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Keypoints 

We explore the state-of-the-art in inland water greenhouse gas emissions, discussing existing estimates 

and underlying methodologies 

Development of models increasingly allows for assessment of spatial and temporal variability of emission 

fluxes 

There is a persisting need for observations that capture hot-spots and hot-moments in emissions, 

including from small water bodies 

 

Abstract 

Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) to the atmosphere. In the framework  of the 2nd phase of the REgional 

Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we review the state of the art in 

estimating inland water GHG budgets at global scale, which has substantially advanced since the first 

phase of RECCAP nearly ten years ago. The development of increasingly sophisticated upscaling 

techniques, including statistical prediction and process based models, allows for spatially explicit 

estimates which are needed for regionalized assessments of continental GHG budgets such as those 

established for RECCAP. A few recent estimates also resolve the seasonal and/or interannual variability 

in inland water GHG emissions. Nonetheless, the global-scale assessment of inland water emissions 

remains challenging because of limited spatial and temporal coverage of observations and persisting 

uncertainties in the abundance and distribution of inland water surface areas. To decrease these 

uncertainties, more empirical work on the contributions of hot-spots and hot-moments to overall inland 

water GHG emissions is particularly needed. 
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1 Introduction 

Inland waters (streams, rivers, lakes and reservoirs) are net-sources of greenhouse gasses (GHGs) to the 

atmosphere. They receive considerable amounts of reactive organic matter from terrestrial ecosystems, 

promoting the production of GHGs like carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). 

Inland waters are usually net-heterotrophic, meaning CO2 production through respiration exceeds CO2 

consumption by aquatic production (Battin et al., in revision). An additional source of inland water GHG 

emission comes from terrestrial and wetland runoff and drainage which can be oversaturated in 

dissolved CO2 produced by microbial and root respiration (Abril & Borges, 2019). Once this 

supersaturated aqueous solution enters surface waters, it can release gas to the atmosphere and 

contribute to inland water CO2 emissions. Similarly, inland waters receive dissolved CH4 and N2O from 

oversaturated soils and groundwater (Jurado et al., 2017; Rasilo et al., 2017). In addition, the sharp 

fronts between reducing and oxidizing conditions within the water column or at the interface between 

surface and subsurface environments (e.g. benthic and hyporheic zones) promotes the production and 

emissions of N2O (Marzadri et al., 2017, 2021). Moreover, autochthonous aquatic production may 

enhance nitrification in the water column through increased oxygen levels, while it may stimulate 

denitrification and methanogenesis in reducing, benthic sediments through delivery of labile organic 

matter. These processes play an important role in the N2O and CH4 budgets of eutrophic lakes and 

reservoirs (DelSontro et al. 2018, Zhou et al., 2021). 

While the processes driving GHG production have been known to limnologists for some time, large-scale 

quantification of inland water GHG emissions is still difficult and estimates are afflicted by large 

uncertainties. In their 5th Assessment Report (AR5, 2013), the IPCC acknowledged for the first time that 

inland waters are a significant contributor to the global GHG budget. At the same time, however, it was 

recognized that GHG fluxes from these ecosystems remain poorly constrained at the global scale. High 

uncertainties in flux estimates arise due to a poor spatial and temporal coverage of direct observations 

(Bastviken et al., 2011; Deemer et al., 2016; Regnier et al., 2013, 2022; Soued et al., 2016) and are 

reflected in the large range of estimated GHG fluxes reported in AR5: 0.8 - 1.2 Pg C yr-1 for CO2, 8 - 73 Tg 

CH4 yr-1 for CH4, and 0.1 – 2.9 Tg N yr-1 for N2O. The AR6 of the IPCC provides updated ranges for N2O (0.5 

– 1.1 Tg N yr-1) and CH4 (112 - 217 Tg CH4 yr-1) emissions which are narrower, but still reflect significant 

uncertainties. This is especially true for inland water CH4 emissions which remain proportionally the 

largest source of uncertainty in the global budget of this GHG (Canadell et al., 2021).   

As part of the first phase of the REgional Carbon Cycle Assessment and Processes (RECCAP) initiative 

(RECCAP-1), Raymond et al. (2013) re-estimated global inland water CO2 evasion suggesting that the 

total flux could be as high as 2.1 Pg C yr-1, which is about twice the estimates synthesized in AR5. This 

much higher estimate was due to a re-estimation of stream surface areas including small headwater 

streams which contribute disproportionately to the total water surface area and CO2 emission, but which 

were neglected in earlier assessments that used datasets representing only larger global rivers (e.g. Cole 

et al., 2007). More importantly, Raymond et al. (2013) provided the first global maps of inland water CO2 

emissions, which allowed for the use of these estimates in regionalized, global C budgets (Bastos et al., 

2020; Ciais et al., 2021; Zscheischler et al., 2017). 
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Since RECCAP1, a growing number of global estimates of inland water GHG emissions have been 

published, not only for CO2 emissions (e.g. Holgerson & Raymond, 2016; Horgby et al., 2019; Lauerwald 

et al., 2015; Liu et al., 2022), but also for CH4 (e.g. Holgerson & Raymond, 2016; Rosentreter et al., 2021; 

Stanley et al., 2016) and N2O (e.g. Hu et al., 2016; Lauerwald et al., 2019; Maavara et al., 2019; Marzadri 

et al., 2021; Soued et al., 2016; Yao et al., 2020), or for all three GHGs combined (e.g. Deemer et al., 

2016; DelSontro et al., 2018). While the limited availability and quality (e.g. length and frequency of 

time-series), and uneven global coverage of observed emission rates (see e.g. Deemer et al. 2016) still 

represent a large source of uncertainty, the amount and quality of empirical data has steadily increased 

over the past decade. In addition, global emission estimates profited from the appearance of new, 

improved data sets of inland water surface areas (Allen & Pavelsky, 2018; Lehner et al., 2011; Messager 

et al., 2016; Verpoorter et al., 2014). Finally, global scale estimation of inland water GHG budgets have 

been improved through novel upscaling techniques based on statistical (e.g. Lauerwald et al. 2015, 

DelSontro et al. 2018) and process based models of varying complexity (e.g. Maavara et al. 2019, Yao et 

al. 2020).  

In the framework of the second phase of RECCAP (RECCAP-2), we present a review of existing global 

estimates of inland water GHG emissions. We start with a general overview of methods to achieve global 

scale estimates, starting from methods to measure flux rates in the field, followed by methods used to 

upscale flux rates to the global scale and which comprise a large range of approaches including simple 

upscaling based on average observed flux rates, statistical prediction and the use of process based 

models (section 2). Then, in three subsections respectively dedicated to estimates of emissions of CO2 

(section 3), CH4 (section 4) and N2O (section 5), we discuss the state of the art for each of these GHGs in 

more detail, review all existing global estimates, and explore differences between flux assessments and 

their underlying methods. In addition, we highlight for each GHG persisting shortcomings and challenges 

for future research. The companion paper in the same issue (Lauerwald et al., submitted) then builds on 

the present review  to derive a regionalized assessment for the 10 regions used in the RECCAP-2 project. 

In this companion paper, each previously published global estimate reported here was rescaled using the 

same new global assessment of inland water surface area, allowing for better consistency and 

homogeneity across all previously published values   

2 Overview of upscaling strategies and surface area estimates used in global studies of inland water 

GHG emissions 

This subsection gives a brief overview of different methods that are used to obtain global scale estimates 

of inland water GHG emissions. These methods are here classified into three main approaches, namely 

direct upscaling based on observations (2.1), statistical upscaling based on functional relationships 

between emissions and environmental drivers (2.2), and process-based models (2.3). We also briefly 

review here progress in the global scale assessment of inland water surface areas (2.4), which is of vital 

importance for global upscaling of inland water GHG emissions. 

2.1 Upscaling based on observations 
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Large-scale estimates of inland water GHG emission fluxes FGHG are usually calculated as the product of 

an average flux rate fGHG, which can be expressed in units of mass per area and time, as derived from a 

set of field observations, and an estimate of the inland water surface area AIW for which this flux rate is 

assumed to be representative (eq. 1). 

 FGHG = fGHG * AIW           (eq. 1) 

Many estimates have applied this simple upscaling technique directly at the global scale using an average 

fGHG multiplied by the total AIW of one specific type of inland waters. For instance, Deemer et al. (2016) 

calculated the average rates of GHG emissions from reservoirs, using observations from empirical studies 

around the world, and multiplied those average rates by the estimated total area of reservoirs after 

Lehner et al. (2011). Others have first broken down the total of inland waters of one type into different 

subgroups, e.g. based on size of water body or stream order (Holgerson & Raymond, 2016; Humborg et 

al., 2010), geographic region (e.g. Aufdenkampe et al., 2011; Bastviken et al., 2011; Soued et al., 2016; 

Johnson et al., 2021) or both (Raymond et al. 2013, Rosentreter et al. 2021). An area-integrated flux from 

each subgroup was then calculated following the same eq. 1, before summing those up to a global flux. 

Methods and challenges to obtain estimates of AIW are presented in detail in section 2.4. In what follows, 

we will first focus on uncertainties associated with measuring and calculating fGHG. Flux rates can either 

be obtained from GHG emission rates directly measured in the field (section 2.1.1), or from 

measurements or calculation of GHG concentration gradients and concomitant measurements or models 

of gas transfer velocities (section 2.1.2). Note that this study does not aim to provide a detailed review of 

field methods. These aspects are thus only briefly discussed, with a focus on methodological 

uncertainties.   

2.1.1 Directly observed flux rates 

A common method to measure aquatic GHG emission rates is the use of floating chambers, which 

resemble inverted plastic buckets put onto the water surface. The emission rates are then calculated 

based on the accumulation rate of GHGs within the floating chamber headspace. This method detects 

the emission rate from the small surface area of the floating chamber across the larger area over which 

the chamber may be moving during the deployment. Chambers may drift a few meters if tethered or 

over longer distances if drifting freely during the deployment. Such a well-defined footprint is 

advantageous for studies of local flux regulation and for distinguishing variability in space versus time. 

Concurrently, the small size of the footprint leads to potentially high uncertainties in the extrapolation of 

flux chamber measurements to large areas, without numerous representative measurements. Eddy 

covariance towers, though less common and only applicable in standing water bodies of a certain size 

have the advantage of generating net fluxes (i.e. emission or uptake) from a larger surface area 

(depending on height, surface roughness and wind speeds, eddy covariance towers can have a footprint 

of up to 3-km radius (Chu et al., 2021)), thus delivering a more representative emission rate (Podgrajsek 

et al., 2014). In contrast to the floating chamber method, the eddy covariance technique also allows for 

continuous measurements which provide better temporal resolution in emission rates. However, the flux 

footprint is constantly moving with wind speed and direction, making variability in time and space 
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challenging to distinguish. Fluxes cannot be measured at all when there is no wind (e.g. typical during 

night time) and complications associated with rainfall and lateral advective gas flux make accurate flux 

measurements challenging. Eddy covariance also relies on the performance of advanced equipment and 

a high level of operator expertise for adequate data filtering and QA/QC. Above all, limited eddy 

covariance measurements mean that global upscaling based only on this method is not yet possible, and 

inherent limitations make eddy covariance suboptimal for key inland water emission measurements such 

as fluxes from streams and along lake shores.   

