent
or grouped variables towards each other. Kalli and Griffin (2014) extended
this approach for time-varying models by specifying normal-gamma autore-
gressive process priors for the regression coefficients. The methods above
assume that all variables are either sequentially dependent or that variables
in a group are fully connected to each other. For general dependence struc-
tures, which can be represented by an undirected graph, graph-based priors
can be specified to promote graph-structured smoothness among coefficients.
Liu et al. (2014) used a graph Laplacian prior that allows both negative and
positive partial correlations between pairs of coefficients. Kowal, Matteson
and Ruppert (2019) used a global-local shrinkage prior and incorporated the
dependence through the local shrinkage hyperparameters.

In this paper, we propose shrinkage priors that incorporate general de-
pendence structures between covariates by combining the efficiency and flex-
ibility of the horseshoe (HS) prior with the appealing connection between
GMRFs and undirected graphs. This allows the estimation of smooth co-
efficient profiles with possible abrupt changes and the selection of sets of
dependent markers that may correspond to relevant genomic regions or gene
networks. Moreover, in order to allow regression coefficients with different
signs between connected variables, the sign of the empirical correlation be-
tween the corresponding covariates may be incorporated into the prior. The
proposed model extends the work of Faulkner and Minin (2018) for function
estimation, to variable selection in the general context of graph-structured
covariates. Section 2 presents the Gaussian Markov random field horseshoe
prior (HS-GMRF) and the Markov chain Monte Carlo (MCMC) algorithm
for posterior sampling. In Section 3, we evaluate the performance of the pro-
posed model using various simulated scenarios and compare the results to
the standard HS prior and the spike-and-slab Ising prior. Section 4 presents
the results for the shoot growth QTL mapping study in Arabidopsis thaliana
and two other applications, one in near-infrared spectroscopy with sequential
dependence structure across all wavelengths and the other in gene expres-
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sion study with a general dependence structure among transcripts. Section 5
concludes the paper with some discussions.

2 Statistical model

2.1 Model formulation

Let y = Xβ + ε be a linear regression model with y = (y1, . . . , yn)′ an n× 1
vector of observations, β = (β1, . . . , βp)

′ a p-dimensional vector of regression
coefficients, X an n × p matrix of covariates, and ε = (ε1, . . . , εn)′ an n × 1
vector of residuals assumed to follow a Gaussian distribution Nn(0, σ2In).

We assume that the structure between the p covariates is encoded by an
undirected graph G = (V,E) where V = {1, . . . , p} is a finite set of vertices
or nodes, and E is the set of edges connecting a subset of the

(
p
2

)
vertices.

Hereafter, two covariates j and j′ are considered neighbors if and only if
(j, j′) ∈ E. Let N (j) denote the set of neighbors of j. The graph G may
be rewritten as a disjoint union of I subgraphs such that G =

⋃I
i=1 Gi =⋃I

i=1(Vi, Ei) where Vi is a finite set of vertices associated with the subgraph
Gi, and Ei is the associated set of edges. Note that it is not necessary to have
disjoint subgraphs and I may be equal to 1 (see spectrometric data example
in Section 4.2). Let S denote a set composed of one randomly selected vertex
from each disjoint subgraph; the choice of the vertex is arbitrary and does
not affect the results (see Supplementary Material Section 5). For covariate
j with N (j) = ∅, the underlying subgraph called trivial graph reduces to one
vertex, which is included in S.

We propose incorporating the graph structure into the regression model
by specifying a HS prior on the differences of the regression coefficients as-
sociated with edges as well as on the regression coefficients associated with
vertices in the set S. The proposed hierarchical model, which we refer to as
horseshoe Gaussian Markov field (HS-GMRF), is defined as:

y|β, σ2 ∼ Nn(Xβ, σ2In)

βj − sjj′βj′|τ 2
jj′ , λ

2 ∼ N (0, λ2τ 2
jj′) for (j, j′) ∈

I⋃
i=1

Ei ,

βj|τ 2
j , λ

2 ∼ N (0, λ2τ 2
j ) for j ∈ S (1)
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τjj′ ∼ C+(0, 1) for (j, j′) ∈
I⋃
i=1

Ei , τj ∼ C+(0, 1) for j ∈ S

λ|σ ∼ C+(0, σ) , σ2 ∼ IG(a0, b0)

where C+ denotes the half-Cauchy distribution on the positive reals, IG is
the inverse-gamma density with fixed hyperparameters a0, b0 > 0. The model
induces global smoothness over all regression coefficients via the hyperparam-
eter λ. For connected variables, local adaptivity and smoothness are achieved
through the hyperparameters τjj′:(j,j′)∈⋃Ii=1 Ei

. If it is desired to encourage re-
gression coefficients of negatively correlated variables to take opposite signs,
in the same spirit as Monni (2014), the sign of the sample correlation between
covariates j and j′ may be introduced by setting sjj′ = sign {cor (Xj, Xj′)};
otherwise, sjj′ is set to 1. For variables in S, that is, non-connected vari-
ables and the randomly selected vertex from each disjoint subgraph, the local
adaptivity is controlled by τj, as in the standard HS formulation. This en-
sures the resulting precision matrix is full rank and that the prior is proper
(Faulkner and Minin, 2018).

Assuming “independent” increments as in Rue and Held (2005), the joint

distribution of β conditionally on λ2 and τ2 =
(
τ 2
jj′:(j,j′)∈

⋃I
i=1 Ei

, τ 2
j∈S

)′
is a

GMRF distribution:

β|τ2, λ2 ∼ Np(0, λ2Q−1), (2)

where Q is a full rank precision matrix with diagonal elements

Qjj =

{ 1
τ2j

+
∑

j′∈N (j) sjj′
1
τ2
jj′

if j ∈ S∑
j′∈N (j) sjj′

1
τ2
jj′

otherwise

and off-diagonal elements

Qjj′ =

{
−sjj′ 1

τ2
jj′

if (j, j′) ∈
⋃I
i=1Ei

0 otherwise
.

