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Introduction

Inland waters (streams, rivers, lakes and reservoirs) are net-sources of greenhouse gasses (GHGs) to the atmosphere. They receive considerable amounts of reactive organic matter from terrestrial ecosystems, promoting the production of GHGs like carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O). Inland waters are usually net-heterotrophic, meaning CO 2 production through respiration exceeds CO 2 consumption by aquatic production (Battin et al., in revision). An additional source of inland water GHG emission comes from terrestrial and wetland runoff and drainage which can be oversaturated in dissolved CO 2 produced by microbial and root respiration [START_REF] Abril | Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?[END_REF]. Once this supersaturated aqueous solution enters surface waters, it can release gas to the atmosphere and contribute to inland water CO 2 emissions. Similarly, inland waters receive dissolved CH 4 and N 2 O from oversaturated soils and groundwater [START_REF] Jurado | Dynamics and emissions of N2O in groundwater: A review[END_REF][START_REF] Rasilo | Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams[END_REF]. In addition, the sharp fronts between reducing and oxidizing conditions within the water column or at the interface between surface and subsurface environments (e.g. benthic and hyporheic zones) promotes the production and emissions of N 2 O [START_REF] Marzadri | Role of surface and subsurface processes in scaling N2O emissions along riverine networks[END_REF][START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF]. Moreover, autochthonous aquatic production may enhance nitrification in the water column through increased oxygen levels, while it may stimulate denitrification and methanogenesis in reducing, benthic sediments through delivery of labile organic matter. These processes play an important role in the N 2 O and CH 4 budgets of eutrophic lakes and reservoirs [START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF][START_REF] Zhou | Nonlinear pattern and algal dualimpact in N2O emission with increasing trophic levels in shallow lakes[END_REF].

While the processes driving GHG production have been known to limnologists for some time, large-scale quantification of inland water GHG emissions is still difficult and estimates are afflicted by large uncertainties. In their 5th Assessment Report (AR5, 2013), the IPCC acknowledged for the first time that inland waters are a significant contributor to the global GHG budget. At the same time, however, it was recognized that GHG fluxes from these ecosystems remain poorly constrained at the global scale. High uncertainties in flux estimates arise due to a poor spatial and temporal coverage of direct observations [START_REF] Bastviken | Freshwater Methane Emissions Offset the Continental Carbon Sink[END_REF][START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF][START_REF] Regnier | Anthropogenic perturbation of the carbon fluxes from land to ocean[END_REF][START_REF] Regnier | The land-to-ocean loops of the global carbon cycle[END_REF][START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF] and are reflected in the large range of estimated GHG fluxes reported in AR5: 0.8 -1.2 Pg C yr -1 for CO 2 , 8 -73 Tg CH 4 yr -1 for CH 4 , and 0.1 -2.9 Tg N yr -1 for N 2 O. The AR6 of the IPCC provides updated ranges for N 2 O (0.5 -1.1 Tg N yr -1 ) and CH 4 (112 -217 Tg CH 4 yr -1 ) emissions which are narrower, but still reflect significant uncertainties. This is especially true for inland water CH 4 emissions which remain proportionally the largest source of uncertainty in the global budget of this GHG (Canadell et al., 2021).

As part of the first phase of the REgional Carbon Cycle Assessment and Processes (RECCAP) initiative (RECCAP-1), [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] re-estimated global inland water CO 2 evasion suggesting that the total flux could be as high as 2.1 Pg C yr -1 , which is about twice the estimates synthesized in AR5. This much higher estimate was due to a re-estimation of stream surface areas including small headwater streams which contribute disproportionately to the total water surface area and CO 2 emission, but which were neglected in earlier assessments that used datasets representing only larger global rivers (e.g. [START_REF] Cole | Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget[END_REF]. More importantly, [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] provided the first global maps of inland water CO 2 emissions, which allowed for the use of these estimates in regionalized, global C budgets [START_REF] Bastos | Sources of Uncertainty in Regional and Global Terrestrial CO2 Exchange Estimates[END_REF][START_REF] Ciais | Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration[END_REF][START_REF] Zscheischler | Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: Opportunities and data limitations[END_REF].

Since RECCAP1, a growing number of global estimates of inland water GHG emissions have been published, not only for CO 2 emissions (e.g. [START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF][START_REF] Horgby | Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains[END_REF][START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF][START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF], but also for CH 4 (e.g. [START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF][START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF][START_REF] Stanley | The ecology of methane in streams and rivers: patterns, controls, and global significance[END_REF] and N 2 O (e.g. [START_REF] Hu | Modeling nitrous oxide emission from rivers: a global assessment[END_REF][START_REF] Lauerwald | Natural Lakes Are a Minor Global Source of N2O to the Atmosphere[END_REF][START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF][START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF][START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF][START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF], or for all three GHGs combined (e.g. [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF][START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF]. While the limited availability and quality (e.g. length and frequency of time-series), and uneven global coverage of observed emission rates (see e.g. [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF]) still represent a large source of uncertainty, the amount and quality of empirical data has steadily increased over the past decade. In addition, global emission estimates profited from the appearance of new, improved data sets of inland water surface areas (Allen & Pavelsky, 2018;[START_REF] Lehner | Highresolution mapping of the world's reservoirs and dams for sustainable river-flow management[END_REF][START_REF] Messager | Estimating the volume and age of water stored in global lakes using a geo-statistical approach[END_REF][START_REF] Verpoorter | A global inventory of lakes based on highresolution satellite imagery[END_REF]. Finally, global scale estimation of inland water GHG budgets have been improved through novel upscaling techniques based on statistical (e.g. [START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF][START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF]) and process based models of varying complexity (e.g. [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF][START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF]).

In the framework of the second phase of RECCAP (RECCAP-2), we present a review of existing global estimates of inland water GHG emissions. We start with a general overview of methods to achieve global scale estimates, starting from methods to measure flux rates in the field, followed by methods used to upscale flux rates to the global scale and which comprise a large range of approaches including simple upscaling based on average observed flux rates, statistical prediction and the use of process based models (section 2). Then, in three subsections respectively dedicated to estimates of emissions of CO 2 (section 3), CH 4 (section 4) and N 2 O (section 5), we discuss the state of the art for each of these GHGs in more detail, review all existing global estimates, and explore differences between flux assessments and their underlying methods. In addition, we highlight for each GHG persisting shortcomings and challenges for future research. The companion paper in the same issue (Lauerwald et al., submitted) then builds on the present review to derive a regionalized assessment for the 10 regions used in the RECCAP-2 project. In this companion paper, each previously published global estimate reported here was rescaled using the same new global assessment of inland water surface area, allowing for better consistency and homogeneity across all previously published values

Overview of upscaling strategies and surface area estimates used in global studies of inland water GHG emissions

This subsection gives a brief overview of different methods that are used to obtain global scale estimates of inland water GHG emissions. These methods are here classified into three main approaches, namely direct upscaling based on observations (2.1), statistical upscaling based on functional relationships between emissions and environmental drivers (2.2), and process-based models (2.3). We also briefly review here progress in the global scale assessment of inland water surface areas (2.4), which is of vital importance for global upscaling of inland water GHG emissions.

Upscaling based on observations

Large-scale estimates of inland water GHG emission fluxes F GHG are usually calculated as the product of an average flux rate f GHG , which can be expressed in units of mass per area and time, as derived from a set of field observations, and an estimate of the inland water surface area A IW for which this flux rate is assumed to be representative (eq. 1).

F GHG = f GHG * A IW (eq. 1)
Many estimates have applied this simple upscaling technique directly at the global scale using an average f GHG multiplied by the total A IW of one specific type of inland waters. For instance, [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF] calculated the average rates of GHG emissions from reservoirs, using observations from empirical studies around the world, and multiplied those average rates by the estimated total area of reservoirs after [START_REF] Lehner | Highresolution mapping of the world's reservoirs and dams for sustainable river-flow management[END_REF]. Others have first broken down the total of inland waters of one type into different subgroups, e.g. based on size of water body or stream order [START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF][START_REF] Humborg | CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering[END_REF], geographic region (e.g. [START_REF] Aufdenkampe | Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[END_REF][START_REF] Bastviken | Freshwater Methane Emissions Offset the Continental Carbon Sink[END_REF][START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF][START_REF] Johnson | Spatiotemporal Methane Emission From Global Reservoirs[END_REF] or both [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF][START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF]). An area-integrated flux from each subgroup was then calculated following the same eq. 1, before summing those up to a global flux.

Methods and challenges to obtain estimates of A IW are presented in detail in section 2.4. In what follows, we will first focus on uncertainties associated with measuring and calculating f GHG . Flux rates can either be obtained from GHG emission rates directly measured in the field (section 2.1.1), or from measurements or calculation of GHG concentration gradients and concomitant measurements or models of gas transfer velocities (section 2.1.2). Note that this study does not aim to provide a detailed review of field methods. These aspects are thus only briefly discussed, with a focus on methodological uncertainties.

Directly observed flux rates

A common method to measure aquatic GHG emission rates is the use of floating chambers, which resemble inverted plastic buckets put onto the water surface. The emission rates are then calculated based on the accumulation rate of GHGs within the floating chamber headspace. This method detects the emission rate from the small surface area of the floating chamber across the larger area over which the chamber may be moving during the deployment. Chambers may drift a few meters if tethered or over longer distances if drifting freely during the deployment. Such a well-defined footprint is advantageous for studies of local flux regulation and for distinguishing variability in space versus time. Concurrently, the small size of the footprint leads to potentially high uncertainties in the extrapolation of flux chamber measurements to large areas, without numerous representative measurements. Eddy covariance towers, though less common and only applicable in standing water bodies of a certain size have the advantage of generating net fluxes (i.e. emission or uptake) from a larger surface area (depending on height, surface roughness and wind speeds, eddy covariance towers can have a footprint of up to 3-km radius [START_REF] Chu | Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites[END_REF]), thus delivering a more representative emission rate [START_REF] Podgrajsek | Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes[END_REF]. In contrast to the floating chamber method, the eddy covariance technique also allows for continuous measurements which provide better temporal resolution in emission rates. However, the flux footprint is constantly moving with wind speed and direction, making variability in time and space challenging to distinguish. Fluxes cannot be measured at all when there is no wind (e.g. typical during night time) and complications associated with rainfall and lateral advective gas flux make accurate flux measurements challenging. Eddy covariance also relies on the performance of advanced equipment and a high level of operator expertise for adequate data filtering and QA/QC. Above all, limited eddy covariance measurements mean that global upscaling based only on this method is not yet possible, and inherent limitations make eddy covariance suboptimal for key inland water emission measurements such as fluxes from streams and along lake shores.

While the majority of CO 2 and N 2 O emissions occur through diffusive flux across the air-water interface, a significant but variable fraction of aquatic CH 4 flux occurs as bubbles (i.e. ebullition). Ebullition occurs when CH 4 produced in aquatic sediments forms gas bubbles that at a certain size, due to buoyancy, evade the sediment layer and ascend through the water column. Existing emission estimates from floating chambers sometimes intentionally exclude ebullition. Other floating chamber methods include both diffusive and ebullitive emissions. Also eddy covariance towers measure the sum of both emission pathways. There are nonetheless various methods to directly quantify ebullition. However, these methods detect bubbles rather than CH 4 and need supplementary measurements of CH 4 concentration within the bubble air, usually from manually taken samples, to allow flux estimation. This point is critical as CH 4 concentration in bubbles can vary widely, from less than 1% to > 80% [START_REF] Boereboom | Gas properties of winter lake ice in Northern Sweden: implication for carbon gas release[END_REF].

The most common methods for directly quantifying ebullition rates is the bubble trap, an inverted funnel that collects ascending bubbles and is sometimes connected to a hydrostatic pressure sensor [START_REF] Varadharajan | A low-cost automated trap to measure bubbling gas fluxes[END_REF] or specialized bubble size sensors [START_REF] Delwiche | An enhanced bubble size sensor for long-term ebullition studies[END_REF] to measure the timing and size distribution of ascending bubbles. Ebullition measurements based on point measurements in space and time are currently very labor intensive given the high spatiotemporal variability of ebullition fluxes [START_REF] Linkhorst | Comparing methane ebullition variability across space and time in a Brazilian reservoir[END_REF]. Echosounders [START_REF] Ostrovsky | Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake[END_REF], robotic boats connected to optical methane detectors [START_REF] Grinham | Quantification of ebullitive and diffusive methane release to atmosphere from a water storage[END_REF] and under-ice surveys [START_REF] Wik | Bubbles trapped in arctic lake ice: Potential implications for methane emissions[END_REF] have also been used to quantify ebullition rates. In addition, radar remote sensing approaches are currently being developed that could integrate over space and time for more representative measurements [START_REF] Engram | Remote sensing northern lake methane ebullition[END_REF].