While the majority of CO2 and N2O emissions occur through diffusive flux across the air-water interface, a 

significant but variable fraction of aquatic CH4 flux occurs as bubbles (i.e. ebullition). Ebullition occurs 

when CH4 produced in aquatic sediments forms gas bubbles that at a certain size, due to buoyancy, 

evade the sediment layer and ascend through the water column. Existing emission estimates from 

floating chambers sometimes intentionally exclude ebullition. Other floating chamber methods include 

both diffusive and ebullitive emissions. Also eddy covariance towers measure the sum of both emission 

pathways. There are nonetheless various methods to directly quantify ebullition. However, these 

methods detect bubbles rather than CH4 and need supplementary measurements of CH4 concentration 

within the bubble air, usually from manually taken samples, to allow flux estimation. This point is critical 

as CH4 concentration in bubbles can vary widely, from less than 1% to > 80% (Boereboom et al. 2012). 

The most common methods for directly quantifying ebullition rates is the bubble trap, an inverted funnel 

that collects ascending bubbles and is sometimes connected to a hydrostatic pressure sensor 

(Varadharajan et al., 2010) or specialized bubble size sensors (Delwiche & Hemond, 2017) to measure 

the timing and size distribution of ascending bubbles. Ebullition measurements based on point 

measurements in space and time are currently very labor intensive given the high spatiotemporal 

variability of ebullition fluxes (Linkhorst et al., 2020). Echosounders (Ostrovsky et al., 2008), robotic boats 

connected to optical methane detectors (Grinham et al., 2011) and under-ice surveys (Wik et al., 2011) 

have also been used to quantify ebullition rates. In addition, radar remote sensing approaches are 

currently being developed that could integrate over space and time for more representative 

measurements (Engram et al., 2020).  

2.1.2 Estimating diffusive fluxes based on concentration gradients 

The methods for directly measuring emission rates can easily be applied in deeper, slower-moving 

waters (floating chambers and funnel traps) or in larger water bodies (eddy covariance). However, these 

methods are often not feasible for smaller streams. Instead, emission flux rates can be calculated from a 

gradient in concentrations of a specific GHG (ΔCGHG) in the water close to the surface and in the overlying 

atmosphere and a gas exchange velocity kGHG (eq. 2). Note that this method only allows estimation of 

diffusive emissions, and is not applicable for ebullition. The gradient ΔCGHG can be calculated based on 

direct field measurements using headspace equilibration methods (e.g. Müller et al., 2015), or using 

measured headspace partial pressures and solubility constants that depend on salinity and water 

temperature (Weiss, 1970). 

 fGHG = ∆CGHG * kGHG                   (eq. 2) 
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The headspace equilibration method consists of equilibrating a known volume of sampled water and a 

known volume of air, with a known initial partial pressure of the GHG to be analyzed. After full 

equilibration, a sample of the headspace is analyzed by e.g. gas chromatography, optical gas analyzers, 

or other gas analysis methods, to measure the corresponding GHG partial pressure from which the CGHG 

in the sampled surface water can be calculated. This concentration is compared with the theoretical 

concentration in equilibrium with the background air partial pressure of the GHG in focus to yield ΔCGHG. 

In the case of CO2, concentrations can also be calculated from observations of alkalinity and pH based on 

chemical equilibria and the assumption that non-carbonate contributions to alkalinity are negligible, 

which can be questioned in some common aquatic systems [Abril et al 2015] (see section 3.2 for more 

discussion). 

Gas exchange velocity can be assessed through direct tracer studies in which a specific tracer gas is 

released into the stream, and its loss is measured over a defined length. As this method is too 

cumbersome and costly to be applied everywhere, empirical equations have been established that relate 

kGHG to the rate of energy dissipation at the water-air interface. Energy dissipation causes the turbulent 

mixing of the upper water column and thus determines the depth of the water column which interacts 

with the atmosphere through the process of diffusion. For streams and rivers, this energy dissipation 

rate can be estimated from stream flow velocity and stream channel geometry, in particular the slope of 

the stream channel (Natchimuthu et al., 2017; O’Connor & Dobbins, 1958; Raymond et al., 2012). More 

recent work has however noted a breakpoint in the energy dissipation rate at which air entrainment and 

bubble formation cause kGHG to increase more rapidly with energy dissipation (Ulseth et al., 2019). This 

suggests that assuming only diffusive water-air gas exchange, as it is assumed in most studies of inland 

water CO2 emissions, may lead to underestimated gas transfer velocities in systems with very high 

hydrological energy. For lakes and reservoirs, empirical equations relate kGHG to wind speed (Cole & 

Caraco, 1998), lake surface area (Read et al., 2012), or both (Vachon & Prairie, 2013), as the degree to 

which wind shear vs convective mixing dominate gas transfer dynamics generally changes as a function 

of waterbody size. More sophisticated modeling of kGHG from lake hydrodynamics considering multiple 

turbulence-generating processes have also been developed (e.g. MacIntyre et al., 2021). It has been 

suggested that models of kGHG should be locally validated whenever possible (e.g. Schilder et al. 2013). 

2.2 Upscaling based on statistical prediction 

A variety of statistical methods have been used to upscale flux measurements/estimates to the global 

scale. These methods can be categorized into two groups of statistical upscaling  approaches: 1) methods 

that predict emission rates directly, and 2) methods that first predict AIW, ΔCGHG and kGHG separately, and 

combine them using eqs. 1 and 2 to estimate the emission flux FGHG,IW. 

A simple example for the first group of methods is the use of emission factors (EFs), which has been 

applied to estimate N2O emissions from river networks (Beaulieu et al., 2011; Kroeze et al., 2010).  

Averaged EFs, typically defined as the ratio of N2O emissions to riverine N loads, were derived from a 

number of field studies. These EFs were then multiplied by global, spatially explicit estimates of river N 

loads (e.g. Mayorga et al., 2010) to estimate global riverine N2O emissions at the same spatial resolution 

as the riverine N loads. This method assumes that riverine N2O emissions simply scale linearly to riverine 
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N loads, which is problematic from a reaction kinetics point of view, as discussed in Maavara et al. 

(2019). As an alternative empirical approach, Hu et al. (2016) used findings from field studies to fit 

equations predicting riverine N2O emissions as a nonlinear function of dissolved inorganic N yield and 

catchment area, thus overcoming some of the limitations of the EF approach.  

Another prominent example for the first group of methods is the study by DelSontro et al. (2018), 

predicting global lake CH4 emissions empirically. DelSontro et al. (2018) fitted multilinear regressions 

equations to a database of literature studies of 166 water bodies quantifying lake CH4 emissions, that 

predict the total (diffusive + ebullitive), annual emission flux from lake size and lake productivity (defined 

as chlorophyll or phosphorus concentration). The fitted regression equations were then applied to 

different global datasets/estimates of lake surface area and an assumed statistical distribution of lake 

productivity across global lakes to estimate the global-scale CH4 emissions from these water bodies. 

Examples for the second group of methods are the studies by Raymond et al. (2013), Lauerwald et al. 

(2015), and Horgby et al. (2019) that estimated CO2 emissions from rivers at the global scale or for 

specific ecoregions (Horgby et al. 2019 focused on alpine streams). These studies all used global datasets 

including digital elevation models and their derivatives (stream network and channel slope) and gridded 

estimates of average annual river flow to estimate stream surface area and kGHG spatially explicitly. While 

Raymond et al. (2013) combined their estimates of AIW and kGHG with regionalized averages of calculated 

ΔCCO2 , Lauerwald et al. (2015) and Horgby et al. (2019) further used multiple linear regression models to 

estimate riverine ΔCCO2 from different spatial drivers (like terrestrial Net Primary Productivity - NPP, 

climate, terrain steepness in Lauerwald et al. 2015, or elevation, soil carbon stocks, and discharge in 

Horgby et al. 2019). Note that combining independent estimates of kGHG and ΔCGHG introduces an 

additional source of uncertainty, as ΔCGHG is in turn controlled by kGHG and its balance with CO2 resupply 

rates to the surface water, which is for instance evidenced by low ΔCGHG in turbulent, high alpine streams 

(Horgby et al. 2019). 

2.3 Process-based models 

Process-based models of varying degrees of complexity have recently been used to assess inland water 

GHG emission at the global scale (Maavara et al., 2019; Marzadri et al., 2021; Yao et al., 2020). Ideally,  

such models represent carbon and nutrient transport and transformation processes that drive 

production, cycling and emission of GHGs in a water body or along a cascade of water bodies (like a 

sequence of stream reaches or a cascade of reservoirs along a river network). This representation 

requires boundary condition data at the global scale and in sufficient quality and quantity. This data 

requirement is a major limitation for the applicability of process-based models for inland water GHG 

emissions at the global scale. 

A promising strategy to overcome that limitation is the explicit representation of inland waters and 

associated biogeochemical processes in land surface models (LSMs) that simulate the terrestrial cycling 

of energy, water, C, nutrients, and GHGs. Using LSMs, the biogeochemical and transport processes that 

drive the GHG dynamics can be simulated simultaneously for terrestrial and freshwater ecosystems, 

reducing the need for complex boundary conditions at the land-inland water interface. Developments in 
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that direction have been achieved for the LSMs DLEM (Tian et al., 2015a,b; Yao et al., 2020) and 

ORCHIDEE (Lauerwald et al., 2017, 2020). At global scale, LSM simulations including inland water N2O 

and CO2 emissions have yet only been achieved with DLEM (Yao et al. 2020, Tian et al. 2015b). 

When using LSMs, the simulated water fluxes and associated terrestrial C and nutrient inputs to inland 

waters are already afflicted by considerable uncertainties, including those arising from the 

overparameterization of these extremely complex models. Thus, an alternative is to use process-based  

models of only inland waters forced by data driven information. The  global river network N2O modeling 

studies by Maavara et al. (2019) and Marzadri et al. (2021) follow two different strategies to overcome 

data limitations to constrain the models. Maavara et al. (2019) followed a metamodeling strategy, for 

which a box model representing all major processes of N and N2O cycling in a water body was first set-

up. While this process-based model could not be applied at global scale due to data limitations to 

constrain each biogeochemical process, Maavara and colleagues ran the model across a realistic range of 

model input parameters using a Monte Carlo approach  to derive simple response functions. The 

resulting response functions relating N2O emissions to nutrient loads and water residence times were 

then applied at global scale using loads and residence times derived from available global datasets. 

Marzadri et al. (2021) applied their process-based model of river N2O emissions directly at global scale, 

which required spatially resolved model inputs comprising a detailed set of parameters describing 

stream hydro-morphology and water quality, which in that form did not yet exist at global scale. To 

overcome that limitation, machine learning techniques were applied to derive these input datasets from 

other, available geodata. These input data were then used to feed a process-based model that 

parametrizes N2O emissions as a function of river size by means of two Damköhler numbers representing 

the ratio between a characteristic time of transport and a characteristic time of reaction. The proposed 

hybrid model (machine learning + process based) allows consideration of the contribution of surface (e.g. 

water column) and subsurface (e.g. benthic and hyporheic zones) processes to N2O emissions (Marzadri 

et al., 2021). 

For aquatic CH4 emissions, process-based modeling efforts have been mostly dedicated to lake and 

reservoir systems. For example, an online, open-source predictive model framework “G-res” has recently 

been developed to provide global, spatially explicit estimates of the form and magnitude of reservoir CH4 

and CO2 emissions  (Harrison et al., 2021; Prairie et al., 2021). G-res uses a series of calibrated empirical 

models that integrate local (reservoir-specific) and regional (watershed attributes) information to predict 

GHG emissions (Prairie et al. 2021). The model has been applied to 4,727 reservoirs to estimate global 

emissions (Harrison et al. 2021). Tan and Zhuang (2015a, 2015b) have developed and applied a process 

based model to estimate CH4 emissions from lakes at pan-arctic scale. That model produces gridded 

output, resolves seasonal and interannual variability and permits for projections of long-term trends 

following global change scenarios. 