2.2 MCMC implementation

The HS-GMRF model can be fit via Gibbs sampling. The evaluation of the
full conditional distributions can be facilitated by relying on reparametriza-
tions of the regression coefficients and of the half-Cauchy distribution:
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1. We introduce a q-dimensional vector φ = (φ1, . . . , φq)
′ = Cβ (Mart́ınez-

Beneito and Botella-Rocamora, 2019). Here, q = |E| + |S|, with |E|
the number of edges and |S| the number of disjoint subgraphs. If the
r-th element of φ is φr = βj−βj′ , then the r-th row of the q×p matrix
C has all 0’s except for crj = 1 and crj′ = −1. Otherwise, if φr = βj
then the j-th row of C has all 0’s except for crj = 1. Thus,

φ ∼ Nq(0,Σφ), with Σφ = diag(λ2τ2). (3)

2. We use the parametrization of the half-Cauchy as a mixture of inverse-
gamma distributions proposed by Makalic and Schmidt (2016):

x ∼ C+(0, A) ⇒ x2|a ∼ IG(1/2, 1/a); a ∼ IG(1/2, 1/A2).

Thus, the hyperpriors of the global and local shrinkage hyperparame-
ters in (2) can equivalently be written as:

τjj′ ∼ C+(0, 1) for (j, j′) ∈
I⋃
i=1

Ei ⇒
{
τ 2
jj′|νjj′ ∼ IG(1/2, 1/νjj′)
νjj′ ∼ IG(1/2, 1)

τj ∼ C+(0, 1) for j ∈ S ⇒
{
τ 2
j |νj ∼ IG(1/2, 1/νj)
νj ∼ IG(1/2, 1)

(4)

λ|σ ∼ C+(0, σ) ⇒
{
λ2|ω ∼ IG(1/2, 1/ω)
ω|σ2 ∼ IG(1/2, 1/σ2)

The full conditional distributions are given in the Appendix. Code imple-
menting the HS-GMRF model along with a detailed example are provided
in the Supplementary Material.

3 Simulation study

We evaluate the performance of the proposed method using various simulated
scenarios. The first simulation mimics the group sequential dependence struc-
ture that is typical in genetic analysis with high correlation between adjacent
markers along a chromosome and independence between chromosomes. The
second set of simulations is designed to be similar to gene expression data,
where groups of genes are regulated by one marker that acts as a transcrip-
tion factor; we consider varying levels of correlation as well as varying effect
sizes for the regression coefficients.
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3.1 Simulation scenarios

Let X be the n× p matrix of predictors divided into G groups

X = [X11, . . . ,X1k︸ ︷︷ ︸
X1

,X21, . . . ,X2k︸ ︷︷ ︸
X2

, . . . ,XG1, . . . ,XGk︸ ︷︷ ︸
XG

],

where Xg is the n×k matrix of covariates in group g (g = 1, . . . , G) with row
vectors Xi,g = (Xi,g1, . . . , Xi,gk)

′ for individual i (i = 1, . . . , n) assumed to fol-
low a multivariate normal distribution Nk(0,Σg). The subgraphs associated
with each group g with covariance matrix Σg are defined to have k−1 edges.
We consider a total of p = 140 predictors divided into G = 14 groups of size
k = 10 with n = 100 samples. A subset of five groups (g = 1, 3, 5, 8, 10) are
assumed to have non-zero effects. Let βg = (βg1, . . . , βgk)

′ for g = 1, . . . , G
be the vector of regression coefficients associated with the g-th group of pre-
dictors. The response y is simulated such that y =

∑
g∈{1,3,5,8,10}Xgβg + ε

where ε follows a normal distribution with zero mean and variance equal to∑
g∈{1,3,5,8,10} βg

′βg/5, similarly to Peterson, Stingo and Vannucci (2016). We
consider this same scenario with p = 1000 covariates divided into G = 25
groups of size k = 40 and n = 100 and present the results in the Supplemen-
tary Material (Sections S2 and S3.2).

For the first simulation with group sequential dependence structure, the
predictors in each of the G groups are defined such that Xig,j|Xig,j−1 ∼
N(ρXig,j−1, 1−ρ2), for j = 2, . . . , k, g ∈ {1, . . . , G} with ρ set to 0.9. We refer
to this covariance structure as Σg,seq. The non-zero regression coefficients are
simulated from a multivariate normal distribution with covariance Σg,seq.

For the second set of simulations with non-sequential dependence, we con-
sider two covariance structures for the predictors, which we refer to as Σg,all

and Σg,half , corresponding respectively to a denser and a less dense associa-
tion. The former, Σg,all, in the same spirit as Li and Li (2008), assumes that
the predictors in each of the G groups have the same variance-covariance ma-
trix, Σg, defined such that Xig,j|Xig,1 ∼ N(ρXig,1, 1 − ρ2), for j = 2, . . . , k,
g ∈ {1, . . . , G}. The latter, Σg,half , assumes that only the first half of the
groups, g = 1, . . . , bG

2
c, have this variance-covariance structure, while the

predictors in the second half of the groups, g = bG
2
c+ 1, . . . , G, are assumed

independent. The correlation ρ is taken to be 0.5 or 0.9. The regression
coefficients are set such that the first variable in the group has a large effect
size and the remaining variables in the group have small effect sizes. We
consider two regression coefficient settings, one with effect sizes of varying
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signs in the same group and the other with effects of the same sign in a

group, such that βg = (5,± 5√
10
,± 5√

10
,

5√
10
, . . . ,

5√
10︸ ︷︷ ︸

k−3

)′. The predictors asso-

ciated with regression coefficients with signs that are opposite from that of
the first covariate are simulated to be negatively correlated to it, such that
Xig,j|Xig,1 ∼ N (−ρXig,1, 1− ρ2).

The effects βg are simulated according to the assumed graph structure of
the covariates only in the simulation scenarios with sequential dependence
structure. For the non-sequential dependence scenarios, βg’s are fixed to spe-
cific values and are not simulated according to the covariance of X. In par-
ticular, in the situation where half of the covariates are independent, which
we denoted as Σg,half , the βg’s still have the same values as in the scenarios
where all covariates within a group are considered dependent, denoted Σg,all.

3.2 Comparison methods

We compare the results of the proposed HS-GMRF prior with several other
approaches, including a version that does not incorporate the correlation
signs, i.e., setting sjj′ = 1 (HS-GMRF-nosign), the standard horseshoe prior
(HS) that does not account for dependence between variables, and the spike-
and-slab Ising prior (SS-Ising) that incorporates the graph information into
the latent binary variable selection indicators.