Estimating diffusive fluxes based on concentration gradients

The methods for directly measuring emission rates can easily be applied in deeper, slower-moving waters (floating chambers and funnel traps) or in larger water bodies (eddy covariance). However, these methods are often not feasible for smaller streams. Instead, emission flux rates can be calculated from a gradient in concentrations of a specific GHG (ΔC GHG ) in the water close to the surface and in the overlying atmosphere and a gas exchange velocity k GHG (eq. 2). Note that this method only allows estimation of diffusive emissions, and is not applicable for ebullition. The gradient ΔC GHG can be calculated based on direct field measurements using headspace equilibration methods (e.g. [START_REF] Müller | Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river[END_REF], or using measured headspace partial pressures and solubility constants that depend on salinity and water temperature [START_REF] Weiss | The solubility of nitrogen, oxygen and argon in water and seawater[END_REF].

f GHG = ∆C GHG * k GHG (eq. 2)
The headspace equilibration method consists of equilibrating a known volume of sampled water and a known volume of air, with a known initial partial pressure of the GHG to be analyzed. After full equilibration, a sample of the headspace is analyzed by e.g. gas chromatography, optical gas analyzers, or other gas analysis methods, to measure the corresponding GHG partial pressure from which the C GHG in the sampled surface water can be calculated. This concentration is compared with the theoretical concentration in equilibrium with the background air partial pressure of the GHG in focus to yield ΔC GHG .

In the case of CO 2 , concentrations can also be calculated from observations of alkalinity and pH based on chemical equilibria and the assumption that non-carbonate contributions to alkalinity are negligible, which can be questioned in some common aquatic systems [START_REF] Abril | Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters[END_REF] (see section 3.2 for more discussion).

Gas exchange velocity can be assessed through direct tracer studies in which a specific tracer gas is released into the stream, and its loss is measured over a defined length. As this method is too cumbersome and costly to be applied everywhere, empirical equations have been established that relate k GHG to the rate of energy dissipation at the water-air interface. Energy dissipation causes the turbulent mixing of the upper water column and thus determines the depth of the water column which interacts with the atmosphere through the process of diffusion. For streams and rivers, this energy dissipation rate can be estimated from stream flow velocity and stream channel geometry, in particular the slope of the stream channel (Natchimuthu et al., 2017;[START_REF] O'connor | Mechanism of Reaeration in Natural Streams[END_REF][START_REF] Raymond | Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers[END_REF]. More recent work has however noted a breakpoint in the energy dissipation rate at which air entrainment and bubble formation cause k GHG to increase more rapidly with energy dissipation [START_REF] Ulseth | Distinct airwater gas exchange regimes in low-and high-energy streams[END_REF]. This suggests that assuming only diffusive water-air gas exchange, as it is assumed in most studies of inland water CO 2 emissions, may lead to underestimated gas transfer velocities in systems with very high hydrological energy. For lakes and reservoirs, empirical equations relate k GHG to wind speed [START_REF] Cole | Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6[END_REF], lake surface area [START_REF] Read | Lake-size dependency of wind shear and convection as controls on gas exchange[END_REF], or both [START_REF] Vachon | The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes[END_REF], as the degree to which wind shear vs convective mixing dominate gas transfer dynamics generally changes as a function of waterbody size. More sophisticated modeling of k GHG from lake hydrodynamics considering multiple turbulence-generating processes have also been developed (e.g. [START_REF] Macintyre | Turbulence in a small boreal lake: Consequences for air-water gas exchange[END_REF]. It has been suggested that models of k GHG should be locally validated whenever possible (e.g. [START_REF] Schilder | Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes[END_REF]).

Upscaling based on statistical prediction

A variety of statistical methods have been used to upscale flux measurements/estimates to the global scale. These methods can be categorized into two groups of statistical upscaling approaches: 1) methods that predict emission rates directly, and 2) methods that first predict A IW , ΔC GHG and k GHG separately, and combine them using eqs. 1 and 2 to estimate the emission flux F GHG,IW .

A simple example for the first group of methods is the use of emission factors (EFs), which has been applied to estimate N 2 O emissions from river networks [START_REF] Beaulieu | Nitrous oxide emission from denitrification in stream and river networks[END_REF][START_REF] Kroeze | Future trends in emissions of N2O from rivers and estuaries[END_REF]. Averaged EFs, typically defined as the ratio of N 2 O emissions to riverine N loads, were derived from a number of field studies. These EFs were then multiplied by global, spatially explicit estimates of river N loads (e.g. [START_REF] Mayorga | Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation[END_REF] to estimate global riverine N 2 O emissions at the same spatial resolution as the riverine N loads. This method assumes that riverine N 2 O emissions simply scale linearly to riverine N loads, which is problematic from a reaction kinetics point of view, as discussed in [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF]. As an alternative empirical approach, [START_REF] Hu | Modeling nitrous oxide emission from rivers: a global assessment[END_REF] [START_REF] Horgby | Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains[END_REF]. Note that combining independent estimates of k GHG and ΔC GHG introduces an additional source of uncertainty, as ΔC GHG is in turn controlled by k GHG and its balance with CO 2 resupply rates to the surface water, which is for instance evidenced by low ΔC GHG in turbulent, high alpine streams [START_REF] Horgby | Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains[END_REF]).

Process-based models

Process-based models of varying degrees of complexity have recently been used to assess inland water GHG emission at the global scale [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF][START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF][START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF]. Ideally, such models represent carbon and nutrient transport and transformation processes that drive production, cycling and emission of GHGs in a water body or along a cascade of water bodies (like a sequence of stream reaches or a cascade of reservoirs along a river network). This representation requires boundary condition data at the global scale and in sufficient quality and quantity. This data requirement is a major limitation for the applicability of process-based models for inland water GHG emissions at the global scale.

A promising strategy to overcome that limitation is the explicit representation of inland waters and associated biogeochemical processes in land surface models (LSMs) that simulate the terrestrial cycling of energy, water, C, nutrients, and GHGs. Using LSMs, the biogeochemical and transport processes that drive the GHG dynamics can be simulated simultaneously for terrestrial and freshwater ecosystems, reducing the need for complex boundary conditions at the land-inland water interface. Developments in that direction have been achieved for the LSMs DLEM (Tian et al., 2015a,b;[START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF] and ORCHIDEE [START_REF] Lauerwald | ORCHILEAK (revision 3875): A new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon basin[END_REF][START_REF] Lauerwald | How Simulations of the Land Carbon Sink Are Biased by Ignoring Fluvial Carbon Transfers: A Case Study for the Amazon Basin[END_REF]. At global scale, LSM simulations including inland water N 2 O and CO 2 emissions have yet only been achieved with DLEM [START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF], Tian et al. 2015b).

When using LSMs, the simulated water fluxes and associated terrestrial C and nutrient inputs to inland waters are already afflicted by considerable uncertainties, including those arising from the overparameterization of these extremely complex models. Thus, an alternative is to use process-based models of only inland waters forced by data driven information. The global river network N 2 O modeling studies by [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF] and [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF] [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF].

For aquatic CH 4 emissions, process-based modeling efforts have been mostly dedicated to lake and reservoir systems. For example, an online, open-source predictive model framework "G-res" has recently been developed to provide global, spatially explicit estimates of the form and magnitude of reservoir CH 4 and CO 2 emissions [START_REF] Harrison | Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (G-res) Model[END_REF][START_REF] Prairie | A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool[END_REF]. G-res uses a series of calibrated empirical models that integrate local (reservoir-specific) and regional (watershed attributes) information to predict GHG emissions [START_REF] Prairie | A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool[END_REF]. The model has been applied to 4,727 reservoirs to estimate global emissions [START_REF] Harrison | Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (G-res) Model[END_REF]. Tan andZhuang (2015a, 2015b) have developed and applied a process based model to estimate CH 4 emissions from lakes at pan-arctic scale. That model produces gridded output, resolves seasonal and interannual variability and permits for projections of long-term trends following global change scenarios.

Available data and previous estimates of global inland water surface area

The first digital global map of inland water surface areas that was used for inland water GHG emission estimates was the Global Lake and Wetland Database (GLWD) by [START_REF] Lehner | Development and validation of a global database of lakes, reservoirs and wetlands[END_REF]. GLWD was derived from a compilation of different global and regional inventories. While GLWD is not globally consistent with regard to detail and reliability of the data sources, it represented the best available dataset for more than a decade and was used in numerous studies of inland water GHG emissions (e.g., by [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] for lakes and reservoirs, by [START_REF] Aufdenkampe | Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[END_REF] for all water bodies). Since then, our ability to estimate the global surface area of rivers, lakes, and reservoirs has progressed significantly. This progress has been driven by advances in satellite remote sensing, image processing methods, and geospatial analysis techniques. Several freely available global hydrography datasets have recently become available that can be used to estimate surface area and distribution of inland water bodies. Here we discuss a selection of high-resolution, freely available datasets that can be useful for global-scale evaluations of greenhouse gas emissions from inland water bodies.

A few global inland water body datasets have been developed using optical remote sensing data. The JRC GSW datasets from [START_REF] Pekel | High-resolution mapping of global surface water and its long-term changes[END_REF] and the GSWD from [START_REF] Pickens | Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series[END_REF] are two global 30-mresolution datasets of open surface water extent, created from the Landsat archive. These datasets are multitemporal and highly consistent but they do not distinguish between different water body types (e.g. rivers, lakes, etc.). Classifying water body type is necessary in evaluations of GHG exchange because of differing exchange rates and processes occurring in different aquatic environments. The Global River Widths from Landsat (GRWL) database (Allen & Pavelsky, 2018) contains exclusively river surface areas derived from Landsat imagery.

In addition to these image-based datasets, global topography-based datasets derived from digital elevation models (DEMs) have been used for representing the global extent and distribution of streams and rivers. These include hydrologically conditioned gridded raster datasets like HydroSHEDS [START_REF] Lehner | New Global Hydrography Derived From Spaceborne Elevation Data[END_REF] and MERIT Hydro [START_REF] Yamazaki | MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset[END_REF] or vectorized flowline datasets derived from these gridded datasets including HydroRIVERS [START_REF] Lehner | Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems[END_REF] or MERIT Hydro-Vector [START_REF] Lin | A new vector-based global river network dataset accounting for variable drainage density[END_REF]. These DEM-based datasets can be used to infer the location and size of narrow rivers and streams too small to be visible from freely available satellite datasets. These datasets can also be used to infer other characteristics of river networks including stream order, slope, upstream area, and topology, which are of potential value for estimating amount and turbulence of riverflow, which in turn are important drivers of GHG emissions. Other hydrography datasets innovatively combine DEM-based datasets with other sources of data to produce novel information including machine-learning based estimates of river surface area (Lin et al., 2020) and the extent of non-perennial rivers [START_REF] Lin | A new vector-based global river network dataset accounting for variable drainage density[END_REF][START_REF] Messager | Global prevalence of non-perennial rivers and streams[END_REF].

