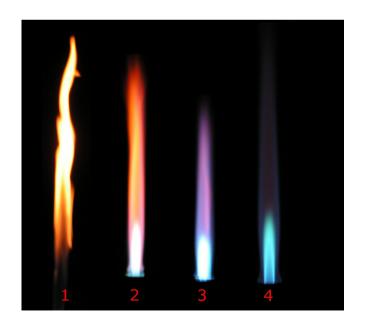
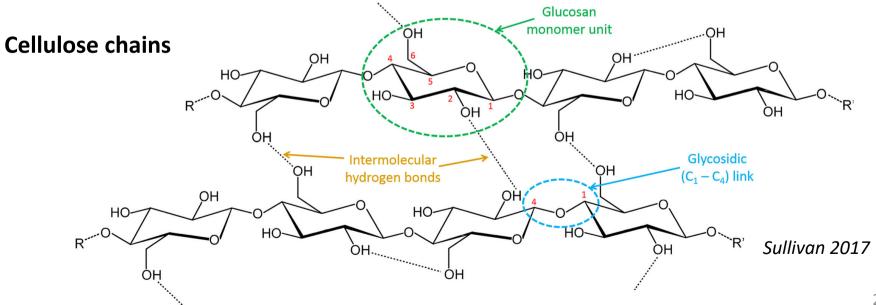
What's a fire ?


The rapid oxidation (<u>combustion</u>) of a material (<u>the fuel</u>) releasing <u>heat</u>, light and various reaction products (*adapted from standard definitions*)

Contrary to many combustion devices (engines, bunsen burner,...):

- fire is a self-sustained process,
- often uncontrolled.

Fire spreading in a grass fuel


Bunsen Burner (combustion device)

Common fuels

All include carbon in any form (hydrocarbons, alcohols, carbohydrates)

Gasesous : methane (natural gas), propane, ethylen, ... Liquid : alcohols, gasoline Solid : coal, synthetic polymers, <u>wood and other natural fibers</u>

Wood and other biomass fuels are mostly composed of natural polymers of carbohydrates (Cm(H20)n) : cellulose, hemicelluloses and lignin.

Biomass fuels

Table 2Approximate analysis ofsome biomass species taken fromShafizadeh [52•], Mok and Antal[61] and Demirbaş [62, 63].Source: modified from [41••] withpermission from Elsevier

Cellulose, hemicelluloses and lignin are non-soluble

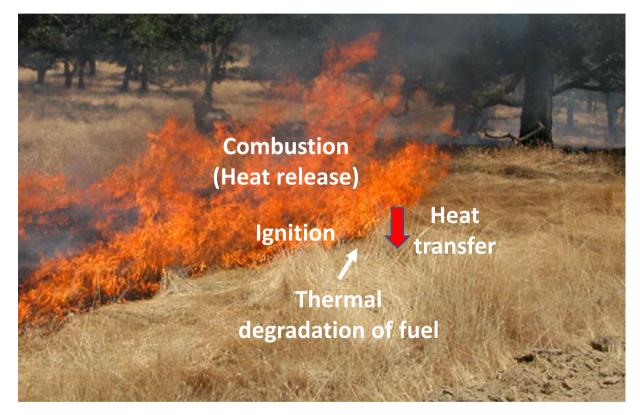
Extractives (i.e. soluble) include waxes, resin, simple sugars, starches, proteins, ..., and volatile organic compounds (VOCs, such as terpenes)

Sample	Cellulose (%)	Hemicelluloses (%)	Lignins (%)	Other ^a (%)
Shafizadeh [52•]				
Softwood	41.0	24.0	27.8	7.2
Hardwood	39.0	35.0	19.5	6.5
Wheat straw	39.9	28.2	16.7	15.2
Rice straw	30.2	24.5	11.9	33.4
Bagasse	38.1	38.5	20.2	3.2
Mok and Antal [61]				
Eucalyptus saligna	45	15	25	15
Eucalyptus gummifera	38	16	37	9
Sweet sorghum	36	18	16	30
Sugar cane bagasse	36	17	17	30
Populus deltoides	39	21	26	14
Demirbaş [62, 63]				
Softwood (av.)	45.8	24.4	28.0	1.7
Hardwood (av.)	45.2	31.3	21.7	2.7
Wood bark	24.8	29.8	43.8	1.6
Wheat straw	28.8	39.1	18.6	13.5
Tobacco stalk	42.4	28.2	27.0	2.4
Tobacco leaf	36.3	34.4	12.1	17.2
Spruce wood	50.8	21.2	27.5	0.5
Beech wood	45.8	31.8	21.9	0.4
Ailanthus wood	46.7	26.6	26.2	0.5