2.4 Available data and previous estimates of global inland water surface area 

The first digital global map of inland water surface areas that was used for inland water GHG emission 

estimates was the Global Lake and Wetland Database (GLWD) by Lehner and Döll (2004). GLWD was 

derived from a compilation of different global and regional inventories. While GLWD is not globally 
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consistent with regard to detail and reliability of the data sources, it represented the best available 

dataset for more than a decade and was used in numerous studies of inland water GHG emissions (e.g., 

by Raymond et al. 2013 for lakes and reservoirs, by Aufdenkampe et al. 2011 for all water bodies). Since 

then, our ability to estimate the global surface area of rivers, lakes, and reservoirs has progressed 

significantly. This progress has been driven by advances in satellite remote sensing, image processing 

methods, and geospatial analysis techniques. Several freely available global hydrography datasets have 

recently become available that can be used to estimate surface area and distribution of inland water 

bodies. Here we discuss a selection of high-resolution, freely available datasets that can be useful for 

global-scale evaluations of greenhouse gas emissions from inland water bodies. 

A few global inland water body datasets have been developed using optical remote sensing data. The JRC 

GSW datasets from Pekel et al. (2016) and the GSWD from Pickens et al. (2020) are two global 30-m-

resolution datasets of open surface water extent, created from the Landsat archive. These datasets are 

multitemporal and highly consistent but they do not distinguish between different water body types (e.g. 

rivers, lakes, etc.). Classifying water body type is necessary in evaluations of GHG exchange because of 

differing exchange rates and processes occurring in different aquatic environments. The Global River 

Widths from Landsat (GRWL) database (Allen & Pavelsky, 2018) contains exclusively river surface areas 

derived from Landsat imagery.  

In addition to these image-based datasets, global topography-based datasets derived from digital 

elevation models (DEMs) have been used for representing the global extent and distribution of streams 

and rivers. These include hydrologically conditioned gridded raster datasets like HydroSHEDS (Lehner et 

al., 2008) and MERIT Hydro (Yamazaki et al., 2019) or vectorized flowline datasets derived from these 

gridded datasets including HydroRIVERS (Lehner & Grill, 2013) or MERIT Hydro–Vector (Lin et al., 2021). 

These DEM-based datasets can be used to infer the location and size of narrow rivers and streams too 

small to be visible from freely available satellite datasets. These datasets can also be used to infer other 

characteristics of river networks including stream order, slope, upstream area, and topology, which are 

of potential value for estimating amount and turbulence of riverflow, which in turn are important drivers 

of GHG emissions. Other hydrography datasets innovatively combine DEM-based datasets with other 

sources of data to produce novel information including machine-learning based estimates of river 

surface area (Lin et al., 2020) and the extent of non-perennial rivers (Lin et al., 2021; Messager et al., 

2021). 

For standing open water bodies like lakes and reservoirs, attempts have also been made to identify 

water bodies from satellite imagery using automated algorithms. A prominent example is the Global 

Water Body (GLOWABO) dataset (Verpoorter et al., 2014). Due to the unsupervised classification method 

and missing evaluation of ground truth, this dataset is however highly uncertified and likely 

contaminated with wrongly assigned riverine, coastal or temporal water bodies. In addition, inventory 

based datasets have further been developed, including the Global Reservoir and Dam database (GRanD) 

(Lehner et al., 2011) and the HydroLAKES database (Messager et al., 2016) which gives water surface 

areas of standing waters distinguishing lakes from reservoirs. Note that HydroLAKES also includes the 

information from GRanD and GLWD, which makes these products partly redundant. The advantage of 
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inventory based datasets as GRanD and HydroLAKES is the avoidance of contamination with other water 

bodies and additional attributes such as names, estimates of water volume and residence time, height 

and purpose of dam for reservoirs, etc. In particular the distinction between lakes and reservoirs is of 

major importance for the assessment of inland water GHG emissions. Reservoirs as artificial water 

bodies deserve special attention, as they represent an anthropogenic source of GHGs and a potential 

lever for controlling future emissions. However, we have to expect an under-classification of reservoirs in 

inventory datasets such as HydroLAKES, as water bodies for which this information was not available 

have been categorized as natural lakes by default (Messager et al. 2016). Smaller hydropower projects 

which outnumber large hydropower projects by approximately 11:1 (Couto & Olden, 2018) may not 

always be inventoried and accounted for in regional and global datasets. Recently, new datasets of dams 

and reservoirs have been created combining remote sensing-based datasets with other sources of 

information, e.g., GOODD (Mulligan et al., 2020) and GeoDAR (Wang et al., 2021), continuously 

increasing the numbers of reservoirs that are taken up into inventories.  

Although considerable progress has been made recently in developing global hydrography datasets, 

much less work has been done to apply these datasets to estimate global surface area of inland water 

bodies. For the surface area of rivers, three notable global estimates have been produced by Downing et 

al. (2012) of 485,000 and 682,000 km2, Raymond et al. (2013) of 487,000 and 761,000 km2, and Allen & 

Pavelsky (2018) of 773,000±79,000 km². Downing et al. (2012) based their estimate on >400 

observations of stream width, data on number and length of streams from HydroSHEDS dataset,  and 

statistical scaling relating stream number, width and length to stream order. Raymond et al. (2013) 

combined the stream network of HydroSHEDS with gridded runoff data to obtain a distribution of stream 

lengths and discharge per stream order of medium to large rivers, to which they then applied empirical, 

hydraulic equations predicting stream width from discharge. Finally, they used stream-order based 

scaling laws to estimate stream surface areas for smaller streams. Allen and Pavelsky (2018) used their 

remote-sensing based GRWL database for surface areas of medium to large rivers, which they 

complemented with topography- and statistical-based estimates for streams narrower than 90m to 

headwater streams as defined by Allen et al. (2018). The GRWL dataset is to date the most complete and 

reliable dataset of its kind. 

For the surface area of lakes and reservoirs, three notable global estimates have been made by Downing 

et al. (2006), Verpoorter et al. (2014), and Messager et al. (2016). Downing et al. (2006) used surface 

areas from standing water bodies > 10 km² from GLWD (Lehner & Döll, 2004) and extrapolated the 

surface area to smaller water bodies down to 0.001 km² assuming power-law relationships (Pareto-law 

distributions) between water body size and frequency. Verpoorter et al. (2014) used their remote-

sensing derived GloWaBo database which includes lakes as small as 0.002 km². Messager et al. 2016 

derived their estimate from their inventory based HydroLAKES database, which contains water bodies  

>0.1 km². Due to this restriction with regard to minimum lake size, Messager et al. (2016) obtained the 

lowest of the three global surface area estimates for standing waters with 2.7 x 106 km². The estimate of 

Downing et al. (2006) is substantially higher with 4.2 x 106 km², while for water bodies larger than 0.1 

km², their estimate of 2.9 x 106 km² is quite comparable to HydroLAKES. The estimate by Verpoorter et 

al. (2014) is even higher with 5 x 106 km², likely due in part to overestimation of lake areas through 
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contamination with other water bodies. A reliable map of smaller bodies of standing water, such as 

ponds, which are thought to contribute substantially to the total water surface area and 

disproportionally to GHG emissions (Holgerson and Raymond 2016; Rosentreter et al. 2021), is still not 

achievable. 

 

3 Inland water CO2 budget  

3.1 Overview of existing estimates 

     Table 1. Global estimates of inland water CO2 emissions. For each estimate, the total water 
surface area (Σ Awater), the total CO2 emission flux (Σ CO2 em) and the area weighted average 
emission rate (Σ CO2 em/Σ Awater) are reported. 

 

Reference Σ CO2 em/Σ Awater Σ Awater Σ CO2 em Method 

  [g CO2 m
-2yr-1] [106 

km2] 
[Pg CO2 yr-1]   

Rivers 

DLEM (Tian et al. 2015b) 3531 0.64 2.24 Model 

Liu et al. 2022& 9900 0.672 7.33±0.73b Machine learning 

Lauerwald et al. 2015& 5771 0.55-
0.67 

2.38 (1.77-
3.10)a 

Statistical prediction 

Raymond et al. 2013& 10644 0.62 6.6 (5.7-7.5)a Upscaling from 
observations + Statistical 

prediction 
Aufdenkampe et al. 2011 5009 0.31-

0.51 
2.05 Lumped estimate 

Tranvik et al. 2009   2.02 Literature review 
Cole et al. 2007 1492 0.74 0.84 Literature review 

Streams and small rivers 

Liu et al. 2022& 23962 0.202 4.84 Machine learning 

Marx et al. 2017   3.41 Literature review 

Lauerwald et al. 2015& 7348 0.14-
0.26 

1.16 (0.78-
1.61)a 

Statistical prediction 

Mountain streams 

Horgby et al. 2019 17490 0.035 0.61 Statistical prediction 

Large rivers  

Liu et al. 2022& 4946 0.47 2.31 Machine learning 

Lauerwald et al. 2015& 3942 0.41 1.22 (0.96-
1.54)a 

Statistical prediction 

Lakes and reservoirs 

DelSontro et al. 2018 414 3.23- 1.99-3.30 Upscaling from 
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5.36 observations 

-"- 416 4.42 1.84 (1.72-
1.98)a  

Statistical prediction 

-"- 360 5.36 1.93 (1.80-
2.06)a 

Statistical prediction 

-"- 276 3.23 0.89 (0.83-
0.96)a 

Statistical prediction 

Raymond et al. 2013& 392 3 1.17 (0.22-
3.08)a 

Upscaling from 
observations + Statistical 

prediction 
Aufdenkampe et al. 2011 638 2.80-

4.54 
2.35 Upscaling from 

observations 
Lakes (including lakes with dams) 

DLEM (Tian et al. 2015b) 312 2.4 0.77 Model 

Holgerson and Raymond 
2016 

348 5.98 2.14 Upscaling from 
observations 

Tranvik et al. 2009   1.94 Literature review 
Cole et al. 2007 257 2 0.4 Literature review 

Reservoirs 

DLEM (Tian et al. 2015b) 312 0.27 0.08 Model 

Deemer et al. 2016 451 0.3 0.14 (0.12-
0.16)a 

Upscaling from 
observations 

Cole et al. 2007 686 1.5 1.03 Literature review 
 

a lower and upper 90% (Raymond et al. 2013; Lauerwald et al. 2015;  Deemer et al. 2016) or 95% 
(DelSontro et al. 2018) CI 
b standard error 
c min and max estimate 
& estimate accounts for effects of seasonal ice cover 

Global estimates for the aquatic CO2 emission range from 0.84 to 7.33 Pg CO2 yr-1 for streams and rivers, 

from 0.40 to 2.09 Pg CO2 yr-1 for lakes, from 0.08 to 0.14 Pg CO2 yr-1 for reservoirs (excluding the estimate 

by  Cole et al. (2007), which is discussed at the end of this section), and from 1.27 to 2.35 Pg CO2 yr-1 for 

estimates that lumped lakes and reservoirs together (Table 1). In general, considerable discrepancies 

exist in particular between early estimates that relied mostly on lumped estimates of average CO2 

concentrations, kGHG and water surface area, and more recent estimates relying on more complete 

concentration datasets, more sophisticated upscaling approaches and spatially resolved water surface 

area estimates. For streams and rivers, the earliest estimates (Cole et al., 2007, p. 207; Cole & Caraco, 

2001) were crude and most likely underestimate riverine CO2 emissions because of their reliance on data 

from large rivers, which tend to show lower areal CO2 emission rates than smaller and more upstream 

systems, as large rivers tend to be less heterotrophic, receive less important inputs of CO2 enriched 

groundwater, and show less turbulent stream flow which leads to lower gas exchange velocities 

(Raymond et al. 2013). Relying on an extensive database for pCO2, new scaling laws for kGHG and stream 

hydraulic geometry that allowed for spatially resolved estimates for stream surface areas at the global 
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scale, Raymond et al. (2013) presented the first spatially explicit estimate for the aquatic CO2 flux and 

reports a river CO2 evasion rate that is 3–8 times higher than the earlier lumped estimates 

(Aufdenkampe et al., 2011; Cole et al., 2007; Tranvik et al., 2009). Moreover, they demonstrated the 

importance of small headwaters which contribute disproportionately to the total emission flux. More 

recent advancements in stream and river CO2 evasion estimates involve development of data-driven 

statistical models to resolve temporal and finer spatial scale variations of the riverine CO2 flux (Lauerwald 

et al., 2015; Liu et al., 2022). For instance, relying on direct CCO2 measurements and seasonally varying 

estimates for k and river surface area, Liu et al. (2022) demonstrated CO2 emission from global streams 

and rivers varied between 411 to 766 Tg CO2 yr-1 per month, i.e. by a factor of ~ 2, with the highest global 

emissions during northern summer in July. 

