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This supplement presents additional results for the simulation studies.
We report the CPs and widths of the 95% highest posterior density (HPD)
intervals when the regression coefficients have varying signs under the non-
sequential dependence structure. We also report all the results when the
regression coefficients have the same sign under sequential dependence with
p = 1000 (the results for p = 140 are presented in the main paper), and
under non-sequential dependence with both p = 140 and p = 1000. The
results using an estimated graph are also presented for the non-sequential
simulated setting when the non-zero regression coefficients in a group have
the same sign. Finally, in order to show that the choice of the representative
vertex from each disjoint subgraph can be arbitrary, we provide the results
of repeating the analysis with 20 randomly selected vertices in the sequential
dependence scenario.

S1. Results when regression coefficients have

varying signs under non-sequential dependence

Table 1 presents the coverage probabilities (CPs) and widths of the 95%
HPD intervals for the zero and non-zero regression coefficients under the two
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covariance structures considered. For the zero coefficients, the four methods
provide similar CPs with all of the 95% HDP intervals containing zero. SS-
Ising provides narrower intervals, which, in part, can be explained by the fact
that the spike-and-slab prior sets exactly to zero the regression coefficients
for non-selected covariates. For the non-zero coefficients, SS-Ising still yields
narrower HPD intervals but misses the true parameter values as evidenced by
the low CPs. On the other hand, the HS-based approaches yield good CPs
with HS-GMRF having relatively narrower intervals. This indicates better
accuracy in the estimations obtained with HS-GMRF.

To gain insights into these results, we examine the estimation of all the
regression coefficients in one simulated replication (Figure 1). We note that
all the methods capture the zero coefficients. For the non-zero coefficients,
the HS and SS-Ising approaches tend to select a few representatives among
groups of positively correlated or negatively correlated covariates and shrink
the coefficients of the non-selected covariates to 0. HS also gives wide HPD
intervals, hence leading to good CPs but poor selection performance. On
the other hand, the HS-GMRF-based approaches tend to give more accurate
coefficient estimation with similar estimates for highly correlated covariates.
This explains why the large effect size βgk = 5 is underestimated. We note
some differences when the correlation sign is incorporated or not. For HS-
GMRF-nosign, the HPD intervals are relatively wider (as observed in Table 1)
and this is more pronounced for coefficients that have opposite signs. Instead,
HS-GMRF yields narrower HPD intervals with good coverage and provides
fairly accurate estimates for regression coefficients with opposite signs.

For further exploration, we focus on the posterior densities of three non-
zero regression coefficients in one of the groups of correlated covariates (Fig-
ure 2). For the large effect size, βgk = 5, HS leads to a bimodal posterior
density spanning a wide range of values, resulting in a 95% HPD interval
that covers the true value but is too wide and not precise. SS-Ising leads to a
multimodal posterior density that also spans a wide range. The HS-GMRF
approaches, on the other hand, lead to posterior densities that are narrower
and away from 0, but do not capture the true value. For moderate values
of βgk = ±5/

√
10, HS is concentrated around zero and does not capture the

true values. SS-Ising displays a similar behavior with a stronger peak around
0. For βgk = 5/

√
10, both HS-GMRF approaches lead to narrow posterior

densities that are concentrated around the true value, with HS-GMRF-nosign
covering a slightly wider range and being less accurate. For βgk = −5/

√
10,

HS-GMRF-nosign leads to a relatively spread out posterior density peaked
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around the average of the βgk values, while HS-GMRF results in a posterior
density concentrated around the true value. This indicates that integrating
the correlation sign provides a more accurate estimation when the regression
coefficients of connected covariates have varying signs.

Table 1: Coverage probability (CP) and width of 95% HPD intervals averaged
over the 50 simulated replications when regression coefficients have varying
signs under non-sequential dependence.

CP of 95% HPD
Overall βj ’s = 0 βj ’s 6= 0

Σg,half

ρ = 0.5

HS-GMRF 0.923 (±0.026) 1.000 (±0.000) 0.786 (±0.073)
HS-GMRF nosign 0.931 (±0.027) 0.998 (±0.007) 0.810 (±0.072)
HS 0.894 (±0.037) 1.000 (±0.000) 0.704 (±0.102)
SS-Ising 0.751 (±0.026) 0.999(±0.005) 0.306 (±0.070)

ρ = 0.9

HS-GMRF 0.928 (±0.019) 1.000 (±0.000) 0.800 (±0.054)
HS-GMRF nosign 0.922 (±0.031) 1.000 (±0.000) 0.782 (±0.086)
HS 0.908 (±0.05) 1.000 (±0.000) 0.743 (±0.14)
SS-Ising 0.773 (±0.029) 1.000 (±0.000) 0.365 (±0.079)