We explored other methods that may be considered competitors to the
proposed approach, but we could not use them as they did not accommodate
the dependence structures encountered in our simulations or real datasets.
For example, the method of Chang et al. (2018) uses the gene membership
in pathways and does not take into account the network structure between
markers; that is, all genes in a particular pathway are considered to be con-
nected to each other. None of the dependence structures we are considering
in this paper can be analyzed with this approach; it cannot handle the se-
quential dependence with disjoint sets, as in our first simulation scenario
and in the Arabidopsis QTL mapping study, or the non-sequential depen-
dence with subsets of variables being connected, as in our second simulation
scenario and the riboflavin gene expression study, or the fully sequential de-
pendence as in the Tecator data. Another example is the trend filtering
method of Wang et al. (2015), which is designed for smoothing parameter
estimates over graphs and does not have variable selection as its primary
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goal. The implementation in the R package genlasso uses a lasso penalty,
but the k-fold cross-validation capability for choosing the penalty parameter
is only available for sequentially dependent data across all parameters and
does not allow covariates to be specified. This approach cannot handle non-
sequential dependence or sequential dependence over subsets, but even in the
fully sequential setting as in the Tecator data, it is not possible to input a
covariate matrix. The only existing method that accommodates all types of
dependence structures and performs variable selection, as we propose in this
paper, is the method of Peterson et al. (2016), which uses a spike-and-slab
Ising prior (SS-Ising).

For all analyses, the columns of X are scaled to have variance 1. For
each method, the MCMC algorithm is run for 6, 000 iterations with the first
1, 000 used as burn-in. The results are averaged over 50 simulated replica-
tions. Convergence of the MCMC samplers were assessed using Geweke’s
convergence diagnostic. Over the 50 simulated replications under each sce-
nario, the Geweke z-scores were in the range [−2, 2] for more than 80% of
the replications, indicating that the samples in the first and last part of the
chains were drawn from the same stationary distributions. In addition, we
evaluated the autocorrelations and the effective sample size estimates for the
MCMC chains. All the results indicated that the sampler mixed well, was
efficient at exploring the parameter space and there were no indications of a
lack of convergence.

For HS, we use the parametrization proposed by Polson and Scott (2010)
implemented in the R package bayesreg (Makalic and Schmidt, 2016):

βj|τ 2
j , λ, σ

2 ∼ N (0, τ 2
j λσ

2) , τj ∼ C+(0, 1), j = 1, . . . , p

λ ∼ C+(0, 1) , σ2 ∼ IG(a0, b0) (5)

For SS-Ising, we use the implementation of Peterson et al. (2016) with
known graph:

βj|γj, σ2 ∼ γj · N (0, hβσ
2) + (1− γj) · δ0, j = 1, . . . , p, (6)

p(γ|Z) ∝ exp(a1′γ + bγ′Zγ)

where γ = (γ1, . . . , γp)
′ is a p-dimensional vector of latent binary indicator

variables that induce a mixture prior on the βj’s and δ0 is a point mass dis-
tribution at 0. An Ising prior is specified for γ using a matrix representation
Z of the graph with elements 1 for connected variables and 0 elsewhere. The
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hyperparameter a controls the sparsity of γ and b controls its smoothness
over the graph with larger values of b leading to a phase transition char-
acterized by a substantial increase in the number of selected variables. As
recommended in Peterson et al. (2016), we set a = 0.5 and b = −2.75. Since
the columns of X were scaled to have variance 1, we set hβ = 1.

3.3 Performance criteria

We assess the various methods in terms of variable selection, estimation
accuracy of the regression coefficients, and predictive performance.

In order to determine the selected variables, for the HS-based methods a
variable is deemed relevant if the 95% highest posterior density (HPD) inter-
val of its regression coefficient βj does not contain zero. For SS-Ising, vari-
ables with marginal posterior probability of inclusion (PPI) greater than 0.5
are deemed relevant. We then use Matthews correlation coefficient (MCC)
(Matthews, 1975), which combines the overall variable selection accuracy
in terms of the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN), to evaluate the selection perfor-
mance. MCC ranges between −1, indicating complete disagreement between
the truth and the selection, and +1, corresponding to perfect selection, and
is defined by:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (7)

The mean squared error (MSE) of the regression coefficients is computed
to evaluate the overall estimation accuracy:

MSEβ =
1

p

G∑
g=1

k∑
j=1

(βgj − β̂gj)2, (8)

where β̂gj is the posterior mean of the regression coefficient for the j-th

variable in group g. For the HS-based methods β̂gj = 1
T

∑T
t=1 β̂

t
gj based

on the post burn-in MCMC samples. For the SS-Ising implementation of
Peterson et al. (2016), the regression coefficients have been integrated out of
the model and are estimated post-hoc as:

β̂gj =
1

T

T∑
t=1

(X′γtXγt + h−1
β Ipγt )

−1X′γty (9)
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where γt is the variable selection indicator vector at iteration t, Xγt the subset
of covariates associated with γt, and pγt the number of selected covariates at
iteration t.

We also examine the coverage probability (CP) and the width of the 95%
HPD intervals. For CP, we calculate the proportion of HPD intervals that
contain the true regression coefficients, and report the average and standard
error across the 50 replications. Similarly, we record the width of the 95%
HPD interval for each coefficient, and report the average and standard error
across regression coefficients and simulated replications.

The predictive performance is evaluated using the mean squared predic-
tion error (MSPE) on a test set (ytest,Xtest) of dimension n × 1 and n × p,
respectively:

MSPE =
1

n

n∑
i=1

(ytesti −Xtest
i β̂)2, (10)

with β̂ = (β̂11, . . . , β̂1k, . . . , β̂G1, . . . , β̂Gk)
′ the p-vector of estimated regression

coefficients corresponding to the posterior means for the HS-based methods
and defined as in equation (9) for the SS-Ising approach. We set n = 100
and consider 50 replications of the test data.

3.4 Results

Section 3.4.1 describes the results for the group sequential dependence struc-
ture. Section 3.4.2 discusses the results for the non-sequential dependence
setting assuming knowledge of the true structure, as may be the case when
using established biological pathways. The results for the non-sequential sim-
ulated setting where the non-zero regression coefficients in a group have the
same sign, as well as the results using an estimated graph when the true de-
pendence structure is unknown are presented in the Supplementary Material
(Sections S3 and S4, respectively).

3.4.1 Results for sequential dependence

HS-GMRF yields better selection, better estimation and better prediction.
Table 1 reports the mean MCC, MSE and MSPE along with their standard
errors over the 50 simulated replications for each of the three methods consid-
ered. HS-GMRF has substantially higher MCC values. It also has the lowest
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MSEs with lowest variability. As expected, HS, which does not integrate the
dependence structure, has the worst performance in terms of MCC, but has
lower MSE than SS-Ising despite the improved variable selection performance
of the latter. The high MSE values for SS-Ising may be due to the post-hoc
estimation of the regression coefficients. In terms of predictive performance,
HS-GMRF gives the best result, while the MSPEs of HS and SS-Ising are
comparable.