A process-based model has also been developed (DLEM, Tian et al. 2015b), which predicts a much lower 

emission rate than recent data-driven approaches (2.24 versus 6.60-7.33 Pg CO2 yr-1) (Table 1). The DLEM 

estimate is however close to the estimate by Lauerwald et al. (2015) (2.38 Pg CO2 yr-1) that only 

accounted for emissions from medium-sized to large rivers (i.e., 3rd order and above). The large 

discrepancy (i.e., 2.24 versus 6.60-7.33 Pg CO2 yr-1) however argues for the importance of the smallest 

streams in global CO2 emission from fluvial networks (Marx et al., 2017). In line with this, Liu et al. (2022) 

estimated emission from the medium-to-large rivers (corresponding roughly to stream order 3 and 

above as in Lauerwald et al. 2015) of ~ 2.31 Pg CO2 yr-1, while roughly two thirds of the total riverine 

emissions (~ 5 Pg CO2 yr-1) are predicted to be emitted by smaller streams (extrapolated to a minimum 

stream width of 0.3 meters).  

For lakes, there is a much larger variation in estimates of water surface area than in average emission 

rates between different studies (Table 1). In particular, estimates that relied on earlier global lake 

inventories (Raymond et al., 2013) report lower surface area and total emissions than more recent 

estimates based on newer lake inventories and extrapolated surface area to account for the smallest 

water bodies (DelSontro et al., 2018; Hastie et al., 2018; Holgerson & Raymond, 2016). Despite 

employment of scaling laws (e.g., with lake size and nutrient status) that account for spatial variability 

due to system size and autotrophic productivity in more recent estimates (DelSontro et al., 2018; 

Holgerson & Raymond, 2016; Raymond et al., 2013), there seems to be only small difference with regard 

to global average lake CO2 emission rates per water surface area between those newer estimates (348–

414 g CO2 m-2yr-1) and those of the early crude estimates (257 g CO2 m-2 yr-1, Cole et al. 2007). 

Additionally, though earlier estimates relied more on CCO2 calculated from pH and alkalinity (Raymond et 

al. 2013; Cole et al. 2007), more recent estimates used more often direct measurements (Holgerson and 

Raymond et al. 2016; Delsontro et al. 2018). Differences in lake CO2 evasion estimates are more driven 

by variation in estimates of lake area than by areal emission rates. Estimates of global average emission 

rates per water surface area for lakes and reservoirs (392–638 g CO2 m-2yr-1) are about one order of 

magnitude lower than those for streams and rivers (1,492–10,644 g CO2 m
-2yr-1, Table 1). 

In comparison to lakes, reported global average emission rates per water surface area for reservoirs are 

slightly higher (312–686 versus 257–348 g CO2 m-2yr-1 for reservoirs and lakes, respectively) (Table 1). 

This may in part be due to the different geographic distribution of both types of standing water bodies; 
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with lakes being particularly abundant in high latitudes where average emission rates tend to be lower 

(Aufdenkampe et al. 2011). Nonetheless, the current estimates place total CO2 evasion from reservoirs 

more than one order of magnitude lower than that from lakes (see Table 1, when excluding the estimate 

by Cole et al. 2007), following its low share in the global surface area of standing water bodies. However, 

the inventory for global reservoirs (which is growing) is far from complete and thus surface area might 

pose the largest uncertainty for CO2 evasion from reservoirs. Note that Cole et al. (2007), based on data 

from St. Louis et al. (2000), estimated a reservoir CO2 emission of 1.03 Pg CO2 yr-1, i.e. about one order of 

magnitude higher than the other estimates listed in Table 1. This number is based on a first-order 

estimate of the total surface area of reservoirs including smallest systems such as farm ponds. This 

estimated total area is about 5 times larger than that of reservoirs accounted for in recent inventories. 

While this first order estimate is an eye-opener for the underestimate related to the exclusion of these 

small systems, it is also highly uncertain and represents an expert opinion rather than a reproducible 

number. Note further that Cole et al. (2007) estimated a much lower CO2 evasion rate from lakes, for 

which they rely on a much more conservative estimate of surface area which excludes smaller systems. 

In that regard, their emission estimate for standing waters is not consistent. Note finally that other 

estimates of CO2 emissions from reservoirs vs. lakes might be underestimated, as in inventories, where 

the required information is missing, reservoirs might wrongly have been classified as lakes (see 

discussion in section 2.4). 

  

3.2 Persisting shortcomings and future challenges 

 3.2.1 Process understanding 

The most prominent gap in the  understanding of the processes that drive inland water CO2 emissions is 

the question of where the emitted CO2 is sourced from. A part of the emitted CO2 may be produced in-

situ from the oxidation of allochthonous organic carbon, while another part might stem from inflows of 

water supersaturated in CO2 produced during respiration in upland soils and wetlands. Further, this 

respiration comprises both heterotrophic respiration of plant and soil organic matter as well as 

autotrophic root respiration. Knowledge about the source of the aquatic CO2 emissions is of paramount 

importance for the integration of these fluxes in the overall C budget of continents, as highlighted in the 

perspective article by Abril & Borges (2019). While earlier studies assumed that the net-CO2 emissions 

are entirely the product of heterotrophic respiration and could thus be regarded as a fraction of 

terrestrial net-primary production (Richey et al., 2002), the contributions of autotrophic root respiration 

demands consideration of these fluxes as part of total ecosystem respiration that counterbalances gross 

primary production (Abril & Borges, 2019; Lauerwald et al., 2020). 

For streams and rivers, it is assumed that most of the emitted CO2 is sourced from CO2 produced by 

respiration in upland soils and wetlands (Abril et al. 2014; Liu et al., 2022). The relative importance of 

these external CO2 inputs are highest in headwaters and decrease downstream (Finlay, 2003; Horgby et 

al., 2019; Liu et al., 2022; Marx et al., 2017). Moreover, it was shown that due to the very high 

oversaturation of emerging groundwater, a large part of the emission already takes place over a few 

hundred meters downstream of the freshwater source (Johnson et al., 2008). It would thus be required 
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to monitor smallest headwaters directly to well capture those hot spots of aquatic CO2 emission, for 

which however monitoring data are not available in sufficient quantity (Marx et al., 2017). Assessment of 

groundwater CO2 inputs to inland waters would further require knowledge about groundwater C content 

and residence time (to quantify the outflows), for which data is limited as well (Downing & Striegl, 2018). 

Stable C isotopes have been used to estimate source contribution of riverine C loads and CO2 emissions 

for single aquatic systems (Telmer & Veizer, 1999). But observational data are not yet sufficient for large-

scale assessment. Also, these studies do not often include the uppermost parts of the river network 

where large amounts of external CO2 inputs are evading to the atmosphere. 

In addition, most existing studies of freshwater CO2 emissions have not yet attempted to include 

estimates of aquatic net ecosystem production (NEP), that is the difference between aquatic production 

and respiration, and thus they currently assess inland waters net-CO2 emissions rather as a black box 

that is fed by (semi-)terrestrial C inputs. The recent study by Battin et al. (in revision) has nevertheless 

demonstrated that inclusion of NEP estimates can help to disentangle autochthonous CO2 production 

from allochthonous CO2 inputs even at global scale. This study corroborates the assumption that most of 

the aquatic CO2 evasion is derived from external CO2 inputs. However, also availability of aquatic NEP 

data is limited and does not allow yet for spatially explicit estimates at global scale. More importantly, 

diurnal variations in NEP may entail similar variation in pCO2 and air-water CO2 exchange. Moreover, 

predominant sampling during daytime, when CO2 emissions are lower than at night, may lead to 

important biases in flux estimations. Gómez-Gener et al. (2021) recently argued that global estimates 

based on daytime measurements are biased as night time emissions are on average ~30% higher. 

To better understand temporal variability and potential “hot-moments” of inland water CO2 emissions, 

more process understanding would be required with regard to CO2 cycling during periods of ice-cover, 

spring ice-melt, spring freshet, lake-turnover, and extreme events like floods for which observations are 

generally rare. Only one of the studies included in our synthesis actually accounts for seasonality (Liu et 

al. 2022), while the other studies completely ignore seasonality in hydrodynamics, including spring 

freshet.  In our study, we use only simplified correction factors for seasonal ice-cover (Denfeld et al., 

2018). Further, the estimates of lake and reservoir CO2 emissions synthesized in our study do not 

account for contributions during lake-turnover, when emission rates are thought to be highest in boreal 

to Arctic systems (Sepulveda-Jauregui et al., 2015). 

In contrast to, for instance, the estimate by Raymond et al. (2013), we do not account for intermittent 

drying of inland waters. Few existing studies suggest that during dry periods, exposed beds might show 

similar CO2 emission rates as from the water surface when inundated (Keller et al., 2020). A correction 

might thus not be adequate unless the emissions from seasonally dry beds are taken explicitly into 

account for terrestrial respired CO2 flux. On the other hand, no estimate of CO2 emissions from 

temporarily flooded areas is available at the global scale. More systematic investigations of flux rates 

from both temporally dry falling inland water beds and temporally flooded areas would help to refine 

estimates of inland water CO2 budgets, and to better integrate them into continual CO2 budgets while 

avoiding gaps and overlaps with terrestrial and wetland ecosystems. 
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Though some studies (Deemer et al., 2016; DelSontro et al., 2018; Raymond et al., 2013) have linked CO2 

variability in lakes and reservoirs to predictors such as waterbody size, mean annual precipitation, and 

ecosystem productivity, the controls on within-system CO2 spatial and temporal variations are not well 

understood and effective scaling relationships are still in need to better represent CO2 evasion from lakes 

and reservoirs. Further, characterizations of spatial variability within water bodies is rather scarce, and 

the representativeness of the sampling site within an aquatic system is a large source of uncertainty 

(Colas et al., 2020). Finally, our estimates of reservoir CO2 emissions do not account for fluxes from dam 

outlets, where deep, hypolimnetic water enriched in CO2 is released. River reaches directly downstream 

of dams have been reported to show increased pCO2 while this excess CO2 is being emitted rapidly over a 

few tenths of river-km (Calamita et al., 2021; Guérin et al., 2006; Teodoru et al., 2015). However, more 

systematic observations from these parts of the river system are needed to quantify this source of CO2 

flux at global scale, and to complete the assessment of reservoir CO2 emissions. 

