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1  Opinion

Insecticide resistance is characterized by a wide variety of 
mechanisms including modification of the target-site, over-
expression of metabolizing enzymes, structural modification 
of these same enzymes, and increased excretion or reduced 
penetration of the insecticide. Furthermore, when the insect 
has to cope with high selective pressure for insecticide resis-
tance, mutations may accumulate in a single gene as found 
for acetylcholinesterase (Sindhu 2018) or involve multiple 
genes and complex genetic interactions (Bass & Nauen 
2023; Pym et al. 2023; Roca-Acevedo et al. 2022; Amichot 
et al. 2004). In the latter case, mutations can interact addi-
tively or synergistically to confer high levels of resistance. 
Clearly, while resistance is advantageous in the presence of 
insecticide, the cost of such adaptation can be far from neg-
ligible in the absence of insecticide (Freeman et al. 2021).

Years of intense research into the factors underlying 
insecticide resistance has revealed a complex genetic basis 
for this trait and has helped to identify numerous gene muta-
tions responsible for cases of insecticide resistance. While 
it is important to continue to monitor the fate of previ-
ously described mutations in insect populations and possi-
bly uncover new ones, it is also of paramount importance 
to understand the driving forces behind these mutations. 
In this process, we ought to revisit some outstanding ques-
tions, such as whether the mutations conferring resistance 
to insecticides are present before any treatment, or whether 
the treatment causes them directly or indirectly. We should 
acknowledge that this type of question has already been 
addressed from an evolutionary point of view (Hawkins 
et al. 2019), but our aim in this paper is to shed a different 
light on the issue of insecticide resistance.

Indeed, a case of pre-existence of a mutation conferring 
resistance before any insecticidal treatment was described 
in preserved specimens of Lucilia cuprina by Hartley et al. 
(2006). Individuals of this species collected before the first 
use of organophosphate (OP) insecticides harbored a muta-
tion (W251L) in their esterase 3 gene that was shown to 
confer resistance to malathion. Furthermore, the resistance 
conferred by the W251L mutation was specific to malathion 
and did not apply to all OP insecticides. It is also interest-
ing to note that this mutation has no fitness cost (ff rench-
Constant 2007) and can therefore be present like any other 
substitution with no associated cost. In addition, to achieve a 
significant level of resistance against other OP insecticides, 
another G137D mutation was found, but only in specimens 
collected after the massive use of OP insecticides. However, 
this mutation has a high fitness cost. Using the wording 
of Hawkins et al. (2019), W251L could be an outcome of 
standing variation and G137D could be a de novo muta-
tion. Nevertheless, contrary to the assumption of Hawkins 
et al. who assigns “significant fitness penalties” to mutations 
resulting from standing variation, the W251L mutation has 
no apparent fitness cost. In any case, this situation illustrates 
very well our present questioning.

We therefore have proof that a mutation conferring resis-
tance can be present in populations before any insecticide 
treatment. This kind of mutation may be due to chance, but 
also to diffuse selection resulting from the pressure exerted 
by natural toxins. Indeed, herbivorous insect species must 
cope with plant defense molecules and in some cases this 
ability can also give them resistance to insecticide. This has 
been observed for example in certain species of Lepidoptera 
whose enzymes specializing in the metabolization of allelo-
chemicals have been shown to be also able to metabolize 
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insecticides (Li et al. 2007; Li et al. 2004; Li et al. 2000). It 
is clear also that natural molecules such as nicotine, because 
of their structural proximity to certain synthetic insecticides, 
could have predisposed insects to resistance (Bass et al. 
2013).

These examples illustrate that resistance can pre-exist 
insecticide treatment, but the question remains: do mutations 
appear by chance or as a result of genetic events induced by 
the allelochemical or the xenobiotic/insecticide?