For standing open water bodies like lakes and reservoirs, attempts have also been made to identify water bodies from satellite imagery using automated algorithms. A prominent example is the Global Water Body (GLOWABO) dataset [START_REF] Verpoorter | A global inventory of lakes based on highresolution satellite imagery[END_REF]. Due to the unsupervised classification method and missing evaluation of ground truth, this dataset is however highly uncertified and likely contaminated with wrongly assigned riverine, coastal or temporal water bodies. In addition, inventory based datasets have further been developed, including the Global Reservoir and Dam database (GRanD) [START_REF] Lehner | Highresolution mapping of the world's reservoirs and dams for sustainable river-flow management[END_REF] and the HydroLAKES database [START_REF] Messager | Estimating the volume and age of water stored in global lakes using a geo-statistical approach[END_REF] which gives water surface areas of standing waters distinguishing lakes from reservoirs. Note that HydroLAKES also includes the information from GRanD and GLWD, which makes these products partly redundant. The advantage of inventory based datasets as GRanD and HydroLAKES is the avoidance of contamination with other water bodies and additional attributes such as names, estimates of water volume and residence time, height and purpose of dam for reservoirs, etc. In particular the distinction between lakes and reservoirs is of major importance for the assessment of inland water GHG emissions. Reservoirs as artificial water bodies deserve special attention, as they represent an anthropogenic source of GHGs and a potential lever for controlling future emissions. However, we have to expect an under-classification of reservoirs in inventory datasets such as HydroLAKES, as water bodies for which this information was not available have been categorized as natural lakes by default [START_REF] Messager | Estimating the volume and age of water stored in global lakes using a geo-statistical approach[END_REF]. Smaller hydropower projects which outnumber large hydropower projects by approximately 11:1 [START_REF] Couto | Global proliferation of small hydropower plants -science and policy[END_REF] may not always be inventoried and accounted for in regional and global datasets. Recently, new datasets of dams and reservoirs have been created combining remote sensing-based datasets with other sources of information, e.g., GOODD [START_REF] Mulligan | GOODD, a global dataset of more than 38,000 georeferenced dams[END_REF] and GeoDAR [START_REF] Wang | GeoDAR: Georeferenced global dam and reservoir dataset for bridging attributes and geolocations[END_REF], continuously increasing the numbers of reservoirs that are taken up into inventories.

Although considerable progress has been made recently in developing global hydrography datasets, much less work has been done to apply these datasets to estimate global surface area of inland water bodies. For the surface area of rivers, three notable global estimates have been produced by [START_REF] Downing | Global abundance and size distribution of streams and rivers[END_REF] of 485,000 and 682,000 km 2 , Raymond et al. ( 2013) of 487,000 and 761,000 km 2 , and Allen & Pavelsky (2018) of 773,000±79,000 km². [START_REF] Downing | Global abundance and size distribution of streams and rivers[END_REF] based their estimate on >400 observations of stream width, data on number and length of streams from HydroSHEDS dataset, and statistical scaling relating stream number, width and length to stream order. [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] combined the stream network of HydroSHEDS with gridded runoff data to obtain a distribution of stream lengths and discharge per stream order of medium to large rivers, to which they then applied empirical, hydraulic equations predicting stream width from discharge. Finally, they used stream-order based scaling laws to estimate stream surface areas for smaller streams. Allen and Pavelsky (2018) used their remote-sensing based GRWL database for surface areas of medium to large rivers, which they complemented with topography-and statistical-based estimates for streams narrower than 90m to headwater streams as defined by Allen et al. (2018). The GRWL dataset is to date the most complete and reliable dataset of its kind.

For the surface area of lakes and reservoirs, three notable global estimates have been made by [START_REF] Downing | The global abundance and size distribution of lakes, ponds, and impoundments[END_REF], [START_REF] Verpoorter | A global inventory of lakes based on highresolution satellite imagery[END_REF][START_REF] Messager | Estimating the volume and age of water stored in global lakes using a geo-statistical approach[END_REF]. [START_REF] Downing | The global abundance and size distribution of lakes, ponds, and impoundments[END_REF] used surface areas from standing water bodies > 10 km² from GLWD [START_REF] Lehner | Development and validation of a global database of lakes, reservoirs and wetlands[END_REF] and extrapolated the surface area to smaller water bodies down to 0.001 km² assuming power-law relationships (Pareto-law distributions) between water body size and frequency. [START_REF] Verpoorter | A global inventory of lakes based on highresolution satellite imagery[END_REF] used their remotesensing derived GloWaBo database which includes lakes as small as 0.002 km². [START_REF] Messager | Estimating the volume and age of water stored in global lakes using a geo-statistical approach[END_REF] derived their estimate from their inventory based HydroLAKES database, which contains water bodies >0.1 km². Due to this restriction with regard to minimum lake size, [START_REF] Messager | Estimating the volume and age of water stored in global lakes using a geo-statistical approach[END_REF] obtained the lowest of the three global surface area estimates for standing waters with 2.7 x 10 6 km². The estimate of [START_REF] Downing | The global abundance and size distribution of lakes, ponds, and impoundments[END_REF] is substantially higher with 4.2 x 10 6 km², while for water bodies larger than 0.1 km², their estimate of 2.9 x 10 6 km² is quite comparable to HydroLAKES. The estimate by Verpoorter et al. ( 2014) is even higher with 5 x 10 6 km², likely due in part to overestimation of lake areas through contamination with other water bodies. A reliable map of smaller bodies of standing water, such as ponds, which are thought to contribute substantially to the total water surface area and disproportionally to GHG emissions [START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF][START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF], is still not achievable.

3 Inland water CO 2 budget

Overview of existing estimates

Table 1. Global estimates of inland water CO 2 emissions. For each estimate, the total water surface area (Σ A water ), the total CO 2 emission flux (Σ CO 2 em ) and the area weighted average emission rate (Σ CO 2 em /Σ A water ) are reported. Global estimates for the aquatic CO 2 emission range from 0.84 to 7.33 Pg CO 2 yr -1 for streams and rivers, from 0.40 to 2.09 Pg CO 2 yr -1 for lakes, from 0.08 to 0.14 Pg CO 2 yr -1 for reservoirs (excluding the estimate by [START_REF] Cole | Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget[END_REF], which is discussed at the end of this section), and from 1.27 to 2.35 Pg CO 2 yr -1 for estimates that lumped lakes and reservoirs together (Table 1). In general, considerable discrepancies exist in particular between early estimates that relied mostly on lumped estimates of average CO 2 concentrations, k GHG and water surface area, and more recent estimates relying on more complete concentration datasets, more sophisticated upscaling approaches and spatially resolved water surface area estimates. For streams and rivers, the earliest estimates (Cole et al., 2007, p. 207;[START_REF] Cole | Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism[END_REF] were crude and most likely underestimate riverine CO 2 emissions because of their reliance on data from large rivers, which tend to show lower areal CO 2 emission rates than smaller and more upstream systems, as large rivers tend to be less heterotrophic, receive less important inputs of CO 2 enriched groundwater, and show less turbulent stream flow which leads to lower gas exchange velocities [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF]. Relying on an extensive database for pCO 2 , new scaling laws for k GHG and stream hydraulic geometry that allowed for spatially resolved estimates for stream surface areas at the global scale, [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] presented the first spatially explicit estimate for the aquatic CO 2 flux and reports a river CO 2 evasion rate that is 3-8 times higher than the earlier lumped estimates [START_REF] Aufdenkampe | Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[END_REF][START_REF] Cole | Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget[END_REF][START_REF] Tranvik | Lakes and reservoirs as regulators of carbon cycling and climate[END_REF]. Moreover, they demonstrated the importance of small headwaters which contribute disproportionately to the total emission flux. More recent advancements in stream and river CO 2 evasion estimates involve development of data-driven statistical models to resolve temporal and finer spatial scale variations of the riverine CO 2 flux [START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF][START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF] [START_REF] Marx | A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[END_REF]. In line with this, Liu et al. ( 2022) estimated emission from the medium-to-large rivers (corresponding roughly to stream order 3 and above as in [START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF] of ~ 2.31 Pg CO 2 yr -1 , while roughly two thirds of the total riverine emissions (~ 5 Pg CO 2 yr -1 ) are predicted to be emitted by smaller streams (extrapolated to a minimum stream width of 0.3 meters).

For lakes, there is a much larger variation in estimates of water surface area than in average emission rates between different studies (Table 1). In particular, estimates that relied on earlier global lake inventories [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] report lower surface area and total emissions than more recent estimates based on newer lake inventories and extrapolated surface area to account for the smallest water bodies [START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF][START_REF] Hastie | CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections[END_REF][START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF]. Despite employment of scaling laws (e.g., with lake size and nutrient status) that account for spatial variability due to system size and autotrophic productivity in more recent estimates [START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF][START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF][START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF], there seems to be only small difference with regard to global average lake CO 2 emission rates per water surface area between those newer estimates (348-414 g CO 2 m -2 yr -1 ) and those of the early crude estimates (257 g CO 2 m -2 yr -1 , [START_REF] Cole | Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget[END_REF]).

Additionally, though earlier estimates relied more on C CO2 calculated from pH and alkalinity [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF][START_REF] Cole | Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget[END_REF]), more recent estimates used more often direct measurements [START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF][START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF]. Differences in lake CO 2 evasion estimates are more driven by variation in estimates of lake area than by areal emission rates. Estimates of global average emission rates per water surface area for lakes and reservoirs (392-638 g CO 2 m -2 yr -1 ) are about one order of magnitude lower than those for streams and rivers (1,492-10,644 g CO 2 m -2 yr -1 , Table 1).

In comparison to lakes, reported global average emission rates per water surface area for reservoirs are slightly higher (312-686 versus 257-348 g CO 2 m -2 yr -1 for reservoirs and lakes, respectively) (Table 1). This may in part be due to the different geographic distribution of both types of standing water bodies;

with lakes being particularly abundant in high latitudes where average emission rates tend to be lower [START_REF] Aufdenkampe | Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[END_REF]. Nonetheless, the current estimates place total CO 2 evasion from reservoirs more than one order of magnitude lower than that from lakes (see Table 1, when excluding the estimate by [START_REF] Cole | Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget[END_REF], following its low share in the global surface area of standing water bodies. However, the inventory for global reservoirs (which is growing) is far from complete and thus surface area might pose the largest uncertainty for CO 2 evasion from reservoirs. Note that [START_REF] Cole | Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget[END_REF], based on data from [START_REF] St | Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate: Reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases[END_REF], estimated a reservoir CO 2 emission of 1.03 Pg CO 2 yr -1 , i.e. about one order of magnitude higher than the other estimates listed in Table 1. This number is based on a first-order estimate of the total surface area of reservoirs including smallest systems such as farm ponds. This estimated total area is about 5 times larger than that of reservoirs accounted for in recent inventories. While this first order estimate is an eye-opener for the underestimate related to the exclusion of these small systems, it is also highly uncertain and represents an expert opinion rather than a reproducible number. Note further that Cole et al. ( 2007) estimated a much lower CO 2 evasion rate from lakes, for which they rely on a much more conservative estimate of surface area which excludes smaller systems.

In that regard, their emission estimate for standing waters is not consistent. Note finally that other estimates of CO 2 emissions from reservoirs vs. lakes might be underestimated, as in inventories, where the required information is missing, reservoirs might wrongly have been classified as lakes (see discussion in section 2.4).

Persisting shortcomings and future challenges

Process understanding

The most prominent gap in the understanding of the processes that drive inland water CO 2 emissions is the question of where the emitted CO 2 is sourced from. A part of the emitted CO 2 may be produced insitu from the oxidation of allochthonous organic carbon, while another part might stem from inflows of water supersaturated in CO 2 produced during respiration in upland soils and wetlands. Further, this respiration comprises both heterotrophic respiration of plant and soil organic matter as well as autotrophic root respiration. Knowledge about the source of the aquatic CO 2 emissions is of paramount importance for the integration of these fluxes in the overall C budget of continents, as highlighted in the perspective article by [START_REF] Abril | Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?[END_REF]. While earlier studies assumed that the net-CO 2 emissions are entirely the product of heterotrophic respiration and could thus be regarded as a fraction of terrestrial net-primary production [START_REF] Richey | Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2[END_REF], the contributions of autotrophic root respiration demands consideration of these fluxes as part of total ecosystem respiration that counterbalances gross primary production [START_REF] Abril | Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?[END_REF][START_REF] Lauerwald | How Simulations of the Land Carbon Sink Are Biased by Ignoring Fluvial Carbon Transfers: A Case Study for the Amazon Basin[END_REF].