3.2.2 Spatial and temporal resolution 

Spatially and temporally resolved estimates of inland water GHG emissions at global scale can help to 

better understand the role of these fluxes in the overall GHG budget, to include these fluxes in regional 

budgets, and to evaluate them directly against observations. The realization of spatially and temporally 

resolved estimates is however limited by the availability of observations and by the utilized estimation 

techniques.  For rivers, global empirical, spatially explicit estimates have already been achieved at 

several different resolutions, specifically, 231 regions (Raymond et al. 2013), gridded at 0.5 degrees 

(Lauerwald et al. 2015), and for individual river reaches (Horgby et al., 2019; Liu et al., 2022). For lakes 

and reservoirs, the regionalized estimate based on 231 regions by Raymond et al (2013) is the only 

existing spatially explicit estimate of CO2 emissions at the global scale. Hastie et al. (2018) achieved a 

spatially explicit, pan-boreal estimate of lake and reservoir CO2 emissions at 0.5 degree resolution. As the 

only process-based model approach at global scale, spatially explicit simulations with the land surface 

model DLEM have been achieved at 0.5 degree resolution for rivers and reservoirs (Tian et al. 2015b). 

ORCHILEAK - the inland water branch of the land surface model ORCHIDEE has so far only been applied 

at the continental scale of Europe (Gommet et al., 2022) and in few large scale basins across the world 

(Bowring et al., 2020; Hastie et al., 2021; Lauerwald et al., 2020).  

With regard to temporal resolution, most of the empirical studies published so far represent 

climatologies of average annual fluxes, often without precise specification of the time frame covered by 

the observations (Regnier et al., 2022). The only exception at global scale is the study by Liu et al. (2022) 

which presents a climatology of average monthly emission fluxes from rivers, thus representing the 

typical seasonal cycle of riverine emissions. The process-based model DLEM simulates time-series of 

riverine and reservoir CO2 emission which reflect both seasonal and interannual variability. In general, a 

physically-based model approach appears to be the most promising strategy to obtain seasonal and 

interannual variations in response to climate variability, for present day but also for scenario dependent 

future projections (Tian et al., 2015b; Hastie et al., 2021; Lauerwald et al., 2020). 

While empirical studies have highlighted the importance of diurnal variation in water-air CO2 exchange, 

temporal variations at this time-scale are not yet possible to include in estimates. Process-based models 
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like DLEM (Tian et al. 2015b) or ORCHILEAK (Lauerwald et al., 2017) represent aquatic CO2 emissions as 

net-emissions driven by allochthonous inputs of CO2 and net-instream respiration. A simulation of the 

diurnal variations would however require the representation of autochthonous aquatic production, 

which is not yet possible. 

3.2.3 Data Requirements 

As for all GHGs, data required to improve inland water CO2 emission estimates include in first place 

direct observation of emission rates. Many earlier estimates relied heavily on partials pressures of CO2 

(pCO2) calculated from pH and alkalinity (Lauerwald et al., 2015; Raymond et al., 2013), which has been 

demonstrated to be a significant source of error leading to an overestimation of pCO2 particularly in 

freshwaters with low buffer capacity against acidification (Abril et al., 2015; Golub et al., 2017; Hunt et 

al., 2011; Liu et al., 2020). Liu et al. (2022), relied on direct pCO2 observations and suggested that 

average pCO2 in global streams and rivers obtained by Raymond et al. (2013) is by 30% too high. 

However, as alkalinity and pH are easier to measure, a vast amount of data is available from a large 

number of studies and in datasets from environmental agencies, with greater spatial and temporal 

coverage (Hartmann et al., 2014) than that of direct observation. Nevertheless, as potential biases are 

hard to correct at large scales, a clear preference should be given to directly observed pCO2 values. Liu et 

al. (2022) synthesized 5,910 direct pCO2 observations from 63 studies, which represents about the latest 

inventory of available data for stream and river systems at global scale. Delsontro et al. (2018) 

synthesized literature data for 7824 lakes and reservoirs. The number of direct pCO2 observations is still 

limited, but steadily growing. 

Likely for logistical reasons, most observations are from developed countries which contribute most to 

the research of inland water GHG budgets. For this reason, systems from temperate climate regions are 

better represented than tropical or high-latitude systems in remote areas (e.g., compare Liu et al. 2022, 

Deemer et al. 2016). However, it is these remote areas that play a potentially important role, considering 

the extensive lake areas in Boreal to Arctic regions, and the large river systems of the humid tropics. 

There has been notable progress in sampling tropical (Africa (Borges et al., 2019;  Borges et al., 2015), 

Amazon (Abril et al., 2014; Rasera et al., 2013), and SE Asia (Wit et al., 2015)) and high latitude systems 

(Siberia: (Karlsson et al., 2021; Serikova et al., 2019), Alaska: (Sepulveda-Jauregui et al., 2015)). Despite 

these advancements, more observations from these poorly monitored areas would help to improve 

estimates of global inland water CO2 emissions. 

Further, small water bodies require more attention in sampling campaigns. Holgerson & Raymond (2016) 

have highlighted the potentially important contribution of small lakes and ponds to global inland water 

CO2 emissions. However, a regionalized estimate was not yet possible as observations of emission rates 

are still scarce, and more importantly, as no spatially explicit dataset exists yet that would represent such 

small water bodies. Datasets that present the smallest water bodies (< 1 km²) reliably would help to 

better integrate these important CO2 sources into regionalized, global estimates. 
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Finally, increasing the number, variety and representativeness of investigated systems is only one step to 

reduce uncertainties in large scale estimates of inland water CO2 emissions. Temporal and small scale 

spatial variations with small stream networks (Natchimuthu et al., 2017) and with lakes (Natchimuthu et 

al., 2017) and reservoirs (Colas et al., 2020) are substantial, and the choice of one or few sampling 

locations and a limited measurement period lead to large uncertainties and may introduce biases in the 

flux estimate for the whole waterbody. Improved investigation of CO2 budgets of single systems requires 

measurements at various locations within a stream network or water body. In addition, the observations 

should be taken over a time period long enough to assess seasonal and inter-annual variability, and at a 

high enough frequency to assess short term variations, including diurnal variations. In particular, 

datasets covering longer time periods such as those assembled for the US (Jones et al., 2003), China (Ran 

et al., 2021) and the boreal biome (Lapierre et al., 2013) are crucially needed to evaluate the extent to 

which trends simulated by LSMs are realistic (Regnier et al., 2022). The development and deployment of 

automated data loggers is a promising strategy for achieving this objective (Bastviken et al., 2015). 

4 Inland water CH4 budget 

4.1 Overview of existing estimates 

Global estimates of aquatic CH4 emission range from 1.5 to 30 Tg CH4 yr-1 for streams and rivers, from 42 

to 151 Tg CH4 yr-1 for lakes, from 9.8 to 52 Tg CH4 yr-1 for reservoirs, and from 16 to 331 Tg CH4 yr-1 for 

estimates that lumped lakes and reservoirs together (Table 2).  The range in these emission estimates is 

generally more dramatic than for either CO2 or N2O (see sections 3 and 5, respectively), with the 

exception of global CO2 emission estimates from rivers and streams.   

Some of the variation in global CH4 emission estimates is due to large differences in the waterbody 

surface areas applied.  For example, the earliest estimate of CH4 emissions from reservoirs used a very 

rough estimate of surface area, multiplying the surface area of reservoirs in the World Register of Dams 

by a factor of four under the assumption that this would better represent the total surface area including 

small reservoirs and farm ponds not included in that register (St. Louis et al. 2000). This approach 

resulted in a surface area that is approximately three times larger than any subsequent estimate. 

Conversely, the earliest estimate from streams and rivers was conservative in that it applied a surface 

area for larger rivers only (quantifiable from global maps as the GLWD; Bastviken et al. 2011), resulting in 

approximately a factor of two reduction compared to subsequent estimates that also account for smaller 

rivers and streams. While most global estimates have ignored ice cover, Johnson et al. (2021) produced 

an estimate of reservoir emissions that accounted for this effect and which resulted in a CH4 emission of 

10 Tg CH4 yr-1 that is half or less of any previous assessment.  Harrison et al. (2021) incorporated ice cover 

correction into their global reservoir emission estimate, resulting in similarly low emissions from 

reservoir surfaces (9.8 Tg CH4 yr-1), but still yielded a higher total flux due to the inclusion of reservoir 

turbine degassing (22 Tg CH4 yr-1).  Rosentreter et al. (2021) also incorporated an ice cover correction into 

their assessment of global river (30 Tg CH4 yr-1), lake (151 Tg CH4 yr-1), and reservoir (24 Tg CH4 yr-1) 

emissions (estimates upscaled from mean emission rates), but in addition also an ice melt overturn 

correction that reduced the impact of ice cover. Moreover, their corrections did not result in a 

substantial lowering of the global flux due to increases in the magnitude of areal emission rates applied.  
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The mean areal emission rates applied to upscaling efforts vary by approximately 2, 3, and 10-fold for 

reservoirs, lakes, and rivers respectively.  In general, there is a temporal trend wherein older datasets 

have lower average areal emission rates than newer datasets. Part of this trend is due to the treatment 

of ebullition measurements in older emission estimates. Some global estimates summarized diffusive-

only estimates of methane emission (Holgerson and Raymond 2016, Stanley et al. 2016) while others 

combined diffusive only areal fluxes with ebullitive + diffusive estimates without differentiating one from 

the other (St. Louis et al. 2000). More recent estimates (Rosentreter et al. 2021, Johnson et al. 2021, 

2022) only included studies that estimated both ebullition and diffusion together. Increasing average 

areal emission estimates may also be due to the increased likelihood of sampling right-skewed data as 

sample size for water bodies increases (see Wik et al., 2016).  For example, a recent dataset of lake and 

reservoir CH4 emissions contains some of the highest mean areal fluxes, with about 65% of the estimates 

contained therein published since 2015 (Rosentreter et al. 2021).  

Variation in binned areal emissions (e.g. by latitude, size, and chlorophyll-a) are even larger.  For 

example, Rosentreter et al. (2021) reported an average areal CH4 flux from the smallest lakes 

(<0.001km2) that is nearly an order of magnitude higher than from lakes in the 0.1-1 km2 size category, 

making these smallest systems responsible for 38% of the total lake CH4 emissions (Rosenteter et al. 

2021; Table 2).  In addition, Bastviken et al. (2011) reported areal reservoir CH4 emissions from tropical 

regions that are an order of magnitude larger than in boreal regions (Bastviken et al. 2011), although 

follow-up work suggests that this discrepancy may have more to do with a lack of boreal ebullition 

estimates (Deemer et al. 2016) and the fact that latitude is only a weak predictor for reservoir CH4 

emission (Deemer and Holgerson 2021, Johnson et al. 2021).  Conversely, Rosentreter et al. (2021) 

report average areal CH4 emissions from rivers that varied by a factor of about four by latitudinal bin, 

with the subtropical region (10-25 degrees absolute latitude) producing the highest areal emissions and 

the temperate region (25-40 degrees absolute latitude) producing the lowest areal emissions 

(Rosentreter et al. 2021). 

While a variety of upscaling methods have been used to estimate inland water CH4 emission, there does 

not appear to be any directional bias in the resulting estimates, that is one type of approach does not 

seem to systematically  produce higher or lower emissions than other approaches. Many early estimates 

and some more recent estimates have applied the simplest empirical upscaling wherein a single areal 

flux was applied to a global surface area of lakes and/or reservoirs (St. Louis et al. 2000, Deemer et al. 