If we accept that mutations conferring resistance occur 
by chance and before the onset of any stress, we need to 
think about the putative genetic cost associated with these 
mutations. This cost must be null or extremely low because 
in the absence of selective pressure favoring this mutation, 
it is doomed to disappear from the population. Another pos-
sibility is that the mutation rate is very high, so that when 
stress occurs, whether due to allelochemicals or xenobiot-
ics, an adaptive mutation can be selected. This means that 
mutations occur at high rates, which should be extremely 
costly for organisms in terms of fitness, unless we accept 
that beneficial mutations, i.e. those that confer an ability to 
adapt to the environment, are preferred. Conversely, delete-
rious mutations should be counter-selected, but at the popu-
lation level, this situation is not at all favorable because it 
implies that a large number of individuals will not be viable 
or will act as a brake on the development of the population. 
Furthermore, links may exist between selection pressure, i.e. 
insecticide treatment, and the appearance of mutations caus-
ing resistance. From this point of view, certain references 
are worth discussed. Let’s look at them in chronological 
order. The first one is from (Muller 1964) who proposes a 
direct positive link between the rate of recombination and 
advantageous mutations. The content of this article is theo-
retical, but its conclusions have been regularly considered to 
this day (Kaushik 2023). The second one (Flexon & Rodell 
1982) demonstrated the link between selection for resistance 
to DDT and the increase in the rate of chromosomal recom-
bination, supporting the concept of “hitchhicking”. This 
conclusion is in full agreement with Muller’s proposals. It 
should be emphasized that these recombinations must occur 
in the vicinity or within the genes capable of conferring 
resistance. It is also interesting to cite another work although 
not involving insecticides but environmental variations 
(Turner et al. 2008). Using genome-wide association stud-
ies on multiple Drosophila populations collected in Australia 
and the United States of America along north-south clines, 
they demonstrated that the sequence polymorphisms are not 
randomly distributed and are often found in areas known 
to be important for the adaptation to the environment. No 
molecular mechanism has yet been identified or proposed 
to understand or describe the links between recombination 
rate and insecticide resistance. Knowledge of recombina-
tion mechanisms in Drosophila melanogaster (Fellmeth & 
McKim 2022) and its ability to be selected for insecticide 

resistance make this model organism an ideal starting point 
for understanding how recombination and insecticide resis-
tance are actually linked.

Everything that has been written above actually refers to 
what we might call ‘historical’ resistance mechanisms. By 
this we mean mechanisms involving modifications in the tar-
gets of the insecticides or enzymes acting directly on insec-
ticides, either through structural mutations modifying their 
range of substrates, or through overexpression (cis or trans 
misregulation). In the latter case, epigenetic mechanisms 
play an important role as shown by the increasing number 
of descriptions of their involvement in insecticide resistance 
today (Mogilicherla & Roy 2023) including for example 
DNA methylation (i.e. Field 2000) or miRNA (Wang et al. 
2023). In fact, here we are at the frontier between resistance 
mechanisms and the mechanisms responsible for the appear-
ance of resistance, even if behind these examples of epi-
genetics, enzymes are present and can also carry mutations 
(DNA methylase, RNA polymerase, DICER, etc.). Are we 
moving the cursor one level upstream?

Biocontrol strategies can also raise entirely new questions 
about resistance. Indeed, in Diabrotica virgifera virgifera, 
resistance to the bio-insecticide Bacillus thuringiensis can 
be linked to a change of its bacteriome (Paddock et al. 2021). 
The evolutionary mechanisms leading to such resistance will 
certainly be challenging to elucidate.

Beyond the exciting scientific aspect, knowledge of the 
mechanisms by which resistance to insecticides develops 
can be decisive in managing resistance in the field, especially 
with new insecticides. While the rate of genetic recombina-
tion in a population seems to be important in terms of “his-
torical resistance”, cases of resistance involving epigenetic 
phenomena or the intestinal microbiome cast a certain cloud 
over our vision of this phenomenon. This makes understand-
ing insecticide resistance and its emergence all the more 
fascinating...
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