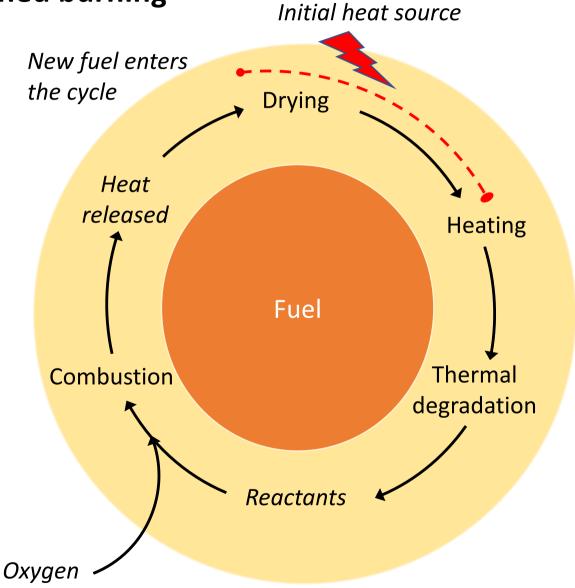
^a Other can consist of organic compounds such as starch or inorganic material such as salts, minerals, water and extractives

Fuels in 'natural' fires

All live and dead elements of vegetation + Soil organic material

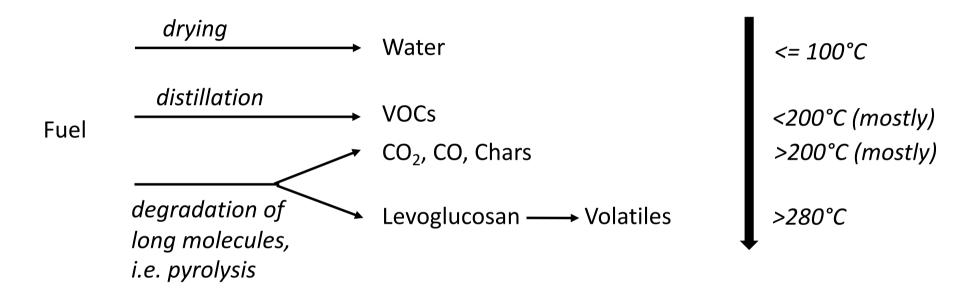

Fine elements (< 6 mm) drive fire spread

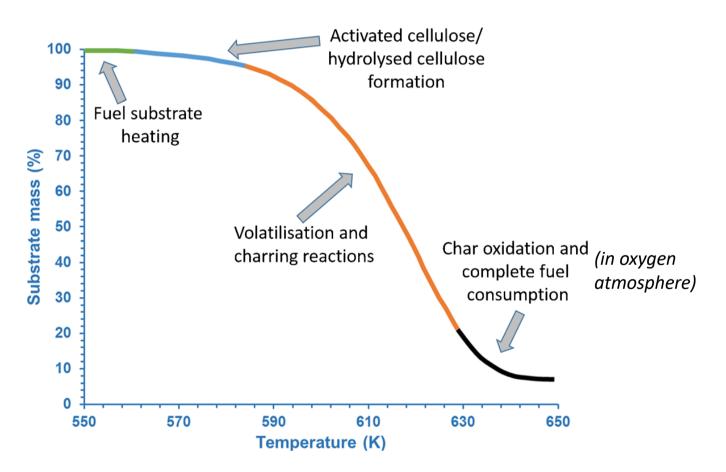
Larger fuels, even trunks, may burn (at least partially)