2016 DelSontro et al. 2018), and rivers (Stanley et al., 2016).  Other estimates have binned lakes and 

reservoirs CH4 fluxes based on latitude (Bastviken 2011), waterbody surface area (Holgerson and 

Raymond 2016; Bastviken et al. 2004), primary productivity (e.g. chlorophyll a concentration; DelSontro 

et al. 2018), or has used some combination of these approaches (Rosentreter et al. 2021). For rivers, 

binning has so far only been based on latitude (Bastviken 2011, Rosentreter et al., 2021). Finally, the 

most recent efforts to model lake and reservoir CH4 flux have used a gridded approach that considers a 

variety of factors likely to influence the spatial variations in CH4 emission including temperature, 

nutrients, and latitudinal variation in emission factors (Stavert et al. 2021, Johnson et al. 2021, Harrison 

et al. 2021).  
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Table 2: Existing global estimates of lake, reservoir, and river CH4 flux.  For each estimate, the total 
water surface area (Σ Awater), the total CH4 emission flux (Σ CH4 em) and the area weighted 
average emission rate (Σ CH4 em/Σ Awater) are reported. 
 

Reference Σ CH4em/Σ Awater Σ Awater Σ CH4 em Method 

  
g CH4 m

-2
 yr

-1
 

[10
6
 

km
2
] 

Tg CH4 yr
-

1
   

Rivers 

Bastviken 2011 4 0.36 1.5 
Upscaling from 

observations 

Stanley et al. 2016 41.4
*
 0.65 27

*
 

Upscaling from 

observations 

Rosentreter et al. 2021 66.5 0.77 30 
Upscaling from 

observations 

Lakes and Reservoirs 

DelSontro et al. 2018 61.7 
3.23-

5.36 
199-331 

Upscaling from 

observations 

-"- 
33.7 

4.42 149 (95-

236)
a
 

Statistical prediction 

-"- 
34.5 

5.36 185 (119-

295)
a
 

Statistical prediction 

-"- 
32.2 

3.23 104 (67-

165)
a
 

Statistical prediction 

Holgerson and Raymond 

2016 
2.7

*
 5.98 16

*
 

Upscaling from 

observations 

Stavert et al. 2021 32.4 2.93 95 Statistical prediction 

Lakes (including lakes with dams) 

Bastviken et al. 2004 0.12-122.9 2.8 8-48 
Upscaling from 

observations 

Bastviken et al. 2011 19.2 3.7 72 
Upscaling from 

observations 

Rosentreter et al. 2021
&
 54.1 

3.71-

5.69 
151 

Upscaling from 

observations 

Johnson et al. 2022
&
 15 2.8 42 ± 18

b
 Model 

Reservoirs 

St. Louis et al. 2000 35 1.5
$
 52 

Upscaling from 

observations 

Bastviken 2011 40.1 0.5 20 
Upscaling from 

observations 

Deemer et al. 2016 58.5 0.31 17 (12-30)
a
 

Upscaling from 

observations 

Rosentreter et al. 2021
&
 63.8 

0.26-

0.58 
24 

Upscaling from 

observations 

Harrison et al. 2021
&
 28.3(62.9)

#
 0.35 9.8 (22)

#
 Model 

Johnson et al. 2021
&
 33.3 0.3 10 Model 
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a lower and upper 90% (Raymond et al. 2013; Lauerwald et al. 2015;  Deemer et al. 2016) or 95% 
(DelSontro et al. 2018) CI 
b standard error 
c min and max estimate 
& estimate accounts for effects of seasonal ice cover 
* only diffusive emissions 
# includes emissions from turbines 
 

  

4.2 Persisting shortcomings and future challenges 

4.2.1 Process understanding: 

Significant progress has been made towards describing the drivers of lake and reservoir CH4 flux, 

which may help improve our understanding of the spatial and temporal variability in emissions in the 

future. Specifically, small, shallow, productive, and low latitude lakes and reservoirs have been found to 

show higher areal methane emissions than larger, deeper, less productive, high latitude systems 

(Deemer and Holgerson 2021). In northern systems, methane emissions are often further binned by lake 

type, with yedoma, peat, and glacial lakes exhibiting different patterns and magnitudes of emission (Wik 

et al. 2016; Matthews et al. 2020; Kuhn et al. 2021). Less is known about the key drivers of river CH4 flux.  

Two of the three existing global estimates of river and stream CH4 flux use latitude to bin emissions, but 

the latitudinal trend does not appear to describe much of the spatial variability (Rosentreter et al. 2021). 

The earlier dataset compiled by Stanley and others contained many estimates from anthropogenically-

impacted rivers and streams (Stanley et al. 2016), and could be one explanation for the high global 

emission estimate despite only considering diffusive fluxes. Still, the effect of nutrient enrichment and 

productivity on river methane emissions has not been established the way it has been for lakes and 

reservoir methane emissions (Beaulieu et al. 2019).  

Temperature is generally considered an important predictor of aquatic CH4 emission and 

relationships between temperature and CH4 flux have been used to scale seasonal emissions from 

reservoirs (Prairie et al. 2021; Johnson et al. 2021; Harrison et al. 2021).  Such temperature-corrections 

address biases in many flux observations where measurements are focused during the spring-to-fall 

period whereas lower emissions during the ice-free winter period are typically not recorded. While there 

is compelling cross-ecosystem evidence of increasing CH4 emission with increasing temperature (Yvon-

Durocher et al., 2014) there are also examples of systems where CH4 oxidation is able to keep pace or 

surpass CH4 production at higher temperatures (Duc et al. 2010; Shelley et al., 2015). A recent synthesis 

of CH4 oxidation in lakes and reservoirs showed that CH4 oxidation efficiency declines with ecosystem 

productivity (e.g. trophic status, D’Ambrosio & Harrison, 2021). Another recent study showed 

experimental evidence that CH4 oxidation may be phosphorus-limited in northern lakes, also providing 

further evidence of interactions between lake CH4 dynamics and nutrient levels (Sawakuchi et al. 2021). 

Future work could improve our process understanding of methane emission dynamics by disentangling 
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the role of temperature and productivity in driving both total emission and the balance between 

methane production and consumption. 

Within a single waterbody, CH4 emissions generally vary substantially in space and time (Wik et 

al. 2016), and this variation is likely more substantial than for either CO2 or N2O. This spatial and 

temporal variability has been shown to cause bias in upscaling, where too few measurements in either 

space or time can lead to underestimation of fluxes (Wik et al. 2016).  While the regionalization exercise 

carried out in our companion paper (Lauerwald et al., this issue) begins to address seasonality by 

applying an ice cover and ice melt correction, future work should aim to better constrain temporal 

variability in methane fluxes within single water bodies. Temporal variability can arise from seasonal 

dynamics such as ice melt (Denfeld et al., 2018), fall turnover (Mayr et al., 2020), seasonal water level 

changes (Varadharajan et al., 2010), or in response to phytoplankton blooms (Waldo et al., 2021).  Diel 

variation can also be important. Daytime sampling might overestimate CH4 flux in lakes (Sieczko et al., 

2020), but may  underestimate it in wetlands (Anthony & MacIntyre, 2016; Godwin et al., 2013; 

Poindexter et al., 2016). Episodic events can also be the source of large temporal variation such as water 

level drops in reservoirs (Harrison et al., 2017), storm-driven drops in hydrostatic pressure (Mattson & 

Likens, 1990) or increases in wind shear stress (Joyce & Jewell, 2003).  For rivers, elevated discharge can 

lead to higher methane fluxes, especially in small high-gradient streams where methane is sourced 

predominantly from groundwater (Natchimuthu et al., 2017). Spatial variability in aquatic methane 

fluxes can arise for both biological and physical reasons. In lakes and reservoirs, higher fluxes are 

observed due to elevated organic matter processing in inlets (DelSontro et al., 2011) and near the shores 

(Natchimuthu et al 2016; Peixoto et al 2015), to the accumulation of organic matter behind run-of-river 

dams (Maeck et al., 2013), or due to more general heterogeneity of the sediment matrix and associated 

seeps (Walter Anthony & Anthony, 2013).  In rivers, physical features such as waterfalls can be 

particularly important sites for CH4 emissions (Natchimuthu et al., 2017). At larger scales, high gradient 

headwater streams comprising <1% of catchment stream surface area can contribute 30% of catchment 

emissions, emphasizing the need to sample throughout a catchment rather than attempting to capture 

network-wide flux via single measurements at river mouths (Natchimuthu, Wallin, et al., 2017). 

4.2.2 Spatial and Temporal Resolution 

At global scale, gridded estimates of inland water CH4 emissions exist for reservoirs (Johnson et 

al., 2021), lakes (Johnson et al. 2022) and lakes and reservoirs (Stavert et al., 2022). For rivers, 

disaggregating global fluxes over broad latitudinal zones (Bastviken et al. 2011; Rosentreter et al. 2021) 

seems still the best possible practice. Most existing global estimates for lakes and rivers represent 

climatologies of annual fluxes that do not resolve the seasonal and interannual variability, and longer-

term trends. Using a relatively simple, process based model, Johnson et al. (2021, 2022) were able to 

represent the seasonality in lake and reservoir CH4 emission forced by temperature and ice-cover as 

drivers. Long-term trends in lake CH4 emissions due to climate change have been predicted for the hol-

arctic/boreal region using a more complex process-based model (Tan & Zhuang, 2015, 2015). Other 

complex, process-based models of lake CH4 cycling have been developed (e.g. Lake 2.0, Stepanenko et 

al., 2016), but have not been applied at large-scales. In contrast to CO2 and N2O, no efforts to model river 

CH4 emissions at regional to global scales have been published yet, which may partly be due to the 
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relative small role of rivers in inland water CH4 emissions as well as to the complexity of processes 

involved and the scarcity of data for model calibration and evaluation. 

4.2.3 Data Requirements 

One critical uncertainty for the inland water CH4 budget is the inability to resolve the location 

and total surface area of the smallest lakes. Waterbodies <0.001 km2 have been recently estimated to 

comprise 37% of the lentic methane flux (Rosentreter et al. 2021). Given high variability in areal 

emissions from these smallest lakes it is also important to increase effort in sampling these systems to 

reduce uncertainty.  In addition to very small lakes, sampling effort should be increased for large lakes 

(>1km2) and small reservoirs (<1km2) (Deemer & Holgerson, 2021). Given the additional importance of 

depth and productivity in regulating lentic CH4 flux, spatially resolved information about the depth, 

chlorophyll a, oxygen and dissolved organic carbon concentration of lakes and reservoirs will also help 

improve regional budgets (and overall upscaling efforts). More generally, systematic, long-term 

monitoring programs are needed which account for the high spatio-temporal variability in areal emission 

rates, in particular for ebullition, to better constrain the emissions even for individual, monitored 

systems. Long time-series of observations may finally help to better constrain the evolution of CH4 

production and emission in response to environmental change and climate extremes like droughts and 

heatwaves. This need for more and better observational data can hardly be satisfied with conventional 

methods, but would require the deployment of automatized observation systems and the use of remote 

sensing data, for which more research and development is needed. 

For rivers, many estimates of CH4 emission rely on pairing concentration data with estimates of 

gas transfer (kGHG) especially in low order streams (see section 2.1 for further discussion). These low 

order systems have been observed to contribute disproportionately to CH4 emissions at the catchment 

network scale despite very low CH4 concentrations (Natchimuthu et al., 2017), highlighting the need to 

constrain local values of kGHG and/or perfect a universal physical model. The development and 

application of other empirical methods to directly measure GHG flux from low order streams would also 

help constrain emissions from these systems.   