For streams and rivers, it is assumed that most of the emitted CO 2 is sourced from CO 2 produced by respiration in upland soils and wetlands [START_REF] Abril | Amazon River carbon dioxide outgassing fuelled by wetlands[END_REF][START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF]. The relative importance of these external CO 2 inputs are highest in headwaters and decrease downstream [START_REF] Finlay | Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed[END_REF][START_REF] Horgby | Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains[END_REF][START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF][START_REF] Marx | A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[END_REF]. Moreover, it was shown that due to the very high oversaturation of emerging groundwater, a large part of the emission already takes place over a few hundred meters downstream of the freshwater source [START_REF] Johnson | CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration[END_REF]. It would thus be required to monitor smallest headwaters directly to well capture those hot spots of aquatic CO 2 emission, for which however monitoring data are not available in sufficient quantity [START_REF] Marx | A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[END_REF]. Assessment of groundwater CO 2 inputs to inland waters would further require knowledge about groundwater C content and residence time (to quantify the outflows), for which data is limited as well [START_REF] Downing | Size, age, renewal, and discharge of groundwater carbon[END_REF]. Stable C isotopes have been used to estimate source contribution of riverine C loads and CO 2 emissions for single aquatic systems [START_REF] Telmer | Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives[END_REF]. But observational data are not yet sufficient for largescale assessment. Also, these studies do not often include the uppermost parts of the river network where large amounts of external CO 2 inputs are evading to the atmosphere.

In addition, most existing studies of freshwater CO To better understand temporal variability and potential "hot-moments" of inland water CO 2 emissions, more process understanding would be required with regard to CO 2 cycling during periods of ice-cover, spring ice-melt, spring freshet, lake-turnover, and extreme events like floods for which observations are generally rare. Only one of the studies included in our synthesis actually accounts for seasonality [START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF], while the other studies completely ignore seasonality in hydrodynamics, including spring freshet. In our study, we use only simplified correction factors for seasonal ice-cover [START_REF] Denfeld | A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes[END_REF]. Further, the estimates of lake and reservoir CO 2 emissions synthesized in our study do not account for contributions during lake-turnover, when emission rates are thought to be highest in boreal to Arctic systems [START_REF] Sepulveda-Jauregui | Methane and carbon dioxide emissions from 40 lakes along a north-south latitudinal transect in Alaska[END_REF].

In contrast to, for instance, the estimate by [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF], we do not account for intermittent drying of inland waters. Few existing studies suggest that during dry periods, exposed beds might show similar CO 2 emission rates as from the water surface when inundated [START_REF] Keller | Global CO2 emissions from dry inland waters share common drivers across ecosystems[END_REF]. A correction might thus not be adequate unless the emissions from seasonally dry beds are taken explicitly into account for terrestrial respired CO 2 flux. On the other hand, no estimate of CO 2 emissions from temporarily flooded areas is available at the global scale. More systematic investigations of flux rates from both temporally dry falling inland water beds and temporally flooded areas would help to refine estimates of inland water CO 2 budgets, and to better integrate them into continual CO 2 budgets while avoiding gaps and overlaps with terrestrial and wetland ecosystems.

Though some studies [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF][START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF][START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] have linked CO 2 variability in lakes and reservoirs to predictors such as waterbody size, mean annual precipitation, and ecosystem productivity, the controls on within-system CO 2 spatial and temporal variations are not well understood and effective scaling relationships are still in need to better represent CO 2 evasion from lakes and reservoirs. Further, characterizations of spatial variability within water bodies is rather scarce, and the representativeness of the sampling site within an aquatic system is a large source of uncertainty [START_REF] Colas | Spatial and Temporal Variability of Diffusive CO2 and CH4 Fluxes From the Amazonian Reservoir Petit-Saut (French Guiana) Reveals the Importance of Allochthonous Inputs for Long-Term C Emissions[END_REF]. Finally, our estimates of reservoir CO 2 emissions do not account for fluxes from dam outlets, where deep, hypolimnetic water enriched in CO 2 is released. River reaches directly downstream of dams have been reported to show increased pCO 2 while this excess CO 2 is being emitted rapidly over a few tenths of river-km [START_REF] Elisa | Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir[END_REF][START_REF] Guérin | Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers[END_REF][START_REF] Teodoru | Dynamics of greenhouse gases (CO 2 , CH 4 , N 2 O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget[END_REF]. However, more systematic observations from these parts of the river system are needed to quantify this source of CO 2 flux at global scale, and to complete the assessment of reservoir CO 2 emissions.

Spatial and temporal resolution

Spatially and temporally resolved estimates of inland water GHG emissions at global scale can help to better understand the role of these fluxes in the overall GHG budget, to include these fluxes in regional budgets, and to evaluate them directly against observations. The realization of spatially and temporally resolved estimates is however limited by the availability of observations and by the utilized estimation techniques. For rivers, global empirical, spatially explicit estimates have already been achieved at several different resolutions, specifically, 231 regions [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF]), gridded at 0.5 degrees [START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF], and for individual river reaches [START_REF] Horgby | Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains[END_REF][START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF]. For lakes and reservoirs, the regionalized estimate based on 231 regions by [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] is the only existing spatially explicit estimate of CO 2 emissions at the global scale. [START_REF] Hastie | CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections[END_REF] achieved a spatially explicit, pan-boreal estimate of lake and reservoir CO 2 emissions at 0.5 degree resolution. As the only process-based model approach at global scale, spatially explicit simulations with the land surface model DLEM have been achieved at 0.5 degree resolution for rivers and reservoirs (Tian et al. 2015b). ORCHILEAK -the inland water branch of the land surface model ORCHIDEE has so far only been applied at the continental scale of Europe (Gommet et al., 2022) and in few large scale basins across the world (Bowring et al., 2020;[START_REF] Hastie | Historical and future contributions of inland waters to the Congo Basin carbon balance[END_REF][START_REF] Lauerwald | How Simulations of the Land Carbon Sink Are Biased by Ignoring Fluvial Carbon Transfers: A Case Study for the Amazon Basin[END_REF].

With regard to temporal resolution, most of the empirical studies published so far represent climatologies of average annual fluxes, often without precise specification of the time frame covered by the observations [START_REF] Regnier | The land-to-ocean loops of the global carbon cycle[END_REF]. The only exception at global scale is the study by [START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF] which presents a climatology of average monthly emission fluxes from rivers, thus representing the typical seasonal cycle of riverine emissions. The process-based model DLEM simulates time-series of riverine and reservoir CO 2 emission which reflect both seasonal and interannual variability. In general, a physically-based model approach appears to be the most promising strategy to obtain seasonal and interannual variations in response to climate variability, for present day but also for scenario dependent future projections (Tian et al., 2015b;[START_REF] Hastie | Historical and future contributions of inland waters to the Congo Basin carbon balance[END_REF][START_REF] Lauerwald | How Simulations of the Land Carbon Sink Are Biased by Ignoring Fluvial Carbon Transfers: A Case Study for the Amazon Basin[END_REF].

While empirical studies have highlighted the importance of diurnal variation in water-air CO 2 exchange, temporal variations at this time-scale are not yet possible to include in estimates. Process-based models like DLEM (Tian et al. 2015b) or ORCHILEAK [START_REF] Lauerwald | ORCHILEAK (revision 3875): A new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon basin[END_REF] represent aquatic CO 2 emissions as net-emissions driven by allochthonous inputs of CO 2 and net-instream respiration. A simulation of the diurnal variations would however require the representation of autochthonous aquatic production, which is not yet possible.

Data Requirements

As for all GHGs, data required to improve inland water CO 2 emission estimates include in first place direct observation of emission rates. Many earlier estimates relied heavily on partials pressures of CO 2 (pCO 2 ) calculated from pH and alkalinity [START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF][START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF], which has been demonstrated to be a significant source of error leading to an overestimation of pCO 2 particularly in freshwaters with low buffer capacity against acidification [START_REF] Abril | Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters[END_REF][START_REF] Golub | Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes[END_REF][START_REF] Hunt | Contribution of non-carbonate anions to total alkalinity and overestimation of pCO 2 in New England and New Brunswick rivers[END_REF][START_REF] Liu | Evaluating CO2 calculation error from organic alkalinity and pH measurement error in low ionic strength freshwaters[END_REF]. [START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF], relied on direct pCO 2 observations and suggested that average pCO 2 in global streams and rivers obtained by [START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] is by 30% too high.

However, as alkalinity and pH are easier to measure, a vast amount of data is available from a large number of studies and in datasets from environmental agencies, with greater spatial and temporal coverage [START_REF] Hartmann | A Brief Overview of the GLObal RIver Chemistry Database, GLORICH[END_REF] [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF]). However, it is these remote areas that play a potentially important role, considering the extensive lake areas in Boreal to Arctic regions, and the large river systems of the humid tropics.

There has been notable progress in sampling tropical (Africa [START_REF] Borges | Variations in dissolved greenhouse gases (\chemCO_2, \chemCH_4, \chemN_2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity[END_REF][START_REF] Borges | Globally significant greenhouse-gas emissions from African inland waters[END_REF], Amazon [START_REF] Abril | Amazon River carbon dioxide outgassing fuelled by wetlands[END_REF][START_REF] De Fátima Fl Rasera | Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers[END_REF], and SE Asia [START_REF] Wit | The impact of disturbed peatlands on river outgassing in Southeast Asia[END_REF]) and high latitude systems (Siberia: [START_REF] Karlsson | Carbon emission from Western Siberian inland waters[END_REF][START_REF] Serikova | High carbon emissions from thermokarst lakes of Western Siberia[END_REF], Alaska: (Sepulveda-Jauregui et al., 2015)). Despite these advancements, more observations from these poorly monitored areas would help to improve estimates of global inland water CO 2 emissions.

Further, small water bodies require more attention in sampling campaigns. [START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF] have highlighted the potentially important contribution of small lakes and ponds to global inland water CO 2 emissions. However, a regionalized estimate was not yet possible as observations of emission rates are still scarce, and more importantly, as no spatially explicit dataset exists yet that would represent such small water bodies. Datasets that present the smallest water bodies (< 1 km²) reliably would help to better integrate these important CO 2 sources into regionalized, global estimates.

Finally, increasing the number, variety and representativeness of investigated systems is only one step to reduce uncertainties in large scale estimates of inland water CO 2 emissions. Temporal and small scale spatial variations with small stream networks (Natchimuthu et al., 2017) and with lakes (Natchimuthu et al., 2017) and reservoirs [START_REF] Colas | Spatial and Temporal Variability of Diffusive CO2 and CH4 Fluxes From the Amazonian Reservoir Petit-Saut (French Guiana) Reveals the Importance of Allochthonous Inputs for Long-Term C Emissions[END_REF] are substantial, and the choice of one or few sampling locations and a limited measurement period lead to large uncertainties and may introduce biases in the flux estimate for the whole waterbody. Improved investigation of CO 2 budgets of single systems requires measurements at various locations within a stream network or water body. In addition, the observations should be taken over a time period long enough to assess seasonal and inter-annual variability, and at a high enough frequency to assess short term variations, including diurnal variations. In particular, datasets covering longer time periods such as those assembled for the US [START_REF] Jones | Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States[END_REF], China [START_REF] Ran | Substantial decrease in CO2 emissions from Chinese inland waters due to global change[END_REF] and the boreal biome [START_REF] Lapierre | Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems[END_REF] are crucially needed to evaluate the extent to which trends simulated by LSMs are realistic [START_REF] Regnier | The land-to-ocean loops of the global carbon cycle[END_REF]. The development and deployment of automated data loggers is a promising strategy for achieving this objective [START_REF] Bastviken | Technical Note: Costefficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers[END_REF].

4 Inland water CH 4 budget

Overview of existing estimates

Global estimates of aquatic CH 4 emission range from 1.5 to 30 Tg CH 4 yr -1 for streams and rivers, from 42 to 151 Tg CH 4 yr -1 for lakes, from 9.8 to 52 Tg CH 4 yr -1 for reservoirs, and from 16 to 331 Tg CH 4 yr -1 for estimates that lumped lakes and reservoirs together (Table 2). The range in these emission estimates is generally more dramatic than for either CO 2 or N 2 O (see sections 3 and 5, respectively), with the exception of global CO 2 emission estimates from rivers and streams.