Self-sustained burning

Fundamental processes

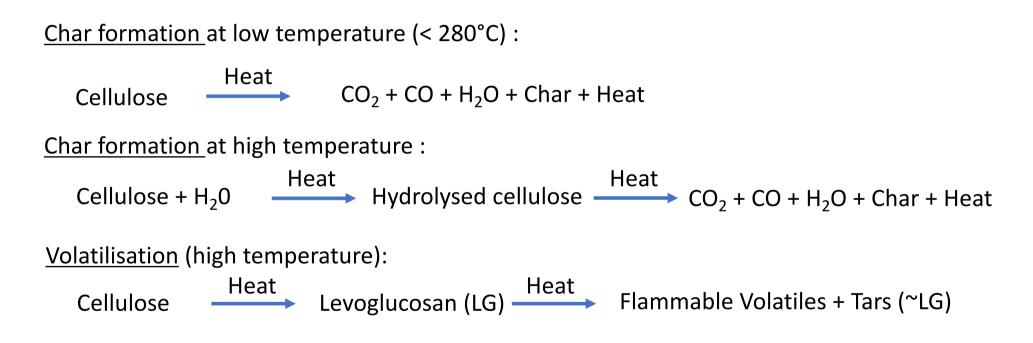



Thermal degradation

Under heating, fuels undergo drying, distillation and pyrolysis

Thermal degradation

Thermo-gravimetric analysis



Sullivan 2017

Thermal degradation (details on pyrolysis of cellulose)

Cellulose (usually 40 to 50% of material) has been studied extensively

Two main pathways : char formation and volatilisation

Char formation is slightly exothermic Volatilisation is slightly endothermic

Ignition

Ignition is the appearance of combustion, generally accompanied by a flame.

Needs fuel, heat and oxygen, but the conditions are more drastic :

1- Most biomass fuels do not burn when O_2 concentration is below 15% (atmospheric air normally contains 21% oxygen in volume)

2- Gaseous flammable products (released by distillation and pyrolysis of solid fuel) have lower and upper **flammability limits**, i.e. they don't ignite outside these limits

3- Fuel heating must be enough, and fast enough, to get a sufficient flow of flammable products to exceed the lower flammability limit when mixed with the air

In practice, ignition may happen if the woody fuel is "rapidly" heated to a critical temperature:

- 300-350°C with a pilot flame (**pilot-ignition temperature**)
- a higher threshold (600°C) with no pilot (spontaneous ignition temperature)

Pre-heating of the solid fuel elements

Prior to ignition, fuel must be pre-heated to ignition temperature T_{ig}

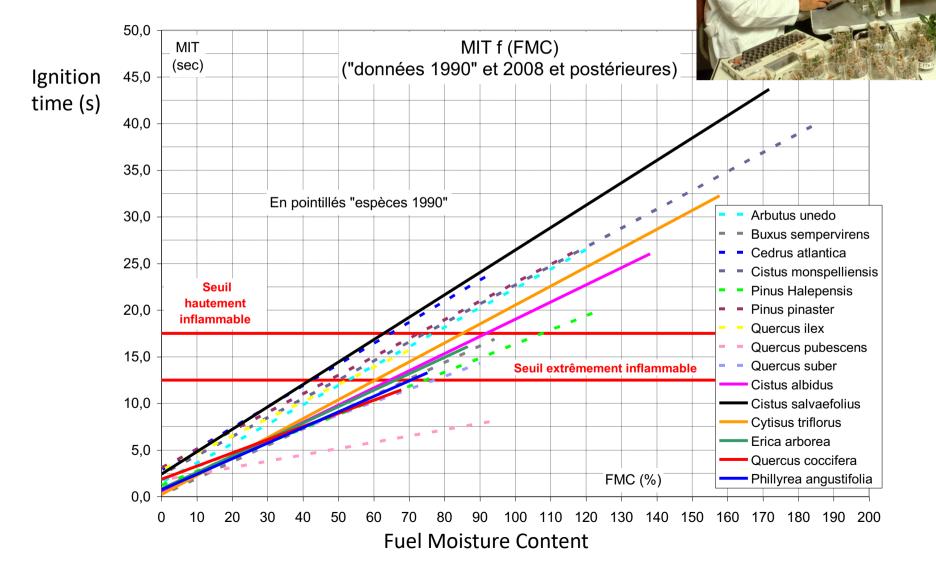
Both the dry material and the water of the fuel must be heated from ambient temperature T_a (300 K) to T_{ig} (~600 K)

Dry material : $Q_{dig} = Cpd (T_{ig} - Ta) = 390 \text{ J/g}$ (g of dry material)

Liquid water must be heated up to 100°C (T_{boil} =373 K) and then vaporized: $Q_w = Cpw(T_{boil} - Ta) + Lv = 2560 \text{ J/g (g of water)}$