5 Inland water N2O budget  

5.1 Overview of existing estimates 

N2O emissions from inland waters are poorly constrained at the global scale, which is visible in the 

largely divergent global estimates listed in Table 3: 0.05 - 3.3 Tg N2O yr-1 for streams and rivers and 0.1-

0.6 Tg N2O yr-1 for lakes and reservoirs. Most existing global estimates of riverine N2O emissions are 

based on modeled N loads from watersheds and emission factors (EFs), in stark contrast to CO2 and CH4 

global estimates, which are calculated mainly by empirically upscaling local observations. N2O is 

produced as an intermediate product in denitrification, i.e. the reduction of nitrate to N2, but also as a 

by-product in the process of nitrification, i.e. the oxidation of ammonium to nitrate  (Canfield et al., 

2010). The amount of N2O produced and emitted due to these processes depends on environmental and 

hydrological factors including water temperature, N availability and speciation, water body depth, 

oxygen availability, pH, and labile carbon concentrations (Clough et al., 2007; Hu et al., 2019; Outram & 



 

25 

Hiscock, 2012; Rosamond et al., 2012; Venkiteswaran et al., 2014). EFs can be defined as average ratios 

of N2O emission to denitrification and nitrification fluxes. However, it is difficult to quantify nitrification 

and denitrification fluxes for entire river systems, and even more so at the global scale. Therefore, EFs 

have traditionally been established by linking N2O emissions directly to riverine N loads, implicitly 

assuming a certain fraction of riverine N loads to be nitrified and denitrified. Mosier et al. (1998) 

assumed that N leached to the river network was denitrified once and nitrified twice along the river 

network. Further assuming that 0.25% of both nitrified and denitrified N is emitted as N2O, they 

concluded that 0.75% of the total N leached to the river is emitted as N2O. Applying that percentage as 

EF directly to riverine N loads, they estimated a global riverine N2O emission of 1.1 Tg N2O yr-1. The 

methodology and EFs established by Mosier et al. (1998) also served to assess the river N2O emissions in 

the 5th Assessment Report of the IPCC. 

In a similar approach, Seitzinger and Kroeze (1998) and Seitzinger et al. (2000) estimated N2O emissions 

from only the dissolved inorganic fraction (nitrate, nitrite and ammonium) of N (DIN) leached to rivers. 

Applying EFs of 0.3% and 3% relative to riverine DIN load they estimated a global riverine N2O emission 

of 1.7 (range 0.3-2.9) Tg N2O/yr. Over the following decade, these two EF approaches, i.e. the one of 

Seitzinger and Kroeze (1998) and the IPCC approach derived from Mosier et al. (1998), were updated, 

yielding consistently large emissions fluxes. Kroeze et al. (2005) estimated 2 Tg N2O/yr, and later Kroeze 

et al. (2010) revised their estimate to 0.5-3.3 Tg N2O/yr, both using modeled DIN loads and EFs of 0.3% 

and 3%. De Klein et al. (2006) predicted a global riverine N2O emission of 0.6 Tg N2O/yr, while Beaulieu et 

al. (2011) calculated an emissions flux of 1.1 Tg N2O/yr, both using the IPCC approach.  

Studies conducted over the last 5-7 years (Hu et al., 2016; Maavara et al., 2019; Marzadri et al., 2021; 

Yao et al., 2020) consistently calculate N2O emissions for rivers that are substantially lower than those of 

the decades before. Hu et al (2016)’s empirical approach estimated global riverine N2O emissions of 51 

(19 – 105) Gg N2O/yr. Further, the authors report EFs relative to riverine DIN loads of 0.16% to 0.19% to 

be realistic, suggesting the EFs used by Kroeze and Seitzinger (1998) to be unrealistically high. Maavara 

et al. (2019)’s spatially resolved stochastic-mechanistic river-continuum model is the first to explicitly 

represent N transformation processes, and results agreed well with Hu et al.’s predictions, with a global 

flux of 72-78 Gg N2O/yr. Moreover, Maavara et al. (2019) estimated that only 7% and 9% of the total N 

loads are respectively denitrified and nitrified in the global river network. Thus, the assumption behind 

the IPCC AR5 approach that all N leached to rivers is once denitrified and twice nitrified also appears to 

be unrealistic and responsible for gross overestimations. 

The studies by Yao et al. (2020) and Marzadri et al. (2021) are complementary as they provide estimates 

that also account for small streams that contribute disproportionately to the overall riverine N2O 

emissions, but which were ignored in earlier estimates. Marzadri et al. (2021), using a machine learning 

based approach, reach an estimate of about 114 Gg N2O yr−1, of which about half is contributed by 

headwater streams. Note that this is only a near-global estimate which excludes high latitudes > 60°˚N, 

which can however be assumed to be small contributors to the global emission due to low N loads and 

low surface areas of the corresponding river systems (Maavara et al. 2019). Yao et al. (2020), using the 

land surface model DLEM, estimate riverine N2O emissions at even higher values of 458 ±92 Gg N2O yr−1, 
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of which 80% stems from small stream emissions up to stream order 3. In their simulations, emissions 

from these small streams are largely fed by N2O inputs from groundwater and saturated soils, which are 

not accounted for in the other studies. Marzadri et al. (2021), although not representing groundwater 

N2O inputs, still estimate that about ⅔ of total riverine N2O emissions is contributed by small streams of 

orders 3 and lower (see Table 3). In these small streams,  nitrification-denitrification processes occur 

mainly within hyporheic and benthic zones, whereas in larger rivers, the contribution of water column 

exceeds that of subsurface environments in contributing to N2O production (Marzadri et al 2021). The 

estimates for larger rivers only by Yao et al. (2020) and Marzadri et al. (2021) agree better with those by 

Hu et al. (2016) and Maavara et al. (2019).  

For lakes and reservoirs, the first global estimates were only published recently. Soued et al. (2016) and 

DelSontro et al. (2018) gave estimates for the entirety of lakes and reservoirs, without distinguishing 

between both types of systems while Deemer et al. (2016) estimated N2O emission from reservoirs only. 

Maavara et al. (2019), in their stochastic-mechanistic model of N2O emissions from river networks, 

included explicit emission estimates for reservoirs. Lauerwald et al. (2019) then adapted that model to 

estimate N2O emission from both reservoirs and lakes. 

Soued et al. (2016) performed a simple upscaling based on averaged observed N2O emissions rates for 

three latitudinal zones, which yielded with 985±465 Gg N2O yr-1 the highest of the emission fluxes from 

lakes and reservoirs listed in Table 3. A major limitation of this study was the poor global coverage of 

observations. While they used data from 298 systems worldwide, they had observations from only six 

systems for their low latitude estimate, all belonging to the reservoir-class from the study of Guérin et al. 

(2006). This fact is critical as in their upscaling, lakes and reservoirs from that zone contributed about 

80% of their global estimate of N2O emissions. Moreover, some of these reservoirs showed extremely 

high emission rates due to the fact that soils and biomass had not been removed before dam closure, 

which contributed massively to GHG production and emission (Guérin et al., 2006). It is thus highly 

probable that these reservoirs are not representative for low latitude lakes and reservoirs, as later 

discussed in detail in Lauerwald et al. (2019). 

Similar to their estimates of lake and reservoir CO2 and CH4 emissions (see sections 3 and 4), DelSontro 

et al. (2018) followed two distinct methodological approaches to obtain their global estimates: a direct 

upscaling approach based on a global average of observed N2O emission rates (252-346 Gg N2O yr−1), and 

a statistical approach using a lake/reservoir size classes and classes of chlorophyll-a concentrations as 

predictors (409-597 Gg N2O yr−1). Note that the second approach did not lead to a spatially explicit 

estimate, as only global, statistical distributions of size classes and chlorophyll-a concentrations were 

used for upscaling. Further, the statistical upscaling equation had a very low predictive power with an R2 

below 0.1.  

Deemer et al. (2016) performed a simple upscaling to estimate N2O emissions from reservoirs only, 

obtaining a global flux of about 47 Gg N2O yr-1. Despite the very different approach, Maavara et al. (2019) 

and Lauerwald et al. (2019) estimated global N2O emissions from reservoirs that are comparable to those 

by Deemer et al. (2016) (see table 3). For the entirety of lakes and reservoirs, Lauerwald et al. (2019) by 

far the lowest global estimate of 99±64 Gg N2O yr-1, and which is only about one tenth of what was 
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estimated by Soued et al. (2016). Comparing their spatially explicit estimate to regional estimates based 

on direct upscaling, Lauerwald et al. (2019) found that their model results are reasonable. Moreover, 

they estimated that lakes, although contributing more than 90% of the global surface area of standing 

water bodies, contribute only about half of the emission flux as a result of their  much lower average 

emission rates. This indicates that it is problematic to lump together lakes and reservoirs in global 

upscaling exercises.  

Table 3: Global scale estimates of inland water N2O emissions. For each estimate, the total 
water surface area (Σ Awater), the total N2O emission flux (Σ N2Oem) and the area weighted 
average emission rate (Σ N2Oem/Σ Awater) are reported. 
 

Reference Σ N2Oem/Σ Awater Σ Awater Σ N2Oem Method 

  mg N2O m-2yr-1 106 km2 Gg N yr-1   

Rivers 

Seitzinger & Kroeze 1998 and 
Seitzinger et al. 2000 

  1650 (300 – 
2940)c 

Emission factors 

Kroeze et al. 2005   1975 Emission factors 

Mosier et al. 1998   1100 Emission factors 

De Klein et al. 2006   550 Emission factors 

Kroeze et al. 2010   470–3300 Emission factors 

Beaulieu et al. 2011   1070 Emission factors 

Hu et al. 2016   51 (19-105)a Statistical prediction 

Maavara et al. 2019   72–78c Model 

Yao et al. 2020   458±92b Model 

" , stream orders 1-3   387±93b Model 

" , stream orders ≥4    71±23b Model 

Marzadri et al. 2021   114 Machine learning+Model 

" , stream orders 1-3   76 Machine learning+Model 

" , stream orders ≥4    38 Machine learning+Model 

Lakes and reservoirs 

DelSontro et al. 2018 78 3.23-5.36 252-424 Upscaling from observations 

DelSontro et al. 2018 106 4.42 470 (300-
710)a 

Statistical prediction 

DelSontro et al. 2018 112 5.36 600 (380-
860)a 

Statistical prediction 

DelSontro et al. 2018 

127 

3.23 410 (250-
600)a 

Statistical prediction 

Soued et al. 2016 235 4.20 985±465b Upscaling from observations 

Lauerwald et al. 2019 34 2.93 98±64c Model 

Lakes (including lakes with dams) 
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Lauerwald et al. 2019 17 2.68 46±29c Model 

Reservoirs  

Deemer et al. 2016 152 0.31 47 (31-110)a Upscaling from observations 

Maavara et al. 2019 148-250c) 0.45 67–112c Model 

Lauerwald et al. 2019 185 0.25 52±33c Model 

 
a lower and upper 90% (Raymond et al. 2013; Lauerwald et al. 2015;  Deemer et al. 2016) or 95% 
(DelSontro et al. 2018) CI 
b standard error 
c min and max estimate 

 

5.2 Persisting shortcomings and future challenges 

5.2.1 Process understanding 

While a basic understanding of processes involved in aquatic N2O cycling exists from a certain number of 
field studies, the quantification of these processes in large scale estimates is still difficult due to their 
complexity and the unavailability of sufficient datasets to support their assessment. For this reason, 
empirical EFs have long been used to estimate riverine N2O emissions directly from N loads, assuming a 
constant fraction of N loads to be nitrified and denitrified within the rivers, independent of size of the 
river network, its ecoclimatological setting, and anthropogenic pressure. While newer, model-based 
studies proved the worth of calculating more precise estimates of nitrification and denitrification fluxes 
taking into account physical constraints such as water residence time and temperature (Maavara et al. 
2019, Yao et al. 2020, Marzadri et al. 2021), the actual production and/or emission of N2O related to 
these processes is still based on simple, empirical factors. As N2O is formed only as a by-product of 
nitrification and as an intermediate product in the denitrification process, the actual fraction of N2O 
produced from these processes is highly variable and not yet possible to reproduce based on mechanistic 
formulations.  