Table 1: Average MCC, MSE and MSPE (with SE) over 50 simulated repli-
cations under sequential dependence and non-sequential dependence.

MCC MSE MSPE
Sequential dependence

Σg,seq
HS-GMRF 0.740 (± 0.049) 0.055 (± 0.010) 12.763 (± 2.216)
HS 0.171 (± 0.050) 0.239 (± 0.068) 15.940 (± 3.053)

ρ = 0.9 SS-Ising 0.403 (± 0.046) 0.343 (± 0.087) 16.654 (± 3.625)
Non-sequential dependence

Σg,half
HS-GMRF 0.708 (± 0.018) 0.513 (± 0.067) 94.871 (± 13.632)
HS-GMRF-nosign 0.624 (± 0.034) 0.728 (± 0.155) 122.188 (± 21.609)

ρ = 0.5 HS 0.240 (± 0.041) 1.009 (± 0.200) 126.252 (± 19.657)
SS-Ising 0.323 (± 0.054) 1.386 (± 0.204) 149.294 (± 27.384)

Σg,half
HS-GMRF 0.668 (± 0.046) 0.541 (± 0.089) 84.954 (± 14.485)
HS-GMRF-nosign 0.444 (± 0.117) 1.038 (± 0.259) 99.123 (± 17.694)

ρ = 0.9 HS 0.219 (± 0.038) 2.243 (± 0.551) 95.219 (± 19.279)
SS-Ising 0.312 (± 0.048) 2.359 (± 0.437) 109.387 (± 23.713)

Σg,all
HS-GMRF 0.989 (± 0.011) 0.420 (± 0.018) 66.482 (± 10.084)
HS-GMRF-nosign 0.866 (± 0.028) 0.697 (± 0.106) 102.078 (± 21.309)

ρ = 0.5 HS 0.254 (± 0.028) 1.145 (± 0.276) 107.449 (± 19.642)
SS-Ising 0.338 (± 0.054) 1.669 (± 0.260) 121.027 (± 18.618)

Σg,all
HS-GMRF 0.967 (± 0.033) 0.439 (± 0.062) 55.755 (± 9.403)
HS-GMRF-nosign 0.639 (± 0.121) 1.234 (± 0.247) 80.999 (± 16.435)

ρ = 0.9 HS 0.211 (± 0.051) 3.310 (± 1.162) 74.425 (± 12.548)
SS-Ising 0.346 (± 0.051) 3.068 (± 0.65) 71.691 (± 11.253)

HS-GMRF gives better estimation accuracy providing both high cover-
age probabilities (CP) and narrow HPD intervals. Table 2 presents the CPs
and widths of the 95% HPD intervals for the zero and non-zero regression
coefficients. For the zero coefficients, the three methods provide similar CPs
with all of the 95% HDP intervals containing zero. For the non-zero coeffi-
cients, HS yields the highest CP but has very wide intervals. SS-Ising yields
narrower intervals than HS, which, in part, can be explained by the fact that
the spike-and-slab prior sets exactly to zero the regression coefficients for
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non-selected covariates. However, SS-Ising misses the true parameter values
as evidenced by its very low CPs.

Table 2: Coverage probability (CP) and width of 95% HPD intervals averaged
over the 50 simulated replications under sequential dependence.

CP of 95% HPD Width of 95% HPD
Overall βj ’s = 0 βj ’s 6= 0 Overall βj ’s = 0 βj ’s 6= 0

HS-GMRF
0.921 1.000 0.778 0.642 0.429 1.025

(± 0.024) (± 0.000) (± 0.068) (± 0.057) (± 0.048) (± 0.091)

HS
0.976 1.000 0.933 1.804 1.336 2.645

(± 0.020) (± 0.000) (± 0.055) (± 0.160) (± 0.136) (± 0.243)

SS-Ising
0.809 1.000 0.464 0.567 0.101 1.405

(± 0.034) (± 0.000) (± 0.094) (± 0.115) (± 0.064) (± 0.281)

In order to gain insights into these results, we examine the posterior densi-
ties of three non-zero regression coefficients from one of the groups (Figure 1).
For the first panel, HS-GMRF is peaked around the true value with a small
bump around zero, while SS-Ising shows a large peak at zero and a small
bump at the true value, and HS is peaked around zero with a long tail to-
wards the true value. In the second panel, HS-GMRF is unimodal with the
true value in its lower tail, SS-Ising is unimodal around zero and misses the
true value, and HS remains concentrated around zero with a long tail towards
the true value. In the third panel, HS-GMRF is the only approach that cap-
tures the true value with high probability. SS-Ising is concentrated around
a non-zero mode that is further away than the true value, and HS exhibits
a bimodal posterior density with one mode at zero and the other around
the non-zero mode identified by SS-Ising. This is a well-known phenomenon
with the horseshoe prior for small to moderate effect sizes (Bhattacharya and
Johndrow, 2021). We can clearly see that in the selected cases, HS-GMRF
has narrower posterior densities that are away from zero, thereby having
narrower HPD intervals and good selection performance. However, in some
cases, the true value may fall in the tail area and may not be contained in the
95% HPD interval, explaining its lower CP. On the other hand, the posterior
densities with HS span a large range of values that cover the true value as
well as zero, leading to high CPs but large HPD interval widths, and hence
poor selection and high uncertainty in the estimates.

For further exploration, we examine the estimation of all the regression
coefficients in one simulated replication (Figure 2). We note that all the

14



methods capture the zero coefficients. For the non-zero coefficients, the HS
and SS-Ising approaches tend to select a few representatives among a group
of sequentially correlated predictors. HS also gives wide HPD intervals that
contain both the true value and zero, hence leading to good CPs but wide
intervals and poor selection performance. On the other hand, HS-GMRF cap-
tures the true coefficient profiles with high accuracy, yielding narrower HPD
intervals with good CP. Given the high sequential correlation, it smoothes
consecutive coefficients and may sometimes not adjust sufficiently to capture
abrupt changes.
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Figure 1: Posterior densities for three non-zero regression coefficients in the
sequential dependence simulation. The black vertical bar corresponds to the
true βj value.
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Figure 2: True coefficients (filled black circles) and estimated coefficients
(unfilled squares) along with 80% HPD intervals (solid gray lines) for all
covariates in one simulated replication under sequential dependence.