 C_{pd} is the specific heat of dry matter (1.3 J/K g) C_{pw} is the specific heat of liquid water (4.18 J/K g) L_v is the latent heat of vaporization of water (2257 J/g)

If the water content of fuel is **FMC** :


Fuel Moisture Content=mass of water /mass of dry fuel Then the **heat of pre-ignition of the fuel** is :

$$Q_{ig} = Qdi_g + FMC \ Qw$$

Basic fire processes

Ignition tests

Compare species samples Assess moisture effect

Combustion

Flaming combustion :

- Products of volatilisation (gaseous fuels) react with oxygen in the air
- Fast reaction controlled by mixing of gaseous fuel and oxygen

Glowing or smouldering (low temperature) combustion :

- Oxidation of chars
- Slower reaction controlled by oxygen diffusion to char surface
- Incomplete combustion, especially smouldering

Flaming

Glowing

Smouldering

Complete combustion (theoretical):

- CO₂ and H₂O are the only final products
- O₂ consumption may be computed if fuel composition is known

Combustion is largely incomplete in wildland fires, which is measurable thanks to the Equivalent Oxygen to Fuel Ratio (EOFR):

> moles of oxygen actually consumed EOFR=moles of oxygen consumed in complete combustion

Type of combustion :	Complete	Flaming	Smoldering	In Fire Science,
EOFR	1.00	0.93	0.80	Springer, 2021
Water (H ₂ O)	559	546	523	
Carbon dioxide (CO ₂)	1821	1632	1283	
Carbon monoxide (CO)	0	90	257	
Methane (CH ₄)	0	3	9	
Other hydrocarbons	0	2	6	
Particulate matter (PM)	0	9	25	14

Typical emission factors of wood combustion (g per 1000 g of fuel)

95% of carbon released in CO2, CO and CH4

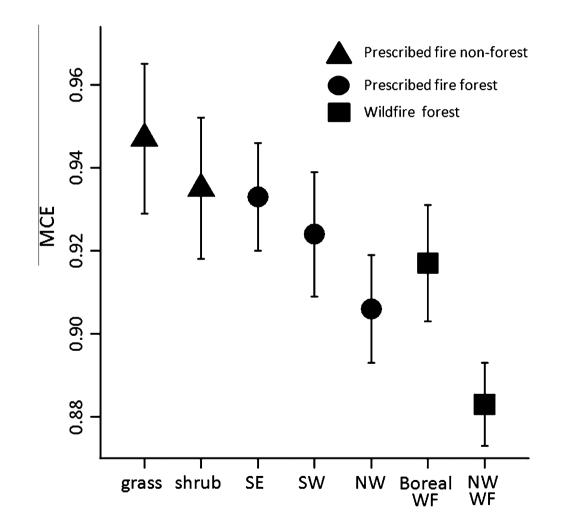
Significance : impacts to the atmosphere, air pollution

CO₂ is the most abundant species by far, but relatively inert

Other, less abundant, products raise specific concerns :

- CO: toxicity
- CH₄: high global warming potential
- NMOCs^{*}, Nitrogen molecules, Sufur dioxid (SO₂) : toxicity, impacts on atmospheric chemistry
- PM : toxicity, impacts on radiative forcing

*NMOCs : Non-methane organic compounds, a number of molecules each representing very low contribution


Modified Combustion Efficiency (MCE) and emission factors (g/kg) for different fire types Data from airborne or tower-based measurements above fires (Urbanski 2014)

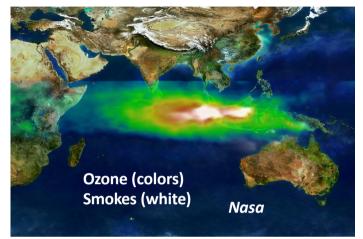
	Prescribed fires			Wildfires		
	Northwest conifer forest	Western Shrubland	Grassland	Northwest conifer forest	Boreal forest	
MCE	0.906	0.935	0.947	0.883	0.917	
Carbon dioxide (CO ₂)	1598	1674	1705	1600	1641	
Carbon monoxide (CO)	105	74	61	135	95	
Methane (CH ₄)	4.86	3.69	1.95	7.32	3.38	
NMOCs	47.3	24.6	23.9	59.6	38.3	
PM < 2.5 µ m	17.6	7.06	8.51	23.2	21.5	
Nitrogen molecules	3.75	3.93	3.68	3.66	2.2	