For a better assessment of inland water N2O cycling, a better distinction between processes in the water 
column and in the sediments is required. That this distinction is indeed possible in global scale 
assessments of river N2O emissions was demonstrated by Marzadri et al. (2017, 2021). In particular, the 
top-layer of aquatic sediments is often a zone of sharp transition between nitrifying (oxic) and 
denitrifying (anoxic) conditions, and thus a hot spot of N cycling and N2O production. Here, anoxic water 
rich in ammonium mixes with oxygen-rich waters, promoting nitrification, while in turn nitrate produced 
from nitrification diffuses down and fuels denitrification in the anoxic zone (Beaulieu et al., 2015). The 
relative importance of water column vs. sediment processes may change along the river network. 
Following the conceptual model by Marzadri et al. (2017), denitrification of emergent, ammonium rich 
groundwater in streambed sediments is the dominant source of N2O in headwaters, but its importance 
decreases downstream, until finally denitrification in the lower water column dominates. Further, it was 
shown that dissolved N2O inputs from groundwater and waterlogged soils feed an overproportional 
contribution of headwaters to riverine N2O emissions (Billen et al., 2020; Yao et al., 2020). Note that the 
global assessments of river N2O emissions by Marzadri et al. (2021) and Maavara et al. (2019) do not 
account for groundwater N2O inputs which represent an important part of inland water N2O emissions.  
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For lakes and reservoirs, the importance of processes in the benthic zone has been implicitly taken into 
account by the use of “hydraulic load” to scale denitrification rates (Harrison et al., 2009). Hydraulic load 
has been defined as the ratio of water inflow to water surface area, which is identical to the ratio of 
average lake or reservoir depth over water residence time (Harrision et al. 2009). The process of 
denitrification is assigned an “apparent settling velocity” which expresses rates of nitrification or 
denitrification in the benthic zone relative to water column depth. The deeper the average lake or 
reservoir, the longer it takes until the whole volume is nitrified or denitrified. However, this approach 
does not take into account the actual shape of the lake/reservoir bed and the proportions of shallow, 
littoral zones, where emitted N2O is mainly produced in the bed sediments (Liikanen et al., 2003; Zhu et 
al., 2015), vs. the deeper zones, where processes in the water column are the dominant source of N2O 
(Mengis et al., 1997). While streams and rivers are usually well mixed, deeper lakes and reservoirs may 
be temporally stratified, with important consequences for N2O cycling, which have so far not been taken 
into account in large scale assessments. During stratification, only the top layer (epilimnion) is 
exchangeable with the atmosphere and thus well oxygenated. Then, nitrification in the epilimnion is the 
main source of N2O emissions (Beaulieu et al. 2015, Mengis et al. 1997). In anoxic parts of the lower layer 
(hypolimnion), denitrification prevails, which can be a source or sink of N2O, depending on the 
availability of nitrate for reduction (Beaulieu et al. 2015, Mengis et al. 1997). As this anoxic water may 
also be rich in ammonium from the in-situ decomposition of organic matter, mixing with more 
oxygenated, epilimnetic waters during lake turn-over may represent a “hot moment” for nitrification and 
N2O emissions (Beaulieu et al., 2015; Roland et al., 2017). However, a quantitative assessment of this 
hot-moment at large scales is yet not possible due to the lack of observational data. Moreover, while a 
certain number of studies report measurements of N2O concentrations in the shallow, easy to reach 
epilimnion, studies investigating the deeper profile of N2O concentrations through the hypolimnion are 
scarce (Mengis et al. 1997, Beaulieu et al. 2015). 

Further, also resolving the horizontal zonation would help to better assess the overall N2O budget of a 
lake. Within larger lakes, shallow littoral zones have been shown to contribute disproportionately to lake 
N2O emissions relative to their areal extent (Zhu et al 2015). Here, benthic sediments contribute most to 
N2O production, while in the deeper, pelagic zone, N2O is produced in the water column, and more 
specifically, under stratified conditions, in the epilimnion. Yet, most observations are constrained to 
pelagic zones, which dominate lakes and reservoirs with regard to surface area, but not necessarily 
emissions. Further, strong horizontal gradients in N2O emissions rates may be formed towards the points 
of riverine inflows of reactive N (Miao et al., 2020). However, few studies conduct systematic sampling 
which could reveal and account for these internal spatial variations. 

In general, observational studies are skewed towards temperate, eutrophic systems in developed 
countries, which are easily accessible for sampling and which represent potentially important N2O 
sources related to water quality issues caused by agricultural non-point sources and sewage water 
injections. In boreal regions where N loads are usually lower, it was demonstrated that a substantial 
proportion of aquatic systems is undersaturated with N2O and thus rather act as sinks for this GHG 
(Kortelainen et al., 2020; Soued et al., 2016). Further, as for CO2 and CH4, observations of smaller water 
bodies are generally underrepresented. Interestingly, though small, agricultural ponds could be 
hypothesized to be strong GHG emitters, a study of 101 such systems across the US (Webb et al., 2019) 
has shown that about two thirds of these systems are on the contrary N2O sinks. Overall, this imbalance 
in observed systems might have introduced a bias in upscaling towards overestimation of fluxes. 
Moreover, most estimation approaches, particularly the use of EFs, do not permit for representing inland 
waters as N2O sinks. Finally, samples from temperate and high latitude systems are skewed towards 
summer months, while the full seasonal cycle is only rarely covered in observational studies. Kortelainen 



 

30 

et al. (2020) have demonstrated in their study on Finnish lakes that there is a strong seasonality in N2O 
concentrations and emission rates, with much higher values in winter when low autotrophic production 
allows for higher nitrate concentrations. A flux estimate based on summer-time observations only would 
thus have led to an underestimation by a factor of four. Assuming that similar seasonal patterns are to 
be observed in other temperate to high latitude systems, and that in particular lake turnover as hot 
moment of N2O emissions is not well captured in observations, we can hypothesize that the non-
representativeness of sampling times might have introduced a negative bias in upscaling exercises. Note 
finally that the non-representativeness of observations does not only affect estimates based on direct 
upscaling of average emission rates. With the lack of representative observational data for calibration 
and validation, also model-based studies will remain of limited validity. 

5.2.2 Spatial and temporal resolution 

For riverine systems, global, spatially explicit estimates of N2O emissions have been achieved by 
numerous studies. The spatial resolution ranges from large river basins (Hu et al., 2016), over gridded 
estimates (Yao et al. 2020) to estimates per stream segment (Marzadri et al., 2021).  For lakes, Soued et 
al. (2016) have resolved N2O emissions for three broad latitudinal bands and the only published spatially 
explicit, gridded estimate is that of Lauerwald et al. (2019). Most of these studies represent a climatology 
of average annual fluxes. Only the process-based model by Yao et al. (2020) allows for spatio-temporally 
resolved simulation results which cover seasonality, interannual variability and long-term temporal 
trends. So far, this model includes rivers and reservoirs. For lakes, a global scale, process based model 
that permits for temporally varying N2O emissions is still missing. In line with what was discussed in the 
preceding subsection, such a model would need to couple lake physics and biogeochemistry. 

5.2.3 Data requirements 

To achieve better global estimates of inland water N2O emissions, more observational data is needed, in 

particular from systems that are so far underrepresented like lakes of high latitude and tropical areas, in 

general oligotrophic systems that are not susceptible to yield high N2O emissions and may even be sinks, 

the smallest systems including natural and farm ponds, and ponds used for aquaculture. In general, more 

systematic observational programs permitting the quantification of seasonality and the impact of 

seasonal ice cover, lake turn-over and algae blooms to annual emissions are needed to avoid biased 

upscaling of annual flux estimates. Finally long-time series are needed to assess the long-term evolution 

of inland water N2O emissions and to evaluate process based models. 

To support the application of more advanced upscaling approaches in the estimation of inland water N2O 

budgets, including process based models, better data on environmental drivers and boundary conditions 

are required. That includes the representation of reactive N species to inland waters. While global 

estimates of total N and DIN inputs to the river network exist (Mayorga et al., 2010), it would be even 

better to have information on the more specific inputs of nitrate, ammonium, and dissolved N2O to set 

the boundary conditions for processes involved in N2O production, reduction and emissions. Further, the 

model representation of N and N2O cycling in inland water would profit from datasets on bed 

morphology of the water body and properties of bed sediments. Marzadri et al. (2021) have used a 

machine learning approach to estimate all these boundary conditions for application of their model of 

stream N2O production. While this seems a promising strategy, this approach could be steadily improved 

with new findings from field observations and improved datasets of predictor variables. Also for lakes 
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and reservoirs, only estimates of volume and average lake depth are available (Messager et al. 2016), 

which could be steadily improved using a similar strategy. Finally, for the better assessment of lake and 

reservoir N2O budgets, physical processes such as stratification, mixing and ice cover would need to be 

represented dynamically. For example, process based models of lake physical processes have been 

developed and even implemented into land surface models for global scale application (Subin et al., 

2012) and the outputs of such models may be included in future lake and reservoir N2O models. 

6 Conclusions and outlook 

The number of global scale estimates of inland water GHG emissions is constantly increasing, at an 

accelerated step. For CO2 and CH4, we see a tendency for increasing numbers in estimates of global scale 

fluxes following the inclusion of water bodies which contribute significantly to the overall water surface 

area, and disproportionally to overall emissions. For water bodies above a certain size (e.g. stream 

orders, lake size), estimates of average emission rates seem to converge in latest estimates. Major 

discrepancies persist however with regard to the assumed water surface area and the statistical 

distribution of water body size classes, in particular for small lakes and impoundments (<10 ha), and 

ponds. For riverine N2O emissions on the contrary, we find newer estimates to be lower than older 

estimates, following a change in methodologies moving away from application of emission factors 

towards more process oriented modeling. For lake N2O emissions, discrepancies in assumed water 

surface area and distribution of lake size classes still play a role as well, but not as strongly as for CO2 and 

CH4 because small water bodies do not appear to contribute disproportionately to the total emission 

flux. 

There is ongoing work to improve spatially explicit datasets of inland water surface areas that will help 

improve global scale estimates. For streams and rivers, global scale estimates have recently been largely 

improved combining high resolution remote sensing of water surface areas and statistical prediction for 

headwater streams which are too narrow to be detected (GRWL). A similar strategy may also be the 

solution for lakes and reservoirs, combining data from inventories and remote sensing. Inventories are 

more reliable but less comprehensive as they exclude smallest water bodies and are susceptible to 

geographical biases due to differences between national data sources. Remote sensing is able to detect 

smaller water bodies but is prone to contaminations with wrongly attributed water surface areas if 

unsupervised algorithms are applied and checks for ground truth in sufficient quantity and quality are 

not possible. 

More importantly, improving inland water GHG emissions estimates requires more fieldwork to improve 

quantity and quality of observational data. In particular, we need more data from systems in remote 

areas of the high latitudes and the tropics, and systematic measurements with time-series of sufficient 

length and frequency of observations to better capture seasonal and inter-annual variability in fluxes as 

well as long-term trends in response to environmental change. In addition, more attention has to be paid 

to hot-spots and hot-moments of inland water GHG emissions, which likely contribute a substantial 

fraction of overall emissions.   
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For upscaling and predictions to achieve better global scale estimates, recent developments of machine 

learning based approaches and process-oriented models seem promising. These approaches help to 

better constrain the spatial-temporal variability in global scale estimates, which helps to better include 

inland water GHG emissions in regionalized budget efforts such as RECCAP-2, but also in top-down 

approaches based on atmospheric inversions, which will help to further reduce uncertainties in global 

estimates. 
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