3.4.2 Results for known non-sequential dependence

As shown in Table 1, HS-GMRF provides the best results in terms of se-
lection and estimation for all values of ρ and the two covariance structures
considered. It enjoys MCC values closer to 1 and lowest MSEs, along with
less variability in these quantities. The next best is HS-GMRF-nosign, al-
though its variability in both MCC and MSE increases substantially with
larger ρ. A high correlation encourages the regression coefficients associated
with correlated covariates to have similar values with the same sign, leading
to decreased performance. By incorporating the sign of the correlation among
connected covariates into the model, HS-GMRF provides more flexibility by
allowing connected covariates to have effects with different signs. As in the
previous simulation, HS, which does not integrate the dependence structure,
has the worst performance in terms of MCC. The MSEs for HS and SS-Ising
are comparable despite the improved variable selection performance of the
latter. This, as pointed out above, may be due to the post-hoc estimation of
the regression coefficients for SS-Ising. In terms of predictive performance,
HS-GMRF gives the best results.

With respect to the covariance structure considered, for the HS-GMRF-
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based methods, the scenarios where all the groups have correlated predictors
(Σg,all) result in higher MCC compared to situations where only half of the
predictors are correlated (Σg,half). Thus, the integration of the structure in-
formation between covariates with the HS-GMRF prior is especially helpful
as more covariates are connected. Note that although SS-Ising integrates
this structure information, the improvement is not observed. As expected,
for HS, which does not integrate the dependence structure, similar results
are obtained for the two covariance structures. In terms of estimation, the
HS-GMRF-based approaches have comparable accuracy across the two co-
variance structures, while HS and SS-Ising have considerably higher MSEs
for the covariance structure Σg,all, especially under high correlation.

The results for the posterior density estimations and their associated CPs
and HPD interval widths are, for the most part, similar to those observed in
the sequential dependence case; the HS-GMRF-based approaches yield nar-
rower posterior densities with good coverage and fairly accurate estimates
of the true regression coefficient values compared to SS-Ising and HS (see
Supplementary Table S1). In this setting, where there are regression co-
efficients with different signs in the same group, we note some differences
between HS-GMRF and HS-GMRF-nosign. For the latter, the HPD inter-
vals are relatively wider and less accurate. This indicates that integrating
the correlation sign provides a more accurate estimation when the regression
coefficients of connected covariates have varying signs.

Table 3: Average MCC and MSE for connected and non-connected covariates
over 50 simulated replications under known non-sequential dependence.

MCC MSE
Connected Non-connected Connected Non-connected

Σg,half ρ = 0.5

HS-GMRF 0.956 (± 0.033) 0.277 (± 0.039) 0.558 (± 0.061) 0.469 (± 0.111)
HS-GMRF-nosign 0.810 (± 0.053) 0.264 (± 0.057) 0.913 (± 0.202) 0.542 (± 0.151)
HS 0.237 (± 0.038) 0.244 (± 0.054) 1.464 (± 0.374) 0.553 (± 0.139)
SS-Ising 0.332 (± 0.062) 0.295 (± 0.096) 2.028 (± 0.372) 0.744 (± 0.208)

Σg,half ρ = 0.9

HS-GMRF 0.883 (± 0.078) 0.278 (± 0.049) 0.611 (± 0.138) 0.470 (± 0.091)
HS-GMRF-nosign 0.526 (± 0.177) 0.265 (± 0.053) 1.582 (± 0.465) 0.495 (± 0.112)
HS 0.188 (± 0.043) 0.271 (± 0.046) 3.998(± 1.105) 0.488 (± 0.103)
SS-Ising 0.310 (± 0.047) 0.304 (± 0.081) 4.055 (± 0.855) 0.662 (± 0.135)

We also examined the variable selection and estimation performance sep-
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arately for connected and non-connected predictors (Table 3). For the non-
connected variables, all the approaches do a poor job at identifying the
relevant variables and have MCC values between 0.25 and 0.30. For the
connected variables, the MCC values remain low for HS and SS-Ising. The
HS-GMRF approaches, on the other hand, have substantially higher MCC,
with HS-GMRF integrating the correlation sign achieving MCC values close
to 1. As for MSE, the results for the non-connected covariates are compa-
rable between the different approaches. However, for connected variables,
the MSEs are significantly lower for the HS-GMRF based methods, with the
approach integrating the correlation signs giving more accurate estimation.

Similar results are observed under the scenario where the non-zero re-
gression coefficients of connected variables have identical signs, except for
HS-GMRF-nosign which performs the same as HS-GMRF (see Supplemen-
tary Material Section S3.1).

3.4.3 Other remarks

In order to demonstrate that the choice of the representative vertex from
each disjoint subgraph can be chosen arbitrarily, we repeated the analysis 20
times, each time picking a different randomly selected vertex from each dis-
joint subgraph. The results were unchanged as shown in the Supplementary
Material (see Section S5).

In terms of computational time, the HS-GMRF approach took about
twice as long as the HS to run. For example, for the sequential dependence
structure with p = 1000 and 6,000 MCMC iterations, HS took 48 minutes
while HS-GMRF took 103 minutes. This seems reasonable, given the gains
in selection, estimation and prediction obtained with HS-GMRF.

4 Application

In this section we present three applications with different dependence struc-
tures. The first one aims to identify genetic regions associated with the shoot
growth of Arabidopsis thaliana taking into account the dependence between
adjacent markers within a chromosome and independence across chromo-
somes. The second one demonstrates that it is not necessary to have disjoint
graphs by examining spectrometric data of food composition with sequential
dependence across all wavelengths using the first-order derivatives as covari-
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ates. The third one analyzes gene expression data in relation to riboflavin
production in Bacillus subtilis with genes assumed to have an unknown gen-
eral graph-structured dependence.

4.1 Shoot growth in Arabidopsis thaliana

Plant growth is a complex trait involving multiple loci. Marchadier et al.
(2019) used recombinant inbred lines (RIL) under controlled conditions to
study the genetic architecture of shoot growth in Arabidopsis thaliana. The
phenotype and genotype data are publicly available. We consider the YoxCol
RIL set composed of 358 plants at the end of the vegetative growth under
well-watered condition. We focus on the rosette compactness phenotype,
which is calculated as the ratio of the projected rosette area to the convex
hull area. The covariate matrix consists of parental genotype probabilities
at 486 loci along the five chromosomes. Marchadier et al. (2019) performed
QTL detection using the Multiple QTL Mapping algorithm implemented in
the R/qtl package, which does not assess the joint effect of multiple markers
and does not account for the dependence structure between markers. Here,
we apply the proposed HS-GMRF prior to integrate the dependence between
adjacent markers on the same chromosome, thus encouraging smoothness
across the regression coefficients and selection of contiguous predictors, while
different chromosomes are assumed independent. The undirected graph for
this dependence structure is represented by a block diagonal matrix with
each block corresponding to a chromosome and consisting of a tridiagonal
matrix. As consecutive markers are positively correlated, incorporating the
sign of the empirical correlation will not be relevant, and the same results
are obtained with HS-GMRF and HS-GMRF-nosign. For comparison, we
analyzed the datal using HS, SS-Ising and the Bayesian lasso implemented
in the R package BGLR. We decided against a comparison with fused lasso,
as it assumes sequential dependence across all markers and does not allow
a separation between chromosomes. One option would be to analyze each
chromosome separately, but this would not evaluate the joint effect of markers
mapping to different chromosomes.