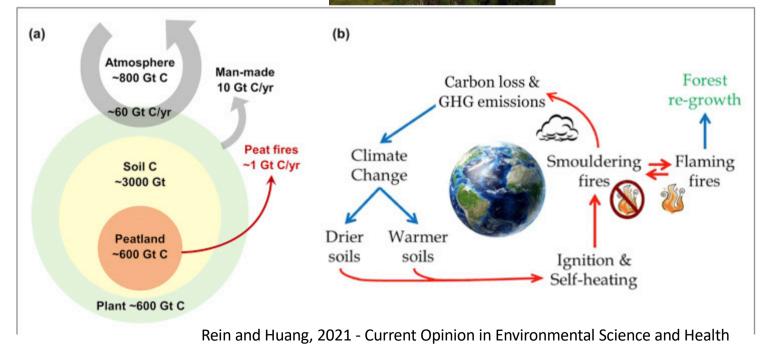
MCE = $CO_2/(CO_2+CO)$, an indicator of smoldering vs flaming activity

Orders of magnitude are similar among fire types, but significant differences appear (uncertainties reported in Urbanski 2014) :

e.g. more efficient combustion in grasslands and shrublands (see next Figure)

MCE = CO2/(CO2+CO) in products, an indicator of smoldering vs flaming activity T_{77}

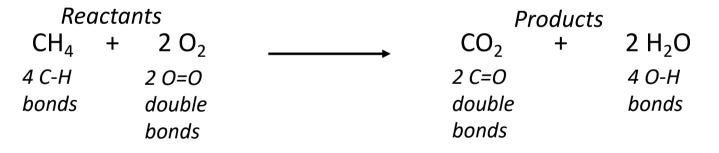

Modified Combustion Efficiency (MCE) and emission factors (g/kg) for smoldering fuels Data from ground-based measurements (Urbanski 2014)


	Stumps and Logs	Temperate forest duff/soil	Boreal forest duff/soil
MCE	0.796	0.752	0.790
Carbon dioxide (CO ₂)	1408	1305	1436
Carbon monoxide (CO)	229	271	244
Methane (CH ₄)	13.9	7.47	8.42
NMOCs	84.9	247	183
PM < 2.5 μm	33	50	20.6
Nitrogen molecules	0.48	3.34	3.34

As expected, pollutants are much more represented over these smoldering fuels than above flaming fires with a significant convection column transporting smokes to the upper atmosphere.

Peat fires release huge amount of carbon and pollutants, with significant impacts to the carbon cycle (feedback) and the human health (haze)

Peat fires, 1997, Indonesia


<u>The heat released by combustion may be computed</u> when reactants and products are known. By convention, energy release (exothermicity) is negative

Net energy release (Δ H) =

Energy to form the bonds of products + Energy to break the bonds of reactants

$$<0$$
 >0
 \rightarrow = - "bond energy" \rightarrow = "bond energy"

Example : combustion of methane

Another way to compute the heat of combustion is to use the enthalpies of formation of products and reactants.

<u>The heat of combustion of woody fuels</u> can be computed considering the following reaction, where $C_6H_9O_4$ represents an <u>average composition</u> of the dry fuel :

 $C_6H_9O_4 + 6.25O_2 \longrightarrow 6CO_2 + 4.5H_2O$

In mass:

145 g woody fuel + 200 g oxygen \longrightarrow 260 g carbon dioxid + 81 g water

High heat of combustion : Δ HH_{fuel} = 20.1 kJ/g, when the final state of *water* is liquid

Low heat of combustion : $\Delta H_{fuel} = 20.1 - 1.4 = 18.7 \text{ kJ/g}$, when the final state of *water* is vapor

Incomplete combustion releases less heat.

But it is better to measure the heat of combustion, as the exact composition of the material is usually unknown

The *heat of combustion* of a burning material depends on the material (composition) and on the fire conditions (temperature, oxygen supply, water content).