Some of the variation in global CH 4 emission estimates is due to large differences in the waterbody surface areas applied. For example, the earliest estimate of CH 4 emissions from reservoirs used a very rough estimate of surface area, multiplying the surface area of reservoirs in the World Register of Dams by a factor of four under the assumption that this would better represent the total surface area including small reservoirs and farm ponds not included in that register [START_REF] St | Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate: Reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases[END_REF]. This approach resulted in a surface area that is approximately three times larger than any subsequent estimate. Conversely, the earliest estimate from streams and rivers was conservative in that it applied a surface area for larger rivers only (quantifiable from global maps as the GLWD; [START_REF] Bastviken | Freshwater Methane Emissions Offset the Continental Carbon Sink[END_REF], resulting in approximately a factor of two reduction compared to subsequent estimates that also account for smaller rivers and streams. While most global estimates have ignored ice cover, Johnson et al. ( 2021) produced an estimate of reservoir emissions that accounted for this effect and which resulted in a CH 4 emission of 10 Tg CH 4 yr -1 that is half or less of any previous assessment. [START_REF] Harrison | Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (G-res) Model[END_REF] incorporated ice cover correction into their global reservoir emission estimate, resulting in similarly low emissions from reservoir surfaces (9.8 Tg CH 4 yr -1 ), but still yielded a higher total flux due to the inclusion of reservoir turbine degassing (22 Tg CH 4 yr -1 ). [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF] also incorporated an ice cover correction into their assessment of global river (30 Tg CH 4 yr -1 ), lake (151 Tg CH 4 yr -1 ), and reservoir (24 Tg CH 4 yr -1 ) emissions (estimates upscaled from mean emission rates), but in addition also an ice melt overturn correction that reduced the impact of ice cover. Moreover, their corrections did not result in a substantial lowering of the global flux due to increases in the magnitude of areal emission rates applied.

The mean areal emission rates applied to upscaling efforts vary by approximately 2, 3, and 10-fold for reservoirs, lakes, and rivers respectively. In general, there is a temporal trend wherein older datasets have lower average areal emission rates than newer datasets. Part of this trend is due to the treatment of ebullition measurements in older emission estimates. Some global estimates summarized diffusiveonly estimates of methane emission (Holgerson andRaymond 2016, Stanley et al. 2016) while others combined diffusive only areal fluxes with ebullitive + diffusive estimates without differentiating one from the other [START_REF] St | Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate: Reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases[END_REF]. More recent estimates [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF][START_REF] Johnson | Spatiotemporal Methane Emission From Global Reservoirs[END_REF], 2022) only included studies that estimated both ebullition and diffusion together. Increasing average areal emission estimates may also be due to the increased likelihood of sampling right-skewed data as sample size for water bodies increases (see [START_REF] Wik | Climate-sensitive northern lakes and ponds are critical components of methane release[END_REF]. For example, a recent dataset of lake and reservoir CH 4 emissions contains some of the highest mean areal fluxes, with about 65% of the estimates contained therein published since 2015 [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF]).

Variation in binned areal emissions (e.g. by latitude, size, and chlorophyll-a) are even larger. For example, [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF] reported an average areal CH 4 flux from the smallest lakes (<0.001km 2 ) that is nearly an order of magnitude higher than from lakes in the 0.1-1 km 2 size category, making these smallest systems responsible for 38% of the total lake CH 4 emissions (Rosenteter et al. 2021; Table 2). In addition, [START_REF] Bastviken | Freshwater Methane Emissions Offset the Continental Carbon Sink[END_REF] reported areal reservoir CH 4 emissions from tropical regions that are an order of magnitude larger than in boreal regions [START_REF] Bastviken | Freshwater Methane Emissions Offset the Continental Carbon Sink[END_REF], although follow-up work suggests that this discrepancy may have more to do with a lack of boreal ebullition estimates [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF]) and the fact that latitude is only a weak predictor for reservoir CH 4 emission (Deemer andHolgerson 2021, Johnson et al. 2021). Conversely, [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF] report average areal CH 4 emissions from rivers that varied by a factor of about four by latitudinal bin, with the subtropical region (10-25 degrees absolute latitude) producing the highest areal emissions and the temperate region (25-40 degrees absolute latitude) producing the lowest areal emissions [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF].

While a variety of upscaling methods have been used to estimate inland water CH 4 emission, there does not appear to be any directional bias in the resulting estimates, that is one type of approach does not seem to systematically produce higher or lower emissions than other approaches. Many early estimates and some more recent estimates have applied the simplest empirical upscaling wherein a single areal flux was applied to a global surface area of lakes and/or reservoirs [START_REF] St | Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate: Reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases[END_REF][START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF][START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF], and rivers [START_REF] Stanley | The ecology of methane in streams and rivers: patterns, controls, and global significance[END_REF]. Other estimates have binned lakes and reservoirs CH 4 fluxes based on latitude (Bastviken 2011), waterbody surface area [START_REF] Holgerson | Large contribution to inland water CO2 and CH4 emissions from very small ponds[END_REF][START_REF] Bastviken | Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate[END_REF]), primary productivity (e.g. chlorophyll a concentration; DelSontro et al. 2018), or has used some combination of these approaches [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF]. For rivers, binning has so far only been based on latitude (Bastviken 2011[START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF]. Finally, the most recent efforts to model lake and reservoir CH 4 flux have used a gridded approach that considers a variety of factors likely to influence the spatial variations in CH 4 emission including temperature, nutrients, and latitudinal variation in emission factors (Stavert et al. 2021[START_REF] Johnson | Spatiotemporal Methane Emission From Global Reservoirs[END_REF], Harrison et al. 2021). Significant progress has been made towards describing the drivers of lake and reservoir CH 4 flux, which may help improve our understanding of the spatial and temporal variability in emissions in the future. Specifically, small, shallow, productive, and low latitude lakes and reservoirs have been found to show higher areal methane emissions than larger, deeper, less productive, high latitude systems [START_REF] Deemer | Drivers of methane flux differ between lakes and reservoirs, complicating global upscaling efforts[END_REF]. In northern systems, methane emissions are often further binned by lake type, with yedoma, peat, and glacial lakes exhibiting different patterns and magnitudes of emission [START_REF] Wik | Climate-sensitive northern lakes and ponds are critical components of methane release[END_REF][START_REF] Matthews | Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions[END_REF][START_REF] Kuhn | BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems[END_REF]. Less is known about the key drivers of river CH 4 flux. Two of the three existing global estimates of river and stream CH 4 flux use latitude to bin emissions, but the latitudinal trend does not appear to describe much of the spatial variability [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF]. The earlier dataset compiled by Stanley and others contained many estimates from anthropogenicallyimpacted rivers and streams [START_REF] Stanley | The ecology of methane in streams and rivers: patterns, controls, and global significance[END_REF], and could be one explanation for the high global emission estimate despite only considering diffusive fluxes. Still, the effect of nutrient enrichment and productivity on river methane emissions has not been established the way it has been for lakes and reservoir methane emissions [START_REF] Beaulieu | Eutrophication will increase methane emissions from lakes and impoundments during the 21st century[END_REF].

Temperature is generally considered an important predictor of aquatic CH 4 emission and relationships between temperature and CH 4 flux have been used to scale seasonal emissions from reservoirs [START_REF] Prairie | A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool[END_REF][START_REF] Johnson | Spatiotemporal Methane Emission From Global Reservoirs[END_REF][START_REF] Harrison | Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (G-res) Model[END_REF]. Such temperature-corrections address biases in many flux observations where measurements are focused during the spring-to-fall period whereas lower emissions during the ice-free winter period are typically not recorded. While there is compelling cross-ecosystem evidence of increasing CH 4 emission with increasing temperature [START_REF] Yvon-Durocher | Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[END_REF] there are also examples of systems where CH 4 oxidation is able to keep pace or surpass CH 4 production at higher temperatures [START_REF] Duc | Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments[END_REF][START_REF] Shelley | Microbial methane cycling in the bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming[END_REF]. A recent synthesis of CH 4 oxidation in lakes and reservoirs showed that CH 4 oxidation efficiency declines with ecosystem productivity (e.g. trophic status, D'Ambrosio & Harrison, 2021). Another recent study showed experimental evidence that CH 4 oxidation may be phosphorus-limited in northern lakes, also providing further evidence of interactions between lake CH 4 dynamics and nutrient levels [START_REF] Sawakuchi | Phosphorus Regulation of Methane Oxidation in Water From Ice-Covered Lakes[END_REF]. Future work could improve our process understanding of methane emission dynamics by disentangling the role of temperature and productivity in driving both total emission and the balance between methane production and consumption. Within a single waterbody, CH 4 emissions generally vary substantially in space and time [START_REF] Wik | Climate-sensitive northern lakes and ponds are critical components of methane release[END_REF], and this variation is likely more substantial than for either CO 2 or N 2 O. This spatial and temporal variability has been shown to cause bias in upscaling, where too few measurements in either space or time can lead to underestimation of fluxes [START_REF] Wik | Climate-sensitive northern lakes and ponds are critical components of methane release[END_REF]. While the regionalization exercise carried out in our companion paper (Lauerwald et al., this issue) begins to address seasonality by applying an ice cover and ice melt correction, future work should aim to better constrain temporal variability in methane fluxes within single water bodies. Temporal variability can arise from seasonal dynamics such as ice melt [START_REF] Denfeld | A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes[END_REF], fall turnover [START_REF] Mayr | Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn[END_REF], seasonal water level changes [START_REF] Varadharajan | A low-cost automated trap to measure bubbling gas fluxes[END_REF], or in response to phytoplankton blooms [START_REF] Waldo | Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst[END_REF]. Diel variation can also be important. Daytime sampling might overestimate CH 4 flux in lakes [START_REF] Sieczko | Diel variability of methane emissions from lakes[END_REF], but may underestimate it in wetlands (Anthony & MacIntyre, 2016;[START_REF] Godwin | Evening methane emission pulses from a boreal wetland correspond to convective mixing in hollows[END_REF][START_REF] Poindexter | The contribution of an overlooked transport process to a wetland's methane emissions[END_REF]. Episodic events can also be the source of large temporal variation such as water level drops in reservoirs [START_REF] Harrison | Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission[END_REF], storm-driven drops in hydrostatic pressure [START_REF] Mattson | Air pressure and methane fluxes[END_REF] or increases in wind shear stress [START_REF] Joyce | Physical Controls on Methane Ebullition from Reservoirs and Lakes[END_REF]. For rivers, elevated discharge can lead to higher methane fluxes, especially in small high-gradient streams where methane is sourced predominantly from groundwater (Natchimuthu et al., 2017). Spatial variability in aquatic methane fluxes can arise for both biological and physical reasons. In lakes and reservoirs, higher fluxes are observed due to elevated organic matter processing in inlets [START_REF] Delsontro | Spatial Heterogeneity of Methane Ebullition in a Large Tropical Reservoir[END_REF] and near the shores [START_REF] Natchimuthu | Spatio-temporal variability of lake CH 4 fluxes and its influence on annual whole lake emission estimates[END_REF][START_REF] Peixoto | Spatial versus Day-To-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions -Developing Optimized Approaches to Representative Flux Measurements[END_REF], to the accumulation of organic matter behind run-of-river dams [START_REF] Maeck | Sediment Trapping by Dams Creates Methane Emission Hot Spots[END_REF], or due to more general heterogeneity of the sediment matrix and associated seeps (Walter [START_REF] Walter Anthony | Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models[END_REF]. In rivers, physical features such as waterfalls can be particularly important sites for CH 4 emissions (Natchimuthu et al., 2017). At larger scales, high gradient headwater streams comprising <1% of catchment stream surface area can contribute 30% of catchment emissions, emphasizing the need to sample throughout a catchment rather than attempting to capture network-wide flux via single measurements at river mouths [START_REF] Natchimuthu | Spatio-temporal patterns of stream methane and carbon dioxide emissions in a hemiboreal catchment in Southwest Sweden[END_REF].

Spatial and Temporal Resolution

At global scale, gridded estimates of inland water CH 4 emissions exist for reservoirs [START_REF] Johnson | Spatiotemporal Methane Emission From Global Reservoirs[END_REF], lakes [START_REF] Johnson | Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions[END_REF]) and lakes and reservoirs [START_REF] Stavert | Regional trends and drivers of the global methane budget[END_REF]. For rivers, disaggregating global fluxes over broad latitudinal zones [START_REF] Bastviken | Freshwater Methane Emissions Offset the Continental Carbon Sink[END_REF][START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF] seems still the best possible practice. Most existing global estimates for lakes and rivers represent climatologies of annual fluxes that do not resolve the seasonal and interannual variability, and longerterm trends. Using a relatively simple, process based model, [START_REF] Johnson | Spatiotemporal Methane Emission From Global Reservoirs[END_REF][START_REF] Johnson | Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions[END_REF] were able to represent the seasonality in lake and reservoir CH 4 emission forced by temperature and ice-cover as drivers. Long-term trends in lake CH 4 emissions due to climate change have been predicted for the holarctic/boreal region using a more complex process-based model (Tan & Zhuang, 2015, 2015). Other complex, process-based models of lake CH 4 cycling have been developed (e.g. Lake 2.0, [START_REF] Stepanenko | LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes[END_REF], but have not been applied at large-scales. In contrast to CO 2 and N 2 O, no efforts to model river CH 4 emissions at regional to global scales have been published yet, which may partly be due to the relative small role of rivers in inland water CH 4 emissions as well as to the complexity of processes involved and the scarcity of data for model calibration and evaluation.