We assess the predictive performance of the various methods using a five-
fold cross-validation (CV) procedure and compute the MSPE. This consists
of partitioning the data into five subsamples, using four of the subsamples
for training and the left-out set for validation. The models are fit on the
training set and the CV-MSPEs are computed based on the prediction for
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the validation set :

CV-MSEP =
1

K

K∑
k=1

1

ntest,k

ntest,k∑
i=1

(
ytest,ki −Xtest,k

i β̂(k)
)2

,

where (ytest,k,Xtest,k) are the test data associated with the k-th fold, ntest,k
the corresponding number of samples, and β̂(k) are the posterior means of the
regression coefficients based on the training set from the k-th fold. For each
fold, the MCMC algorithm is run for 6, 000 iterations with the first 1, 000 used
as burn-in. The MCMC chains from the K = 5 folds are then concatenated
to select the relevant predictors. For SS-Ising, the MCMC was run for 10, 000
iterations with 5, 000 burn-in using the default hyperparameter settings.

Table 4 gives the CV-MSPE and the number of selected markers for each
approach. HS-GMRF leads to the smallest CV-MSEP of 1.13 followed by
the Bayesian lasso with a value of 1.15 then HS with a CV-MSPE of 1.16.
SS-Ising provides the largest CV-MSPE of 1.28, which may be due to using
the default hyperparameter settings that may not be optimal and estimating
the regression coefficients post-hoc. In terms of detection, HS-GMRF selects
42 markers based on 95% HPD intervals and 67 with 90% HPD intervals. HS
does not select any marker for any HPD interval considered. For SS-Ising,
no marker is selected with a PPI threshold of 0.5, and there are 24 and 121
markers that pass a PPI threshold of 0.2 and 0.1, respectively. Of these,
12 and 39 are contained in the set selected by the HS-GMRF at 90% HPD
intervals. No marker was selected with Bayesian lasso with 90% or 95% HPD
intervals.

Table 4: Results for Arabidopsis thaliana data

Methods CV-MSPE Selected genes

HS-GMRF 1.13
42 (95% HPD)
67 (90% HPD)

HS 1.16
0 (95% HPD)
0 (90% HPD)

SS-Ising 1.28
0 (PPI>0.5)

24 (PPI > 0.2)
121 (PPI >0.1)

Bayesian Lasso 1.15
0 (95% HPD)
0 (90% HPD)
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Figure 3 plots the estimated regression coefficients along with their 90%
HPD intervals for HS-GMRF and HS, as well as the QTLs selected by Mar-
chadier et al. (2019). We observe that HS-GMRF yields smoother coefficient
estimates across adjacent loci within the same chromosome relative to HS.
We also note that HS has very wide HPD intervals, especially when the es-
timates are not close to 0. This, as noted in the simulation study, is due to
the long-tailed or bimodal posterior densities for small to moderated effects
sizes. Furthermore, as observed with the simulations, HS tends to give large
coefficient estimates for a few representatives among a group of correlated
variables, while HS-GMRF yields smooth estimates with lower magnitudes
around these peaks. This can be observed between positions 78 and 100
on chromosome 1, between positions 80 and 95 on chromosome 3, between
positions 52 and 62 on chromosome 4, and between positions 4 and 20 on
chromosome 5.
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Figure 3: Estimated coefficients for the Arabidopsis thaliana data. The ver-
tical dotted lines delimit the chromosomes. Estimates (black solid line)
along with 90% HPD intervals (grey solid line), and selected genomic re-
gions (shaded areas) using HS-GMRF. Estimates (black dashed line) along
with 90% HPD intervals (grey dashed line) using HS. QTLs selected by Mar-
chadier et al. (2019) (vertical solid lines).
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We note that the proposed method picks contiguous markers and leads
to the selection of genomic regions, which are represented by grey shaded ar-
eas. The solid vertical lines correspond to the QTLs selected by Marchadier
et al. (2019), many of which have been experimentally validated. Except for
one marker near 1:111650 (position 40 of chromosome 1 in Figure 3), these
all fall within the genomic regions selected by HS-GMRF. Several of the
identified genomic regions map to genes involved in shoot growth. For exam-
ple, HS-GMRF selected consecutive markers in genomic region 1:26993011 to
1:29898172 (positions 116 to 128 in Figure 3). This region contains CML38, a
member of the calmodulin-like proteins that plays important roles in the nor-
mal development of Arabidopsis and its flowering. Another important gene in
this region is STR1, a member of sulfurtransferases, involved in Arabidopsis
embryo and seed development with gene expression that steadily increases as
the plant ages. Genomic region 3:19628061 to 3:23411903 (positions 76 to 92
in Figure 3) contains FGPS3, a folylpolyglutamate synthetase gene involved
in root development that leads to reduction in primary root elongation when
disrupted. In genomic region 5:7442381 to 5:8563029 (positions 29 to 37 in
Figure 3), we find the TGH gene, which is essential for adequate plant devel-
opment and whose mutation is associated with decreased elongation growth
and vascularization, as well as reduced pollen formation.