Indeed, both influence the proportion of pyrolysis products, which have different heats of combustion

Pyrolysis product	High heat of combustion Δ HH (kJ/g)
Chars (C)	32
СО	10
CH4	50
Levoglucosan	17

The *heat of combustion* of woody fuels varies with their composition and the proportion of char produced (data from Rothermel 1976)

Substance	Proportion of char produced	Higher heat of combustion Δ ΗΗ (kJ/g)
Cellulose and hemicellulose (50-75%)	0.092*	16.1
Lignin (15-35%)	0.624	24.5
Extractives (0.2-15%)	0.285	32.3

*the amount of char produced increases when silica-free minerals are present.

Extractives include volatile organic compounds, which are highly flammable substances

Minerals tend to inhibit flaming combustion, promoting char formation.

Combustion characteristics of different fuel elements (from Susott 1982)

Fuel type	Ash content (%)	Fraction of char (%)	Higher heat of combustion (kJ/g)	Energy for volatiles (kJ/g)	Energy for char (KJ/g)
Grasses	6.5-9.5	22-25	19.4-20.2	12.0-12.2	7.1-8.2
Foliage	1.5-7.1	25-34	20.6-23.3	10.9-15.8	7.5-10.6
(Small) Stems	2.2-6.1	22-28	20.0-22.4	10.9-15.2	7.2-9.1
Wood	0.2-0.6	15-24	19.6-21.0	12.6-14.6	5.0-7.6
Rotten wood	0.2-0.2	21-41	20.3-23.1	10.4-13.6	6.8-12.6
Bark	0.5-17.7	28-47	21.5-24.0	7.7-12.8	8.9-14.3
Duff	31.2-34.1	35-39	20.3-23.3	8.9-11.1	11.4-12.2

Note that the heat of combustion is not so variable

Basic fire processes

Combustion heat release

Combustion characteristics of Mediterranean fuels (from Madrigal et al 2011)

Measurements :

GHC (MJ/kg) : Gross heat of combustion (high heat of combustion measured with bomb calorimeter) PHRR (kW/m²) : peak heat release rate THR (MJ/m²) : total heat release TTI (s) : time to ignition of the sample FD (s) : Flaming duration MLR (g/s) : peak mass loss rate

Note :

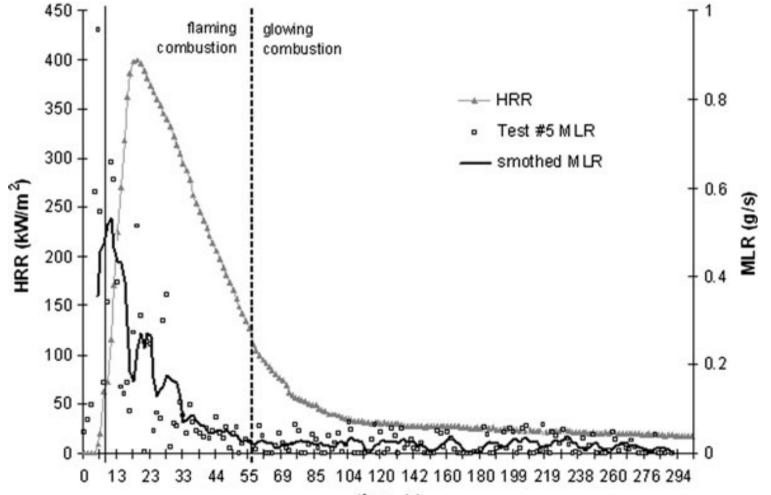

The initial sample load is 10g/100 cm², i.e. 1kg/m². Thus, THR can also be expressed as MJ/kg and compared with GHC.

Figure 1. a General view of the MLC device. b Detail of the thermopile. c Detail of methane burner used to calibrate thermopiles. d Porous holder with *Pinus pinaster* dead litter, immediately before a test.

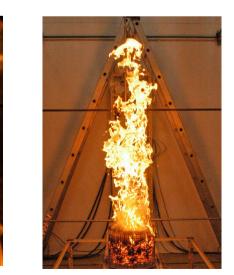
GHC (MJ/g) : Gross heat of combustion (high heat of combustion measured with bomb calorimeter) PHRR (kW/m²) : peak heat release rate THR (MJ/m²) : total heat release

TTI (s) : time to ignition of the sample FD (s) : Flaming duration MLR (g/s) : peak mass loss rate

Combustion characteristics of Mediterranean fuels (from Madrigal et al 2011)