Σg,all

ρ = 0.5

HS-GMRF 0.894 (±0.048) 1.000 (±0.000) 0.704 (±0.136)
HS-GMRF nosign 0.938 (±0.018) 0.999 (±0.005) 0.829 (±0.049)
HS 0.909 (±0.041) 1.000 (±0.000) 0.745 (±0.116)
SS-Ising 0.777 (±0.029) 1.000 (±0.000 0.365(±0.079)

ρ = 0.9

HS-GMRF 0.963 (±0.003) 1.000 (±0.000) 0.898 (±0.008)
HS-GMRF nosign 0.945 (±0.014) 1.000 (±0.000) 0.847 (±0.038)
HS 0.898 (±0.069) 1.000 (±0.000) 0.716 (±0.193)
SS-Ising 0.813 (±0.031) 1.000 (±0.000) 0.475 (±0.088)

Width of 95% HPD
Overall βj ’s = 0 βj ’s 6= 0

Σg,half

ρ = 0.5

HS-GMRF 2.047 (±0.188) 1.900 (±0.182) 2.311 (±0.216)
HS-GMRF nosign 2.712 (±0.231) 2.446 (±0.216) 3.193 (±0.297)
HS 2.871 (±0.278) 2.476 (±0.214) 3.584 (±0.415)
SS-Ising 0.656 (±0.117) 0.249 (±0.081) 1.389 (±0.251)

ρ = 0.9

HS-GMRF 2.415 (±0.248) 2.164 (±0.228) 2.866 (±0.31)
HS-GMRF nosign 3.212 (±0.284) 2.636 (±0.237) 4.249 (±0.432)
HS 3.255 (±0.419) 2.483 (±0.294) 4.646 (±0.699)
SS-Ising 0.927 (±0.181) 0.231 (±0.132) 2.181 (±0.438)

Σg,all

ρ = 0.5

HS-GMRF 1.306 (±0.129) 1.275 (±0.136) 1.362 (±0.127)
HS-GMRF nosign 2.439 (±0.216) 2.208 (±0.199) 2.854 (±0.266)
HS 3.031 (±0.304) 2.559 (±0.222) 3.880 (±0.477)
SS-Ising 0.772 (±0.159) 0.233 (±0.101) 1.741 (±0.363)

ρ = 0.9

HS-GMRF 1.725 (±0.241) 1.580 (±0.214) 1.987 (±0.313)
HS-GMRF nosign 3.552 (±0.366) 2.936 (±0.353) 4.661 (±0.462)
HS 3.651 (±0.750) 2.737 (±0.564) 5.297 (±1.148)
SS-Ising 1.153 (±0.218) 0.169 (±0.108) 2.923 (±0.547)
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Figure 1: True coefficients (filled black circles) and estimated coefficients
(unfilled squares) along with 95% HPD intervals (solid gray lines) for all
covariates in one simulated replication with covariance structure Σg,half and
ρ = 0.9.
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Figure 2: Posterior densities for three non-zero regression coefficients with
covariance structure Σg,half and ρ = 0.9. The black vertical bar corresponds
to the true βj value.

S2. Results for sequential dependence

The results with p = 1000 covariates are the same as those with p = 140
covariates. HS-GMRF has significantly larger MCC, and smaller MSE and
MSPE (Table 2). On average, it has smaller coverage and narrower HPD
interval width for true signals compared to HS (Table 3).

Table 2: Average MCC, MSE and MSPE (with SE) over 50 simulated repli-
cations under sequential dependence with p = 1000 covariates.

MCC MSE MSPE

HS-GMRF 0.695 (± 0.050) 0.051 (± 0.006) 128.194 (± 31.521)
HS 0.080 (± 0.020) 0.325 (± 0.140) 200.231 (± 56.470)
SS-Ising 0.206 (± 0.047) 0.204 (± 0.000) 287.419 (± 68.739)
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Table 3: Coverage probability (CP) and width of 95% HPD intervals averaged
over the 50 simulated replications under sequential dependence with p = 1000
covariates.