4.2 Tecator dataset

We analyze the Tecator data, a benchmark for functional data analysis.
Briefly, spectra sampled at 100 wavelengths uniformly spaced in the range
850−1050 nm were recorded for n = 215 meat samples on a Tecator Infratec
Food and Feed Analyzer (Borggaard and Thodberg, 1992). Recently, Picheny
et al. (2019) applied penalized Sliced Inverse Regression (SIR) to relate fat
content with the first-order derivatives of the spectra, obtained by finite dif-
ferences, and identified intervals in the definition domain of the functional
predictors that are associated with fat content. Their result highlights that
the selection of relevant intervals rather than isolated wavelengths along the
spectra improves the interpretability of the estimated coefficients. Here, we
formulate the analysis as a regression model relating fat content (response)
to the first-order derivatives of the spectra (p = 99 predictors) and apply the
proposed HS-GMRF prior to integrate the dependence between consecutive
predictors, thus encouraging smoothness across the regression coefficients and
selection of contiguous predictors. The undirected graph for this dependence
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structure would be represented by a tridiagonal matrix and would not be
decomposable. As consecutive wavelengths are positively correlated, incor-
porating the sign of the empirical correlation will not be relevant, and we
obtain the same results with HS-GMRF and HS-GMRF-nosign. For compar-
ison, we also fit the model using the standard HS, SS-Ising and the Bayesian
Lasso implemented in the R package BGLR. In this case, since all variables
are sequentially correlated with no separation, it is possible to use the fused
Lasso. We therefore applied the Bayesian version proposed by Kyung et al.
(2010). For the four continuous shrinkage based approaches, the variable
selection relied on the 90% and 80% HPD intervals not containing 0 . For
SS-Ising, predictors with a marginal posterior probability of inclusion (PPI)
greater than 0.5 or 0.8 were selected.

Table 5 gives the CV-MSPE and the number of selected predictors for
each approach. HS-GMRF leads to the smallest CV-MSPE of 6.18 and se-
lects 11 predictors using 90% HPD intervals or 19 with 80% HPD intervals.
HS gives the next smallest CV-MSPE of 6.35 and deems only two wave-
lengths relevant based on 80% HPD intervals, both of which appear among
those identified by HS-GMRF. SS-Ising has a relatively larger CV-MSPE of
7.86, which may be due to using the default hyperparameter settings and
estimating the regression coefficients post-hoc. It selects four predictors with
a 0.5 PPI threshold, all of which are contained in the set selected by the
HS-GMRF, and selects none at a PPI threshold of 0.8. The Bayesian Lasso
also yields a relatively large CV-MSPE of 7.77 and selects a single predictor,
which was also identified as relevant by the other methods. The Bayesian
fused Lasso has the largest CV-MSPE at 12.03 and selects five predictors
based on 90% HPD intervals, one of which overlaps with HS-GMRF at the
same level, or eight predictors based on 80% HPD intervals, four of which
overlap with HS-GMRF at the same level.
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Table 5: Results for Tecator data

Methods CV-MSPE Number of selected predictors

HS-GMRF 6.18
11 (90% HPD)
19 (80% HPD)

HS 6.35
1 (90% HPD)
2 (80% HPD)

SS-Ising 7.86
4 (PPI > 0.5)
0 (PPI > 0.8)

Bayesian Lasso 7.77
1 (90% HPD)
1 (80% HPD)

Bayesian fused Lasso 12.03
5 (90% HPD)
8 (80% HPD)

Figure 4 displays the estimated regression coefficients along with their
80% HPD intervals for HS-GMRF and HS. We note that HS-GMRF suc-
cessfully smooths the coefficients over consecutive wavelengths. In contrast,
the estimates from HS are jagged. We also note that the 80% HPD inter-
val widths are wider with HS, especially when the estimates are not close
to 0. This, as noted in the simulation study, is due to the long-tailed or
bimodal posterior densities for small to moderate effect sizes. Furthermore,
as observed with the simulations, HS tends to pick out a few representatives
among a group of correlated variables. Indeed, HS identified only wavelengths
920 and 940, while HS-GMRF selects consecutive wavelengths around these
two. This can be visualized in Figure 5 (a) and (b), which show the first-order
derivates at each wavelength with vertical lines indicating those selected us-
ing 80% HPD interval with the HS and the HS-GMRF priors, respectively.
The two wavelengths identified by HS are those with highest magnitudes lo-
cated at positions 920 and 940. HS-GMRF, however, picks 19 wavelengths,
many of which are adjacent to each other and overlap with the intervals
identified by Picheny et al. (2019) (Figure 5(c)).
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Figure 4: Estimated coefficients with 80% HPD intervals for the HS and
HS-GMRF methods in the Tecator data.
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Figure 5: First-order derivatives of raw predictors with vertical bars indicat-
ing selected wavelengths in the Tecator data based on (a) 80% HPD intervals
for HS, (b) 80% HPD intervals for HS-GMRF, and (c) results from Picheny
et al. (2019).

4.3 Riboflavin production in Bacillus subtilis

Riboflavin is an essential micronutrient required for biochemical reactions
in all living cells and Bacillus subtilis is the most commonly used organism
for commercial production of riboflavin. We analyze the riboflavin dataset
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available in the R package hdi, which contains p = 4088 candidate predic-
tors collected on 71 samples. The goal is to identify predictors (gene expres-
sions) associated with riboflavin production in this organism. As there was
not sufficient biological knowledge to determine the dependence structure
between the markers, we obtained an undirected graph by first clustering
the gene expressions using the R package mclust then applying within each
cluster the graphical lasso approach with the penalty parameter selected by
cross-validation using the R package CVglasso. This led to 93 subgraphs
containing between 2 and 34 markers with 1964 edges, and 3480 subgraphs
with singletons. We apply the four methods, HS-GMRF, HS, SS-Ising and
Bayesian lasso to the data.

HS-GMRF yields the smallest CV-MSPE, confirming that the integration
of the covariate structure along with the correlation sign leads to improved
predictive performance (Table 6). The relatively large CV-MSPE for SS-
Ising may be due to the default hyperparameter settings not being optimal
and the post-hoc approach for estimating the regression coefficients.

Table 6: Results for riboflavin data

Methods CV-MSPE Selected genes

HS-GMRF 0.23 6 (70% CI)

HS 0.24 0 (70% CI)

SS-Ising 0.29 2 (PPI > 0.7)

Bayesian Lasso 0.27 0 (70% CI)

In terms of variable selection, HS-GMRF identifies six genes based on
70% credible intervals. SS-Ising selects two genes using a PPI cut-off of 0.7.
The credible intervals for HS and Bayesian lasso cover 0, leading to no gene
being selected. For comparison, in Bühlmann, Kalisch and Meier (2014),
several variable selection methods were applied to the riboflavin data: At
a 5% family-wise error rate, one approach found no significant gene, while
another found one significant gene; based on an approach that controls the
false discovery rate, and hence is less stringent, three significant genes were
identified. The one common gene, YXLD, identified across the methods is
also found by HS-GMRF using a 70% credible interval.
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Figure 6: Estimated network for the 6 genes selected by HS-GMRF with 70%
credible intervals in the riboflavin data.