Species	Growth form	Plant parts collected	Bomb calorimeter GHC (MJ/kg)	Mass loss calorimeter				
				PHRR (kW/m ²)	THR (MJ/m ²)	TTI (s)	FD (s)	MLF (g/s)
Live fuels								
Aparagus acutifolius	Herb, perennial	Green stalks and leaves	20.25	326	18.54	3	57	0.056
Cistus ladanifer	Shrub	Green twigs and leaves	21.24	390	23.93	12	65	0.054
Cistus laurifolius	Shrub	Green twigs and leaves	21.44	303	19.48	5	68	0.06
Crataegus monogyna	Tree, shrub	Green twigs and leaves	19.96	284	16.84	3	29	0.06
Cynodon dactylon	Graminoid, annua	l Green leaves	17.66	238	14.47	2	40	0.059
Cytisus scoparius	Shrub	Green twigs and leaves	21.05	426	21.85	12	49	0.046
Daphne gnidium	Shrub	Green twigs and leaves	19.93	353	25.87	3	82	0.061
Erica arborea	Shrub	Green twigs and leaves	22.86	359	19.19	7	47	0.06
Eucalyptus camaldulensis	Tree	Green twigs and leaves	19.87	349	20.01	2	46	0.059
Eucalyptus globulus	Tree	Green twigs and leaves	22.42	397	20.33	4	48	0.06
Juniperus oxycedrus	Tree, shrub	Green twigs and leaves	20.34	367	19.63	4	57	0.06
Lavandula stoechas	Shrub	Green twigs and leaves	20.99	343	17.81	4	62	0.06
Quercus coccifera	Tree, shrub	Green twigs and leaves	19.95	353	17.73	11	38	0.062
\tilde{Q} uercus ilex	Tree, shrub	Green twigs and leaves	19.81	438	23.94	17	35	0.06
Rubus ulmifolius	Shrub	Green twigs and leaves	19.14	327	17.82	11	64	0.058
Ulex europaeus	Shrub	Green twigs and leaves	21.43	507	25.98	11	94	0.05
Pinus halepensis	Tree	Green twigs and leaves	21.34	356	23.18	4	65	0.062
Pinus pinaster	Tree	Green twigs and leaves	21.37	389	15.81	13	61	0.049
Pinus pinea	Tree	Green twigs and leaves	20.37	331	12.81	9	81	0.063
Pinus sylvestris	Tree	Green twigs and leaves	21.68	375	20.39	6	62	0.06
Dead fuels								
Brachypodium retusum	Herb, perennial	Dead stalks and leaves	19.59	264	16.86	3	98	0.06
Pinus halepensis	Tree	Needle litter	22.5	495	25.8	4	60	0.072
Pinus pinaster	Tree	Needle litter	21.54	472	26.07	8	53	0.064
Pinus pinea	Tree	Needle litter	20.47	375	19.65	6	68	0.06
Ulex europaeus	Shrub	Twigs and leaves litter	20.23	260	16.89	4	54	0.05
Ulex europaeus	Shrub	Aerial dead twigs and leaves	22.09	512	27.39	8	98	0.06

Flame - mixing

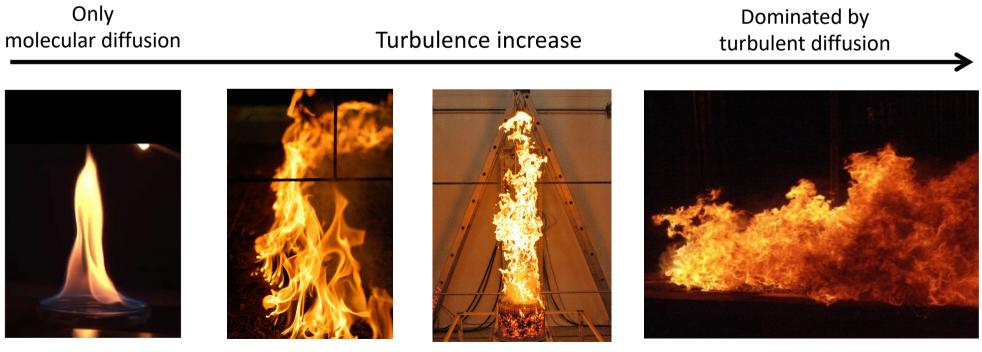

The locations where the combustion of volatiles occurs (reaction zone)