Data Requirements

One critical uncertainty for the inland water CH 4 budget is the inability to resolve the location and total surface area of the smallest lakes. Waterbodies <0.001 km 2 have been recently estimated to comprise 37% of the lentic methane flux [START_REF] Rosentreter | Half of global methane emissions come from highly variable aquatic ecosystem sources[END_REF]. Given high variability in areal emissions from these smallest lakes it is also important to increase effort in sampling these systems to reduce uncertainty. In addition to very small lakes, sampling effort should be increased for large lakes (>1km 2 ) and small reservoirs (<1km 2 ) (Deemer & Holgerson, 2021). Given the additional importance of depth and productivity in regulating lentic CH 4 flux, spatially resolved information about the depth, chlorophyll a, oxygen and dissolved organic carbon concentration of lakes and reservoirs will also help improve regional budgets (and overall upscaling efforts). More generally, systematic, long-term monitoring programs are needed which account for the high spatio-temporal variability in areal emission rates, in particular for ebullition, to better constrain the emissions even for individual, monitored systems. Long time-series of observations may finally help to better constrain the evolution of CH 4 production and emission in response to environmental change and climate extremes like droughts and heatwaves. This need for more and better observational data can hardly be satisfied with conventional methods, but would require the deployment of automatized observation systems and the use of remote sensing data, for which more research and development is needed.

For rivers, many estimates of CH 4 emission rely on pairing concentration data with estimates of gas transfer (k GHG ) especially in low order streams (see section 2.1 for further discussion). These low order systems have been observed to contribute disproportionately to CH 4 emissions at the catchment network scale despite very low CH 4 concentrations (Natchimuthu et al., 2017), highlighting the need to constrain local values of k GHG and/or perfect a universal physical model. The development and application of other empirical methods to directly measure GHG flux from low order streams would also help constrain emissions from these systems.

Inland water N 2 O budget

Overview of existing estimates

N 2 O emissions from inland waters are poorly constrained at the global scale, which is visible in the largely divergent global estimates listed in Table 3: 0.05 -3.3 Tg N 2 O yr -1 for streams and rivers and 0.1-0.6 Tg N 2 O yr -1 for lakes and reservoirs. Most existing global estimates of riverine N 2 O emissions are based on modeled N loads from watersheds and emission factors (EFs), in stark contrast to CO 2 and CH 4 global estimates, which are calculated mainly by empirically upscaling local observations. N 2 O is produced as an intermediate product in denitrification, i.e. the reduction of nitrate to N 2 , but also as a by-product in the process of nitrification, i.e. the oxidation of ammonium to nitrate [START_REF] Canfield | The Evolution and Future of Earth's Nitrogen Cycle[END_REF]. The amount of N 2 O produced and emitted due to these processes depends on environmental and hydrological factors including water temperature, N availability and speciation, water body depth, oxygen availability, pH, and labile carbon concentrations [START_REF] Clough | Diurnal fluctuations of dissolved nitrous oxide (N2O) concentrations and estimates of N2O emissions from a spring-fed river: implications for IPCC methodology[END_REF][START_REF] Hu | Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources[END_REF][START_REF] Outram | Indirect Nitrous Oxide Emissions from Surface Water Bodies in a Lowland Arable Catchment: A Significant Contribution to Agricultural Greenhouse Gas Budgets[END_REF][START_REF] Rosamond | Dependence of riverine nitrous oxide emissions on dissolved oxygen levels[END_REF][START_REF] Venkiteswaran | Nonlinear Response of Riverine N2O Fluxes to Oxygen and Temperature[END_REF]. EFs can be defined as average ratios of N 2 O emission to denitrification and nitrification fluxes. However, it is difficult to quantify nitrification and denitrification fluxes for entire river systems, and even more so at the global scale. Therefore, EFs have traditionally been established by linking N 2 O emissions directly to riverine N loads, implicitly assuming a certain fraction of riverine N loads to be nitrified and denitrified. [START_REF] Mosier | Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle[END_REF] assumed that N leached to the river network was denitrified once and nitrified twice along the river network. Further assuming that 0.25% of both nitrified and denitrified N is emitted as N 2 O, they concluded that 0.75% of the total N leached to the river is emitted as N 2 O. Applying that percentage as EF directly to riverine N loads, they estimated a global riverine N 2 O emission of 1.1 Tg N 2 O yr -1 . The methodology and EFs established by [START_REF] Mosier | Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle[END_REF] also served to assess the river N 2 O emissions in the 5 th Assessment Report of the IPCC.

In a similar approach, Seitzinger and Kroeze (1998) and [START_REF] Seitzinger | Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects[END_REF] estimated N 2 O emissions from only the dissolved inorganic fraction (nitrate, nitrite and ammonium) of N (DIN) leached to rivers. Applying EFs of 0.3% and 3% relative to riverine DIN load they estimated a global riverine N 2 O emission of 1.7 (range 0.3-2.9) Tg N 2 O/yr. Over the following decade, these two EF approaches, i.e. the one of [START_REF] Seitzinger | Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems[END_REF] and the IPCC approach derived from [START_REF] Mosier | Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle[END_REF], were updated, yielding consistently large emissions fluxes. [START_REF] Kroeze | New estimates of global emissions of N2O from rivers and estuaries[END_REF] Studies conducted over the last 5-7 years [START_REF] Hu | Modeling nitrous oxide emission from rivers: a global assessment[END_REF][START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF][START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF][START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF] consistently calculate N 2 O emissions for rivers that are substantially lower than those of the decades before. [START_REF] Hu | Modeling nitrous oxide emission from rivers: a global assessment[END_REF]'s empirical approach estimated global riverine N 2 O emissions of 51 (19 -105) Gg N 2 O/yr. Further, the authors report EFs relative to riverine DIN loads of 0.16% to 0.19% to be realistic, suggesting the EFs used by Kroeze and Seitzinger (1998) to be unrealistically high. [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF]'s spatially resolved stochastic-mechanistic river-continuum model is the first to explicitly represent N transformation processes, and results agreed well with Hu et al.'s predictions, with a global flux of 72-78 Gg N 2 O/yr. Moreover, [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF] estimated that only 7% and 9% of the total N loads are respectively denitrified and nitrified in the global river network. Thus, the assumption behind the IPCC AR5 approach that all N leached to rivers is once denitrified and twice nitrified also appears to be unrealistic and responsible for gross overestimations.

The studies by [START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF] and [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF] are complementary as they provide estimates that also account for small streams that contribute disproportionately to the overall riverine N 2 O emissions, but which were ignored in earlier estimates. [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF], using a machine learning based approach, reach an estimate of about 114 Gg N 2 O yr -1 , of which about half is contributed by headwater streams. Note that this is only a near-global estimate which excludes high latitudes > 60°˚N, which can however be assumed to be small contributors to the global emission due to low N loads and low surface areas of the corresponding river systems [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF]. [START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF], using the land surface model DLEM, estimate riverine N 2 O emissions at even higher values of 458 ±92 Gg N 2 O yr -1 , of which 80% stems from small stream emissions up to stream order 3. In their simulations, emissions from these small streams are largely fed by N 2 O inputs from groundwater and saturated soils, which are not accounted for in the other studies. [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF], although not representing groundwater N 2 O inputs, still estimate that about ⅔ of total riverine N 2 O emissions is contributed by small streams of orders 3 and lower (see Table 3). In these small streams, nitrification-denitrification processes occur mainly within hyporheic and benthic zones, whereas in larger rivers, the contribution of water column exceeds that of subsurface environments in contributing to N 2 O production [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF]. The estimates for larger rivers only by [START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF] and [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF] agree better with those by [START_REF] Hu | Modeling nitrous oxide emission from rivers: a global assessment[END_REF] and [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF].

For lakes and reservoirs, the first global estimates were only published recently. [START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF] and [START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF] gave estimates for the entirety of lakes and reservoirs, without distinguishing between both types of systems while [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF] estimated N 2 O emission from reservoirs only. [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF], in their stochastic-mechanistic model of N 2 O emissions from river networks, included explicit emission estimates for reservoirs. [START_REF] Lauerwald | Natural Lakes Are a Minor Global Source of N2O to the Atmosphere[END_REF] then adapted that model to estimate N 2 O emission from both reservoirs and lakes. [START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF] performed a simple upscaling based on averaged observed N 2 O emissions rates for three latitudinal zones, which yielded with 985±465 Gg N 2 O yr -1 the highest of the emission fluxes from lakes and reservoirs listed in Table 3. A major limitation of this study was the poor global coverage of observations. While they used data from 298 systems worldwide, they had observations from only six systems for their low latitude estimate, all belonging to the reservoir-class from the study of [START_REF] Guérin | Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers[END_REF]. This fact is critical as in their upscaling, lakes and reservoirs from that zone contributed about 80% of their global estimate of N 2 O emissions. Moreover, some of these reservoirs showed extremely high emission rates due to the fact that soils and biomass had not been removed before dam closure, which contributed massively to GHG production and emission [START_REF] Guérin | Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers[END_REF]. It is thus highly probable that these reservoirs are not representative for low latitude lakes and reservoirs, as later discussed in detail in [START_REF] Lauerwald | Natural Lakes Are a Minor Global Source of N2O to the Atmosphere[END_REF].

Similar to their estimates of lake and reservoir CO 2 and CH 4 emissions (see sections 3 and 4), [START_REF] Delsontro | Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[END_REF] followed two distinct methodological approaches to obtain their global estimates: a direct upscaling approach based on a global average of observed N 2 O emission rates (252-346 Gg N 2 O yr -1 ), and a statistical approach using a lake/reservoir size classes and classes of chlorophyll-a concentrations as predictors (409-597 Gg N 2 O yr -1 ). Note that the second approach did not lead to a spatially explicit estimate, as only global, statistical distributions of size classes and chlorophyll-a concentrations were used for upscaling. Further, the statistical upscaling equation had a very low predictive power with an R 2 below 0.1. [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF] performed a simple upscaling to estimate N 2 O emissions from reservoirs only, obtaining a global flux of about 47 Gg N 2 O yr -1 . Despite the very different approach, [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF] and [START_REF] Lauerwald | Natural Lakes Are a Minor Global Source of N2O to the Atmosphere[END_REF] estimated global N 2 O emissions from reservoirs that are comparable to those by [START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF] (see table 3). For the entirety of lakes and reservoirs, [START_REF] Lauerwald | Natural Lakes Are a Minor Global Source of N2O to the Atmosphere[END_REF] by far the lowest global estimate of 99±64 Gg N 2 O yr -1 , and which is only about one tenth of what was estimated by [START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF]. Comparing their spatially explicit estimate to regional estimates based on direct upscaling, [START_REF] Lauerwald | Natural Lakes Are a Minor Global Source of N2O to the Atmosphere[END_REF] found that their model results are reasonable. Moreover, they estimated that lakes, although contributing more than 90% of the global surface area of standing water bodies, contribute only about half of the emission flux as a result of their much lower average emission rates. This indicates that it is problematic to lump together lakes and reservoirs in global upscaling exercises. 

Process understanding

While a basic understanding of processes involved in aquatic N 2 O cycling exists from a certain number of field studies, the quantification of these processes in large scale estimates is still difficult due to their complexity and the unavailability of sufficient datasets to support their assessment. For this reason, empirical EFs have long been used to estimate riverine N 2 O emissions directly from N loads, assuming a constant fraction of N loads to be nitrified and denitrified within the rivers, independent of size of the river network, its ecoclimatological setting, and anthropogenic pressure. While newer, model-based studies proved the worth of calculating more precise estimates of nitrification and denitrification fluxes taking into account physical constraints such as water residence time and temperature [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF][START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF][START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF], the actual production and/or emission of N 2 O related to these processes is still based on simple, empirical factors. As N 2 O is formed only as a by-product of nitrification and as an intermediate product in the denitrification process, the actual fraction of N 2 O produced from these processes is highly variable and not yet possible to reproduce based on mechanistic formulations.