CP of 95% HPD
Overall βj ’s = 0 βj ’s 6= 0

HS-GMRF 0.915 (± 0.020) 0.997 (± 0.007) 0.588 (± 0.088)
HS 0.980 (± 0.012) 1.000 (± 0.000) 0.901 (± 0.060)
SS-Ising 0.837 (± 0.009) 0.996 (± 0.002) 0.197 (± 0.041)

Width of 95% HPD
Overall βj ’s = 0 βj ’s 6= 0

HS-GMRF 0.408 (± 0.116) 0.272 (± 0.112) 0.952 (± 0.163 )
HS 1.947 (± 0.172) 1.473 (± 0.120) 3.841 (± 0.441)
SS-Ising 0.445 (± 0.090) 0.271 (± 0.076) 1.144 (± 0.216)

S3. Results when regression coefficients have

the same sign under non-sequential dependence

S3.1. Results for p = 140 covariates

The HS-GMRF-based methods have much better performance than HS and
SS-Ising, in terms of selection, estimation and prediction for all values of ρ
and covariance structures considered (Table 4). The MCC values with the
HS-GMRF approaches are higher and become closer to 1 under Σg,all when
more covariates are connected. The MSEs for the regression coefficient es-
timates are both substantially smaller and less variable with the HS-GMRF
approaches. In terms of prediction, the HS-GMRF-based approaches provide
smaller MSPEs. The HS and SS-Ising methods lead to higher MSPEs. As
observed with the simulations under regression coefficient setting 1, where
effect sizes have varying signs in the same group, HS has the worst perfor-
mance in terms of MCC, but has smaller MSEs and MSPEs compared to
SS-Ising.

Table 5 provides the coverage probabilities (CP) and widths of the 95%
HPD intervals. The HS-GMRF-based approaches yield both higher CPs and
narrower widths compared to HS and SS-Ising. As observed with simulation
setting 1 for the regression coefficients, SS-Ising has the lowest CP and the
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narrowest width under all covariance structures and correlation levels. As
noted in the main paper, this is due to SS-Ising missing most of the non-zero
regression coefficients.

Table 4: Average MCC, MSE and MSPE (with SE) over 50 simulated repli-
cations when regression coefficients have the same sign for p = 140.

MCC MSE MSPE

Σg,half
HS-GMRF 0.717 (±0.018)) 0.515 (±0.055) 96.198 (±13.892)
HS-GMRF-nosign 0.717 (±0.018) 0.517 (±0.055) 96.363 (±13.695)

ρ = 0.5 HS 0.247 (±0.036) 1.049 (±0.215) 119.421 (±16.388)
SS-Ising 0.322 (±0.044) 1.383 (±0.252) 139.804 (±25.492)

Σg,half
HS-GMRF 0.670 (±0.047) 0.550 (±0.125) 88.651 (±13.844)
HS-GMRF-nosign 0.669 (±0.045) 0.549 (±0.125) 88.567 (±13.743)

ρ = 0.9 HS 0.210 (±0.044) 2.056 (±0.627) 100.294 (±16.893)
SS-Ising 0.321 (±0.047) 2.259 (±0.517) 110.107 (±18.688)

Σg,all
HS-GMRF 0.983 (±0.016) 0.422 (±0.021) 69.03 (±10.441)
HS-GMRF-nosign 0.986 (±0.014) 0.422 (±0.022) 69.077 (±10.526)

ρ = 0.5 HS 0.260 (±0.022) 1.236 (±0.338) 118.334 (±22.655)
SS-Ising 0.351 (±0.057) 1.660 (±0.344) 129.761 (±23.275)

Σg,all
HS-GMRF 0.967 (±0.036) 0.430 (±0.046) 56.129 (±9.099)
HS-GMRF-nosign 0.970 (±0.023) 0.431 (±0.047) 56.150 (±9.052)

ρ = 0.9 HS 0.198 (±0.049) 3.116 (±0.973) 76.679 (±13.477)
SS-Ising 0.350 (±0.049) 3.016 (±0.664) 74.714 (±13.19)
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Table 5: Coverage probability (CP) and width of 95% HPD intervals (with
SE) averaged over the 50 simulated replications when regression coefficients
have the same sign for p = 140.

CPs of 95% HPD Width of 95% HPD

Σg,half

ρ = 0.5

HS-GMRF 0.915 (±0.025) 2.004 (±0.188)
HS-GMRF-nosign 0.916 (±0.024) 2.004 (±0.195)
HS 0.883 (±0.049) 2.784 (±0.300)
SS-Ising 0.756 (±0.033) 0.656 (±0.171)

ρ = 0.9

HS-GMRF 0.929 (±0.019) 2.422 (±0.257)
HS-GMRF-nosign 0.930 (±0.021) 2.428 (±0.258)
HS 0.915 (±0.038) 3.356 (±0.366)
SS-Ising 0.784 (±0.028) 0.983 (±0.202)