Figure 6 displays the estimated network associated with the genes picked
by HS-GMRF using 70% credible intervals, which form a clique. The six
selected genes, SIGY, YXLC, YXLD, YXLE, YXLF, YXLG, comprise the
SigY operon, a member of the extracytoplasmic function sigmas that function
as regulators of stress. The joint selection of these genes makes biological
sense as genes transcribed in a single operon are functionally related and are
part of a metabolic pathway.
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Figure 7: Posterior densities for genes selected with 80% HPD intervals in
the Riboflavin data.

Figure 7 shows the posterior density estimates using the HS-based ap-
proaches for the regression coefficients associated with the six genes selected
with HS-GMRF. In general, the posterior densities estimated with HS-GMRF
are shifted away from zero relative to the densities estimated by the other
methods. As observed in the simulation study, the posterior densities esti-
mated with HS for moderate non-zero effects are either concentrated around
0 with long tails or exhibit bimodality with the prominent mode around 0.
Indeed, some of the genes in Figure 7 exhibit such behaviour, suggesting
that they have effect sizes that are not large enough to be detected by HS.
By contrast, HS-GMRF leads to unimodal posterior densities centered away
from 0 or bimodal posterior densities with much less spike around 0.

5 Conclusion

Incorporating the dependence structure between covariates into variable se-
lection is a research area that has received attention over the past decade.
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The contribution of this paper lies in integrating two well studied priors,
GMRF and HS, to incorporate various types of dependence structures and
achieve improved variable selection. The proposed HS-GMRF prior combines
the sparsity inducing property of the horseshoe prior with the smoothing
properties of Gaussian Markov random fields, with the option of integrating
the correlation sign between covariates to allow regression coefficients with
different signs among connected variables. We demonstrate via simulations
the improved performance of the HS-GMRF prior in terms of selection, es-
timation and prediction. In particular, this prior encourages the selection of
small to moderate effect sizes that are missed when the dependence structure
is ignored, as in a standard HS. In addition, this approach, similarly to other
methods that incorporate the dependence or group structure of covariates,
encourages the selection of all correlated or connected variables, while stan-
dard variable selection methods tend to identify one of the highly correlated
variables as they can be considered to be exchangeable. These findings are
also supported by the results for the various applications considered, where
the HS-GMRF method identifies biologically relevant genomic regions that
encompassed experimentally validated markers, and leads to better cross-
validated prediction. Although HS-GMRF takes computationally more time
than HS, it remains reasonable, especially considering its gains in selection,
estimation and prediction.

The HS-GMRF prior provides the flexibility of handling different de-
pendence structures and is widely applicable in settings where the struc-
ture can be represented by undirected graphs. In this paper, we consid-
ered three applications, one exhibiting subgroups of sequential dependence
in QTL mapping, another with sequential dependence across the entire data
with near-infrared spectra, and one with a general dependence structure in
a transcriptomic study. Other application areas include disease mapping,
where variables measured over time at adjacent locations are structured in
space and time, and functional MRI (fMRI) studies, characterized by spatial
dependence between voxels within anatomical regions of the brain as well
as temporal correlation between the serial scans acquired while a subject
performs experimental tasks. The method is scalable to large numbers of
covariates and further computational gains are obtained in the presence of
disjoint subgraphs, as the posterior sampling involves submatrices of smaller
dimensions.

When the true dependence structure between covariates is unknown and
needs to be estimated, a two-stage approach that first estimates the under-
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lying graph then uses the estimated graph to specify the HS-GMRF prior
can be used, as we did in the gene expression study. This works reasonably
well, but introduces bias by failing to incorporate the uncertainty associated
with the graph estimation. The proposed hierarchical model can be extended
by introducing an additional layer that specifies a graphical model for the
covariates. This would provide a unified method that estimates the underly-
ing undirected graph while simultaneously performing variable selection and
estimation of the regression coefficients as in Peterson et al. (2016). Another
possible extension of the proposed method would be to use weighted graphs
that capture the strength of the connection between covariates, thereby in-
ducing differential smoothing across regression coefficients. Finally, it may
be desirable to encourage the selection of connected covariates without en-
couraging them to have similar coefficient estimates. This can be achieved
by reformulating the proposed method and specifying a MRF prior on the
shrinkage hyperparameters, rather than placing a conditional GMRF prior
on the regression coefficients.
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Appendix

The hierarchical model used for the MCMC implementation is given by:

y|β, σ2 ∼ Nn(Xβ, σ2In)

βj − sjj′βj′ |τ 2
jj′ , λ

2 ∼ N (0, λ2τ 2
jj′) for (j, j′) ∈

I⋃
i=1

Ei

βj|τ 2
j , λ

2 ∼ N (0, λ2τ 2
j ) for j ∈ S

τ 2
jj′ |νjj′ ∼ IG(1/2, 1/νjj′) for (j, j′) ∈

I⋃
i=1

Ei
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νjj′ ∼ IG(1/2, 1) for (j, j′) ∈
I⋃
i=1

Ei

τ 2
j |νj ∼ IG(1/2, 1/νj) for j ∈ S
νj ∼ IG(1/2, 1) for j ∈ S

λ2|ω ∼ IG(1/2, 1/ω)

ω|σ2 ∼ IG(1/2, 1/σ2)

σ2 ∼ IG(a0, b0)

The corresponding full conditional distributions for the model parameters
are as follow:

τ 2
jj′ |. ∼ IG(1,

φ2
j

2λ2
+

1

νjj′
) for (j, j′) ∈

I⋃
i=1

Ei

νjj′ |. ∼ IG(1,
1

τ 2
jj′

+ 1) for (j, j′) ∈
I⋃
i=1

Ei

β|. ∼ Np(
(

Q

λ2
+

X′X

σ2

)−1
X′y

σ2
,

(
Q

λ2
+

X′X

σ2

)−1

)

τ 2
j |. ∼ IG(1,

β2
j

2λ2
+

1

νj
) for j ∈ S

νj|. ∼ IG(1,
1

τ 2
j

+ 1) for j ∈ S

λ2|. ∼ IG(
p+ 1

2
,
β′Qβ

2
+

1

ω
)

ω|. ∼ IG(1,
1

σ2
+

1

λ
)

σ2|. ∼ IG(
n+ 1

2
+ a0,

(y −Xβ)′(y −Xβ)

2
+

1

ω
+ b0)

where Q is the p × p precision matrix defined in Section 2.1 and φ = Cβ is
the q-dimensional vector defined in Section 2.2.
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