For a better assessment of inland water N 2 O cycling, a better distinction between processes in the water column and in the sediments is required. That this distinction is indeed possible in global scale assessments of river N 2 O emissions was demonstrated by [START_REF] Marzadri | Role of surface and subsurface processes in scaling N2O emissions along riverine networks[END_REF][START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF]. In particular, the top-layer of aquatic sediments is often a zone of sharp transition between nitrifying (oxic) and denitrifying (anoxic) conditions, and thus a hot spot of N cycling and N 2 O production. Here, anoxic water rich in ammonium mixes with oxygen-rich waters, promoting nitrification, while in turn nitrate produced from nitrification diffuses down and fuels denitrification in the anoxic zone [START_REF] Beaulieu | Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[END_REF]. The relative importance of water column vs. sediment processes may change along the river network. Following the conceptual model by [START_REF] Marzadri | Role of surface and subsurface processes in scaling N2O emissions along riverine networks[END_REF], denitrification of emergent, ammonium rich groundwater in streambed sediments is the dominant source of N 2 O in headwaters, but its importance decreases downstream, until finally denitrification in the lower water column dominates. Further, it was shown that dissolved N 2 O inputs from groundwater and waterlogged soils feed an overproportional contribution of headwaters to riverine N 2 O emissions [START_REF] Billen | Modeling indirect N2O emissions along the N cascade from cropland soils to rivers[END_REF][START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF]. Note that the global assessments of river N 2 O emissions by [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF] and [START_REF] Maavara | Nitrous oxide emissions from inland waters: Are IPCC estimates too high?[END_REF] do not account for groundwater N 2 O inputs which represent an important part of inland water N 2 O emissions.
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For lakes and reservoirs, the importance of processes in the benthic zone has been implicitly taken into account by the use of "hydraulic load" to scale denitrification rates [START_REF] Harrison | The regional and global significance of nitrogen removal in lakes and reservoirs[END_REF]. Hydraulic load has been defined as the ratio of water inflow to water surface area, which is identical to the ratio of average lake or reservoir depth over water residence time (Harrision et al. 2009). The process of denitrification is assigned an "apparent settling velocity" which expresses rates of nitrification or denitrification in the benthic zone relative to water column depth. The deeper the average lake or reservoir, the longer it takes until the whole volume is nitrified or denitrified. However, this approach does not take into account the actual shape of the lake/reservoir bed and the proportions of shallow, littoral zones, where emitted N 2 O is mainly produced in the bed sediments [START_REF] Liikanen | Spatial and seasonal variation in greenhouse gas and nutrient dynamics and their interactions in the sediments of a boreal eutrophic lake[END_REF][START_REF] Zhu | Nitrous oxide emission from infralittoral zone and pelagic zone in a shallow lake: Implications for whole lake flux estimation and lake restoration[END_REF], vs. the deeper zones, where processes in the water column are the dominant source of N 2 O [START_REF] Mengis | Sources and sinks of nitrous oxide (N2O) in deep lakes[END_REF]. While streams and rivers are usually well mixed, deeper lakes and reservoirs may be temporally stratified, with important consequences for N 2 O cycling, which have so far not been taken into account in large scale assessments. During stratification, only the top layer (epilimnion) is exchangeable with the atmosphere and thus well oxygenated. Then, nitrification in the epilimnion is the main source of N 2 O emissions [START_REF] Beaulieu | Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[END_REF][START_REF] Mengis | Sources and sinks of nitrous oxide (N2O) in deep lakes[END_REF]. In anoxic parts of the lower layer (hypolimnion), denitrification prevails, which can be a source or sink of N 2 O, depending on the availability of nitrate for reduction [START_REF] Beaulieu | Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[END_REF][START_REF] Mengis | Sources and sinks of nitrous oxide (N2O) in deep lakes[END_REF]. As this anoxic water may also be rich in ammonium from the in-situ decomposition of organic matter, mixing with more oxygenated, epilimnetic waters during lake turn-over may represent a "hot moment" for nitrification and N 2 O emissions [START_REF] Beaulieu | Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[END_REF][START_REF] Roland | Nitrous oxide and methane seasonal variability in the epilimnion of a large tropical meromictic lake (Lake Kivu, East-Africa)[END_REF]. However, a quantitative assessment of this hot-moment at large scales is yet not possible due to the lack of observational data. Moreover, while a certain number of studies report measurements of N 2 O concentrations in the shallow, easy to reach epilimnion, studies investigating the deeper profile of N 2 O concentrations through the hypolimnion are scarce [START_REF] Mengis | Sources and sinks of nitrous oxide (N2O) in deep lakes[END_REF][START_REF] Beaulieu | Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[END_REF].

Further, also resolving the horizontal zonation would help to better assess the overall N 2 O budget of a lake. Within larger lakes, shallow littoral zones have been shown to contribute disproportionately to lake N 2 O emissions relative to their areal extent [START_REF] Zhu | Nitrous oxide emission from infralittoral zone and pelagic zone in a shallow lake: Implications for whole lake flux estimation and lake restoration[END_REF]. Here, benthic sediments contribute most to N 2 O production, while in the deeper, pelagic zone, N 2 O is produced in the water column, and more specifically, under stratified conditions, in the epilimnion. Yet, most observations are constrained to pelagic zones, which dominate lakes and reservoirs with regard to surface area, but not necessarily emissions. Further, strong horizontal gradients in N 2 O emissions rates may be formed towards the points of riverine inflows of reactive N [START_REF] Miao | Spatial and seasonal variability of nitrous oxide in a large freshwater lake in the lower reaches of the Yangtze River, China[END_REF]. However, few studies conduct systematic sampling which could reveal and account for these internal spatial variations.

In general, observational studies are skewed towards temperate, eutrophic systems in developed countries, which are easily accessible for sampling and which represent potentially important N 2 O sources related to water quality issues caused by agricultural non-point sources and sewage water injections. In boreal regions where N loads are usually lower, it was demonstrated that a substantial proportion of aquatic systems is undersaturated with N 2 O and thus rather act as sinks for this GHG [START_REF] Kortelainen | Lakes as nitrous oxide sources in the boreal landscape[END_REF][START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF]. Further, as for CO 2 and CH 4 , observations of smaller water bodies are generally underrepresented. Interestingly, though small, agricultural ponds could be hypothesized to be strong GHG emitters, a study of 101 such systems across the US [START_REF] Webb | Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink[END_REF] has shown that about two thirds of these systems are on the contrary N 2 O sinks. Overall, this imbalance in observed systems might have introduced a bias in upscaling towards overestimation of fluxes. Moreover, most estimation approaches, particularly the use of EFs, do not permit for representing inland waters as N 2 O sinks. Finally, samples from temperate and high latitude systems are skewed towards summer months, while the full seasonal cycle is only rarely covered in observational studies. [START_REF] Kortelainen | Lakes as nitrous oxide sources in the boreal landscape[END_REF] have demonstrated in their study on Finnish lakes that there is a strong seasonality in N 2 O concentrations and emission rates, with much higher values in winter when low autotrophic production allows for higher nitrate concentrations. A flux estimate based on summer-time observations only would thus have led to an underestimation by a factor of four. Assuming that similar seasonal patterns are to be observed in other temperate to high latitude systems, and that in particular lake turnover as hot moment of N 2 O emissions is not well captured in observations, we can hypothesize that the nonrepresentativeness of sampling times might have introduced a negative bias in upscaling exercises. Note finally that the non-representativeness of observations does not only affect estimates based on direct upscaling of average emission rates. With the lack of representative observational data for calibration and validation, also model-based studies will remain of limited validity.

Spatial and temporal resolution

For riverine systems, global, spatially explicit estimates of N 2 O emissions have been achieved by numerous studies. The spatial resolution ranges from large river basins [START_REF] Hu | Modeling nitrous oxide emission from rivers: a global assessment[END_REF], over gridded estimates [START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF] to estimates per stream segment [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF]. For lakes, [START_REF] Soued | Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[END_REF] have resolved N 2 O emissions for three broad latitudinal bands and the only published spatially explicit, gridded estimate is that of [START_REF] Lauerwald | Natural Lakes Are a Minor Global Source of N2O to the Atmosphere[END_REF]. Most of these studies represent a climatology of average annual fluxes. Only the process-based model by [START_REF] Yao | Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[END_REF] allows for spatio-temporally resolved simulation results which cover seasonality, interannual variability and long-term temporal trends. So far, this model includes rivers and reservoirs. For lakes, a global scale, process based model that permits for temporally varying N 2 O emissions is still missing. In line with what was discussed in the preceding subsection, such a model would need to couple lake physics and biogeochemistry.

Data requirements

To achieve better global estimates of inland water N 2 O emissions, more observational data is needed, in particular from systems that are so far underrepresented like lakes of high latitude and tropical areas, in general oligotrophic systems that are not susceptible to yield high N 2 O emissions and may even be sinks, the smallest systems including natural and farm ponds, and ponds used for aquaculture. In general, more systematic observational programs permitting the quantification of seasonality and the impact of seasonal ice cover, lake turn-over and algae blooms to annual emissions are needed to avoid biased upscaling of annual flux estimates. Finally long-time series are needed to assess the long-term evolution of inland water N 2 O emissions and to evaluate process based models.

To support the application of more advanced upscaling approaches in the estimation of inland water N 2 O budgets, including process based models, better data on environmental drivers and boundary conditions are required. That includes the representation of reactive N species to inland waters. While global estimates of total N and DIN inputs to the river network exist [START_REF] Mayorga | Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation[END_REF], it would be even better to have information on the more specific inputs of nitrate, ammonium, and dissolved N 2 O to set the boundary conditions for processes involved in N 2 O production, reduction and emissions. Further, the model representation of N and N 2 O cycling in inland water would profit from datasets on bed morphology of the water body and properties of bed sediments. [START_REF] Marzadri | Global riverine nitrous oxide emissions: The role of small streams and large rivers[END_REF] have used a machine learning approach to estimate all these boundary conditions for application of their model of stream N 2 O production. While this seems a promising strategy, this approach could be steadily improved with new findings from field observations and improved datasets of predictor variables. Also for lakes and reservoirs, only estimates of volume and average lake depth are available [START_REF] Messager | Estimating the volume and age of water stored in global lakes using a geo-statistical approach[END_REF]), which could be steadily improved using a similar strategy. Finally, for the better assessment of lake and reservoir N 2 O budgets, physical processes such as stratification, mixing and ice cover would need to be represented dynamically. For example, process based models of lake physical processes have been developed and even implemented into land surface models for global scale application [START_REF] Subin | An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1[END_REF] and the outputs of such models may be included in future lake and reservoir N 2 O models.

Conclusions and outlook

The number of global scale estimates of inland water GHG emissions is constantly increasing, at an accelerated step. For CO 2 and CH 4 , we see a tendency for increasing numbers in estimates of global scale fluxes following the inclusion of water bodies which contribute significantly to the overall water surface area, and disproportionally to overall emissions. For water bodies above a certain size (e.g. stream orders, lake size), estimates of average emission rates seem to converge in latest estimates. Major discrepancies persist however with regard to the assumed water surface area and the statistical distribution of water body size classes, in particular for small lakes and impoundments (<10 ha), and ponds. For riverine N 2 O emissions on the contrary, we find newer estimates to be lower than older estimates, following a change in methodologies moving away from application of emission factors towards more process oriented modeling. For lake N 2 O emissions, discrepancies in assumed water surface area and distribution of lake size classes still play a role as well, but not as strongly as for CO 2 and CH 4 because small water bodies do not appear to contribute disproportionately to the total emission flux.

There is ongoing work to improve spatially explicit datasets of inland water surface areas that will help improve global scale estimates. For streams and rivers, global scale estimates have recently been largely improved combining high resolution remote sensing of water surface areas and statistical prediction for headwater streams which are too narrow to be detected (GRWL). A similar strategy may also be the solution for lakes and reservoirs, combining data from inventories and remote sensing. Inventories are more reliable but less comprehensive as they exclude smallest water bodies and are susceptible to geographical biases due to differences between national data sources. Remote sensing is able to detect smaller water bodies but is prone to contaminations with wrongly attributed water surface areas if unsupervised algorithms are applied and checks for ground truth in sufficient quantity and quality are not possible.