Σg,all

ρ = 0.5

HS-GMRF 0.900 (±0.035) 1.344 (±0.114)
HS-GMRF-nosign 0.900 (±0.036) 1.333 (±0.116)
HS 0.890 (±0.046) 2.906 (±0.285)
SS-Ising 0.766 (±0.031) 0.729 (±0.127)

ρ = 0.9

HS-GMRF 0.964 (±0.002) 1.691 (±0.201)
HS-GMRF-nosign 0.964 (±0.001) 1.708 (±0.204)
HS 0.912 (±0.063) 3.746 (±0.667)
SS-Ising 0.812 (±0.033) 1.154 (±0.216)

S3.2. Results with p = 1000 covariates

In order to investigate the scalability of the approach, we considered simu-
lations with p = 1000 covariates and Σg,half . The results were essentially the
same as those with p = 140 covariates. As shown in Table 6, the proposed HS-
GMRF approach leads to significantly larger MCC and significantly smaller
MSE for the regression parameters compared to HS or SS-Ising. In terms of
MSPE, HS-GMRF has the smallest value when ρ = 0.5 and gives a similar
value as HS when ρ = 0.9. In both cases, SS-Ising has a significantly larger
MSPE.
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Table 6: Average MCC, MSE and MSPE (with SE) over 50 simulated repli-
cations when regression coefficients have the same sign for p = 1000.

MCC MSE MSPE

ρ = 0.5
HS-GMRF 0.569 (± 0.011) 0.425 (± 0.041) 526.408 (± 80.977)
HS 0.090 (± 0.005) 2.173 (± 0.287) 667.806 (± 112.633)
SS-Ising 0.106 (± 0.036) 0.550 (± 0.008) 1295.870 (± 237.924)

ρ = 0.9
HS-GMRF 0.552 (± 0.039) 0.451 (± 0.060) 518.441 (± 76.362)
HS 0.086 (± 0.011) 5.818 (± 0.786) 518.217 (± 71.864)
SS-Ising 0.139 (± 0.033) 0.536 (± 0.007) 904.302 (± 139.973)

Table 7 shows that HS-GMRF retains the same values for its coverage
probability and HPD interval width for p = 1000 and p = 140. However,
HS drops in its coverage probability and its interval width. This can be
explained by the increased number of correlated variables and the fact that
HS selects one representative from the correlated set and shrinks all the other
parameters to zero.

Table 7: Coverage probability (CP) and width of 95% HPD intervals (with
SE) averaged over the 50 simulated replications with same sign regression
coefficients for p = 1000.

CPs of 95% HPD Width of 95% HPD

ρ = 0.5
HS-GMRF 0.905 (± 0.008) 2.005 (± 0.275)
HS 0.835 (± 0.016) 1.935 (± 0.453)
SS-Ising 0.818 (± 0.011) 0.641 (± 0.214)

ρ = 0.9
HS-GMRF 0.908 (± 0.011) 2.239 (± 0.528)
HS 0.826 (± 0.019) 1.594 (± 0.618)
SS-Ising 0.838 (± 0.008) 1.065 (± 0.213)

S4. Results for estimated non-sequential de-

pendence

We use the graphical lasso method implemented in the R package CVglasso

to estimate the precision matrix with the penalty parameter selected using
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cross-validation (Friedman, Hastie and Tibshirani, 2008). We compare the
results using the true simulated graphs and the estimated ones. For mod-
erate correlation the estimated graphs tend to have less edges than the true
simulated graphs, while for high correlation the estimated graphs tend to
connect all variables within a group of correlated variables resulting in a
higher number of edges than the true simulated graphs.

Table 8 reports the mean MCC, MSE and MSPE along with their stan-
dard errors over the 50 simulated replications when true and estimated graphs
are considered. As HS does not integrate any structure information, the re-
sults are the same for the true and estimated graphs. When the correlation ρ
is moderate, the structure from the underestimated graph is less informative
than the true one and results in slightly lower and more variable MCC values
for the HS-GMRF based methods, but does not appear to affect the SS-Ising
results. Conversely, under high correlation, the overestimated graph leads
to improved variable selection compared to using the true one for the HS-
GMRF-based methods, but gives lower MCC values for SS-Ising. In terms
of MSE, when ρ is moderate, the results with the true or estimated graphs
are comparable for each method. However with high ρ, the estimation with
HS-GMRF-nosign is less accurate. With respect to predictive performance,
the use of an underestimated graph slightly increases the MSPE for the HS-
GMRF based approaches. Using an overestimated graph does not affect HS-
GRMF, but the predictive performance of HS-GMRF-nosign and SS-Ising
decrease, both leading to higher MSPE than HS, which ignores the covariate
structure. This can be explained by the fact that HS-GMRF-nosign suffers
from poor estimation when the regression coefficients of connected variables
have different signs, thus leading to poor prediction.

Table 9 presents the CPs and widths of the 95% HPD intervals under the
true and estimated graphs. For moderate correlation between the predictors,
the true and estimated graphs provide similar results for all methods. For
high correlation, the use of an overestimated graph impacts the results of the
HS-GMRF-based approaches, leading to smaller CPs and narrower intervals.
This emphasizes that an overestimation of the number of edges in the graph
leads to an oversmoothing of the regression coefficient estimates for connected
variables.
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Table 8: Average MCC, MSE and MSPE (with SE) over 50 simulated repli-
cations using the true and estimated graphs.

MCC MSE MSPE

True graph
HS-GMRF 0.708(±0.018) 0.513 (±0.067) 94.871(±13.632)
HS-GMRF-nosign 0.624(±0.034) 0.728(±0.155) 122.188(±21.609)

ρ = 0.5 HS 0.240(±0.041) 1.009(±0.200) 126.252(±19.657)
SS-Ising 0.323(±0.054) 1.386(±0.204) 149.294(±27.384)

Estimated graph
HS-GMRF 0.637(±0.076) 0.599(±0.133) 108.924(±24.509)
HS-GMRF-nosign 0.567(±0.078) 0.83(±0.213) 138.111(±32.206)

ρ = 0.5 HS 0.234(±0.040) 1.007(±0.200) 126.356(±19.622)
SS-Ising 0.319(±0.047) 1.405(±0.198) 151.844(±28.532)

True graph
HS-GMRF 0.668(±0.046) 0.541 (±0.089) 84.954(±14.485)
HS-GMRF-nosign 0.444(±0.117) 1.038(±0.259) 99.123(±17.694)

ρ = 0.9 HS 0.219(±0.038) 2.243(±0.551) 95.219(±19.279)
SS-Ising 0.312(±0.048) 2.359(±0.437) 109.387(±23.713)

Estimated graph
HS-GMRF 0.728(±0.037) 0.453(±0.045) 82.196(±13.672)
HS-GMRF-nosign 0.723(±0.027) 1.621(±0.128) 124.086(±19.966)

ρ = 0.9 HS 0.215(±0.044) 2.243(±0.570) 95.010(±18.973)
SS-Ising 0.252(±0.078) 3.189(±0.809) 173.85(±34.929)
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Table 9: Coverage probability (CP) and width of 95% HPD intervals (with
SE) averaged over the 50 simulated replications using the true and estimated
graphs.

CP of 95% HPD width of 95% HPD

True graph
HS-GMRF 0.923(±0.026) 2.047(±0.188)
HS-GMRF-nosign 0.931(±0.027) 2.712(±0.231)

ρ = 0.5 HS 0.894(±0.037) 2.871(±0.278)
SS-Ising 0.751(±0.026) 0.656(±0.117)

Estimated graph
HS-GMRF 0.899(±0.036) 2.217(±0.327)
HS-GMRF-nosign 0.919(±0.036) 2.855(±0.312)

ρ = 0.5 HS 0.892(±0.035) 2.877(±0.280)
SS-Ising 0.748(±0.024) 0.655(±0.126)

True graph
HS-GMRF 0.928(±0.019) 2.415(±0.248)
HS-GMRF-nosign 0.922(±0.031) 3.212(±0.284)

ρ = 0.9 HS 0.908(±0.050) 3.255(±0.419)
SS-Ising 0.773(±0.029) 0.927(±0.181)

Estimated graph
HS-GMRF 0.757(±0.050) 1.330(±0.167)
HS-GMRF-nosign 0.743(±0.025) 1.707(±0.237)

ρ = 0.9 HS 0.906(±0.049) 3.256(±0.419)
SS-Ising 0.697(±0.074) 2.158(±0.442)

S5. Results with randomly selected represen-

tative vertex from each disjoint subgraph

In order to show that the choice of the representative vertex from each dis-
joint subgraph can be arbitrary, we repeated 20 times the analysis for the
sequential dependence scenario with p = 140, each time picking a different
randomly selected vertex from each disjoint subgraph. The estimated regres-
sion coefficients for each covariate with the different representative vertices
are essentially the same, as shown in Figure 3. The average MCC over the
20 repetitions was 0.754 with a standard error of 0.032, again demonstrating
that the choice of the representative vertex can be arbitrary and does not
affect the results.
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Figure 3: Estimated regression coefficients for p = 140 covariates under se-
quential dependence using different randomly selected representative vertices.
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