More importantly, improving inland water GHG emissions estimates requires more fieldwork to improve quantity and quality of observational data. In particular, we need more data from systems in remote areas of the high latitudes and the tropics, and systematic measurements with time-series of sufficient length and frequency of observations to better capture seasonal and inter-annual variability in fluxes as well as long-term trends in response to environmental change. In addition, more attention has to be paid to hot-spots and hot-moments of inland water GHG emissions, which likely contribute a substantial fraction of overall emissions.

For upscaling and predictions to achieve better global scale estimates, recent developments of machine learning based approaches and process-oriented models seem promising. These approaches help to better constrain the spatial-temporal variability in global scale estimates, which helps to better include inland water GHG emissions in regionalized budget efforts such as RECCAP-2, but also in top-down approaches based on atmospheric inversions, which will help to further reduce uncertainties in global estimates.

  estimated 2 Tg N 2 O/yr, and later Kroeze et al. (2010) revised their estimate to 0.5-3.3 Tg N 2 O/yr, both using modeled DIN loads and EFs of 0.3% and 3%. De Klein et al. (2006) predicted a global riverine N 2 O emission of 0.6 Tg N 2 O/yr, while Beaulieu et al. (2011) calculated an emissions flux of 1.1 Tg N 2 O/yr, both using the IPCC approach.

  used findings from field studies to fit equations predicting riverine N 2 O emissions as a nonlinear function of dissolved inorganic N yield and catchment area, thus overcoming some of the limitations of the EF approach.[START_REF] Horgby | Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains[END_REF] focused on alpine streams). These studies all used global datasets including digital elevation models and their derivatives (stream network and channel slope) and gridded estimates of average annual river flow to estimate stream surface area and k GHG spatially explicitly. While[START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF] combined their estimates of A IW and k GHG with regionalized averages of calculated ΔC CO2 ,[START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF] and[START_REF] Horgby | Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains[END_REF] further used multiple linear regression models to estimate riverine ΔC CO2 from different spatial drivers (like terrestrial Net Primary Productivity -NPP, climate, terrain steepness inLauerwald et al. 2015, or elevation, soil carbon stocks, and discharge in 

	Another prominent example for the first group of methods is the study by DelSontro et al. (2018),
	predicting global lake CH 4 emissions empirically. DelSontro et al. (2018) fitted multilinear regressions
	equations to a database of literature studies of 166 water bodies quantifying lake CH 4 emissions, that
	predict the total (diffusive + ebullitive), annual emission flux from lake size and lake productivity (defined
	as chlorophyll or phosphorus concentration). The fitted regression equations were then applied to
	different global datasets/estimates of lake surface area and an assumed statistical distribution of lake
	productivity across global lakes to estimate the global-scale CH 4 emissions from these water bodies.
	Examples for the second group of methods are the studies by Raymond et al. (2013), Lauerwald et al.
	(2015), and Horgby et al. (2019) that estimated CO 2 emissions from rivers at the global scale or for
	specific ecoregions (

Reference Σ CO 2 em /Σ A water Σ A water Σ CO 2 em Method [g CO 2 m -2 yr -1 ] [10 6 km 2 ] [Pg CO 2 yr -1 ]

  

			5.36		observations
	-"-	416	4.42	1.84 (1.72-	Statistical prediction
				1.98) a	
	-"-	360	5.36	1.93 (1.80-	Statistical prediction
				2.06) a	
	-"-	276	3.23	0.89 (0.83-	Statistical prediction
				0.96) a	
	Raymond et al. 2013 &	392	3	1.17 (0.22-	Upscaling from
				3.08) a	observations + Statistical
					prediction
	Aufdenkampe et al. 2011	638	2.80-	2.35	Upscaling from
			4.54		observations
		Lakes (including lakes with dams)	
	DLEM (Tian et al. 2015b)	312	2.4	0.77	Model
	Holgerson and Raymond	348	5.98	2.14	Upscaling from
	2016				observations
	Tranvik et al. 2009			1.94	Literature review
	Cole et al. 2007	257	2	0.4	Literature review
			Reservoirs		
	DLEM (Tian et al. 2015b) DLEM (Tian et al. 2015b) Deemer et al. 2016 Liu et al. 2022 & Cole et al. 2007	312 3531 451 9900 686	0.27 Rivers 0.64 0.3 0.672 1.5	0.08 2.24 0.14 (0.12-0.16) a 7.33±0.73 b 1.03	Model Upscaling from Model observations Machine learning Literature review
	Lauerwald et al. 2015 &	5771	0.55-	2.38 (1.77-	Statistical prediction
			0.67	3.10) a	
	Raymond et al. 2013 &	10644	0.62	6.6 (5.7-7.5) a	Upscaling from
					observations + Statistical
					prediction
	Aufdenkampe et al. 2011	5009	0.31-	2.05	Lumped estimate
			0.51		
	Tranvik et al. 2009			2.02	Literature review
	Cole et al. 2007	1492	0.74	0.84	Literature review
		Streams and small rivers	
	Liu et al. 2022 &	23962	0.202	4.84	Machine learning
	Marx et al. 2017			3.41	Literature review
	Lauerwald et al. 2015 &	7348	0.14-	1.16 (0.78-	Statistical prediction
			0.26	1.61) a	
			Mountain streams		
	Horgby et al. 2019	17490	0.035	0.61	Statistical prediction
			Large rivers		
	Liu et al. 2022 &	4946	0.47	2.31	Machine learning
	Lauerwald et al. 2015 &	3942	0.41	1.22 (0.96-	Statistical prediction
				1.54) a	
		Lakes and reservoirs	
	DelSontro et al. 2018	414	3.23-	1.99-3.30	Upscaling from

a lower and upper 90%

[START_REF] Raymond | Global carbon dioxide emissions from inland waters[END_REF][START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF][START_REF] Deemer | Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis[END_REF] 

or 95% (DelSontro et al. 2018) CI b standard error c min and max estimate & estimate accounts for effects of seasonal ice cover

  . For instance, relying on direct C CO2 measurements and seasonally varying estimates for k and river surface area,[START_REF] Liu | The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[END_REF] demonstrated CO 2 emission from global streams and rivers varied between 411 to 766 Tg CO 2 yr -1 per month, i.e. by a factor of ~ 2, with the highest global emissions during northern summer in July.A process-based model has also been developed (DLEM,Tian et al. 2015b), which predicts a much lower emission rate than recent data-driven approaches (2.24 versus 6.60-7.33 Pg CO 2 yr -1 ) (Table1). The DLEM estimate is however close to the estimate by[START_REF] Lauerwald | Spatial patterns in CO2 evasion from the global river network[END_REF] (2.38 Pg CO 2 yr -1 ) that only accounted for emissions from medium-sized to large rivers (i.e., 3rd order and above). The large discrepancy (i.e., 2.24 versus 6.60-7.33 Pg CO 2 yr -1 ) however argues for the importance of the smallest streams in global CO 2 emission from fluvial networks

  2 emissionshave not yet attempted to include estimates of aquatic net ecosystem production (NEP), that is the difference between aquatic production and respiration, and thus they currently assess inland waters net-CO 2 emissions rather as a black box that is fed by (semi-)terrestrial C inputs. The recent study byBattin et al. (in revision) has nevertheless demonstrated that inclusion of NEP estimates can help to disentangle autochthonous CO 2 production from allochthonous CO 2 inputs even at global scale. This study corroborates the assumption that most of the aquatic CO 2 evasion is derived from external CO 2 inputs. However, also availability of aquatic NEP data is limited and does not allow yet for spatially explicit estimates at global scale. More importantly, diurnal variations in NEP may entail similar variation in pCO 2 and air-water CO 2 exchange. Moreover, predominant sampling during daytime, when CO 2 emissions are lower than at night, may lead to important biases in flux estimations.[START_REF] Gómez-Gener | Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions[END_REF] recently argued that global estimates based on daytime measurements are biased as night time emissions are on average ~30% higher.

Table 2 :

 2 Existing global estimates of lake, reservoir, and river CH 4 flux. For each estimate, the total water surface area (Σ A water ), the total CH 4 emission flux (Σ CH 4 em ) and the area weighted average emission rate (Σ CH 4 em /Σ A water ) are reported.

	Reference	Σ CH 4em /Σ A water	Σ A water	Σ CH 4 em	Method
		g CH 4 m -2 yr -1	[10 6 km 2 ]	Tg CH 4 yr -1	
			Rivers		
	Bastviken 2011	4	0.36	1.5	Upscaling from observations
	Stanley et al. 2016	41.4 *	0.65	27 *	Upscaling from observations
	Rosentreter et al. 2021	66.5	0.77	30	Upscaling from observations
		Lakes and Reservoirs		
	DelSontro et al. 2018	61.7	3.23-5.36	199-331	Upscaling from observations
	-"-	33.7	4.42	236) a 149 (95-	Statistical prediction
	-"-	34.5	5.36	295) a 185 (119-	Statistical prediction
	-"-	32.2	3.23	165) a 104 (67-	Statistical prediction
	Holgerson and Raymond 2016	2.7 *	5.98	16 *	Upscaling from observations
	Stavert et al. 2021	32.4	2.93	95	Statistical prediction
		Lakes (including lakes with dams)	
	Bastviken et al. 2004	0.12-122.9	2.8	8-48	Upscaling from observations
	Bastviken et al. 2011	19.2	3.7	72	Upscaling from observations
	Rosentreter et al. 2021 &	54.1	3.71-5.69	151	Upscaling from observations
	Johnson et al. 2022 &	15	2.8	42 ± 18 b	Model
		Reservoirs		
	St. Louis et al. 2000	35	1.5 $	52	Upscaling from observations
	Bastviken 2011	40.1	0.5	20	Upscaling from observations
	Deemer et al. 2016	58.5	0.31	17 (12-30) a	Upscaling from observations
	Rosentreter et al. 2021 &	63.8	0.26-0.58	24	Upscaling from observations
	Harrison et al. 2021 &	28.3(62.9) #	0.35	9.8 (22) #	Model
	Johnson et al. 2021 &	33.3	0.3	10	Model

Table 3 :

 3 Global scale estimates of inland water N 2 O emissions. For each estimate, the total water surface area (Σ A water ), the total N 2 O emission flux (Σ N 2 O em ) and the area weighted average emission rate (Σ N 2 O em /Σ A water ) are reported.

	Reference	Σ N 2 O em /Σ A water	Σ A water	Σ N 2 O em	Method
		mg N 2 O m -2 yr -1	10 6 km 2	Gg N yr -1	
			Rivers		
	Seitzinger & Kroeze 1998 and			1650 (300 -	Emission factors
	Seitzinger et al. 2000			2940) c	
	Kroeze et al. 2005			1975	Emission factors
	Mosier et al. 1998			1100	Emission factors
	De Klein et al. 2006			550	Emission factors
	Kroeze et al. 2010			470-3300	Emission factors
	Beaulieu et al. 2011			1070	Emission factors
	Hu et al. 2016			51 (19-105) a	Statistical prediction
	Maavara et al. 2019			72-78 c	Model
	Yao et al. 2020			458±92 b	Model
	" , stream orders 1-3			387±93 b	Model
	" , stream orders ≥4			71±23 b	Model
	Marzadri et al. 2021			114	Machine learning+Model
	" , stream orders 1-3			76	Machine learning+Model
	" , stream orders ≥4			38	Machine learning+Model
		Lakes and reservoirs		
	DelSontro et al. 2018	78	3.23-5.36	252-424	Upscaling from observations
	DelSontro et al. 2018	106	4.42	470 (300-	Statistical prediction
				710) a	
	DelSontro et al. 2018	112	5.36	600 (380-	Statistical prediction
				860) a	
	DelSontro et al. 2018		3.23	410 (250-	Statistical prediction
		127		600) a	
	Soued et al. 2016	235	4.20	985±465 b	Upscaling from observations
	Lauerwald et al. 2019	34	2.93	98±64 c	Model
		Lakes (including lakes with dams)	

Persisting shortcomings and future challenges
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