It is visible in fires thanks to the formation of soot particles radiating in the visible wavelengths (yellow color) at high temperatures

Flames in fires are diffusion flames, i.e. mixing of oxygen and flammable gas realized thanks to molecular and turbulent diffusion

Turbulence increase

Highly turbulent ²⁸


Laminar

Flame - mixing

Molecular diffusion : driven by concentration gradients of oxygen and gaseous fuel

Turbulent diffusion : driven by eddy chaotic motion -> much more efficient for mixing than molecular diffusion

Mixing (which ensures oxygen supply) is fundamental in wildland or natural fires, as it controls the rate of combustion (the speed at which fuel or O_2 is consumed)

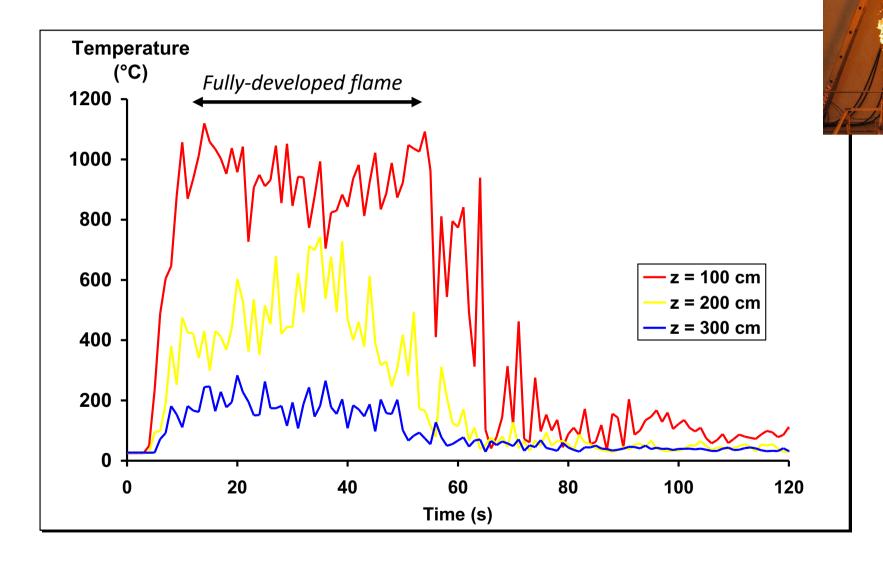
Laminar

Basic fire processes

Flame - temperature

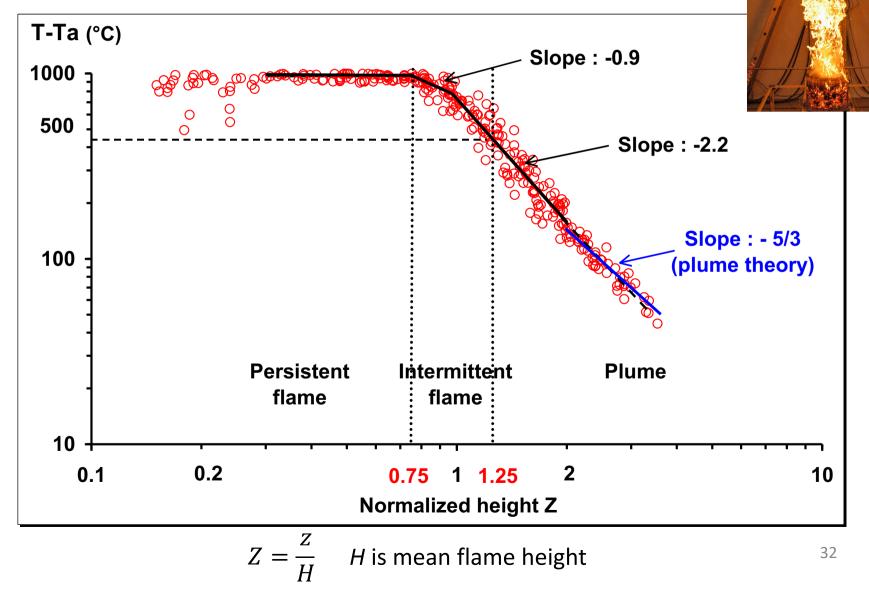
Theoretical (adiabatic) flame temperatures are above 2000°C

But actual temperature are much lower due to heat losses :

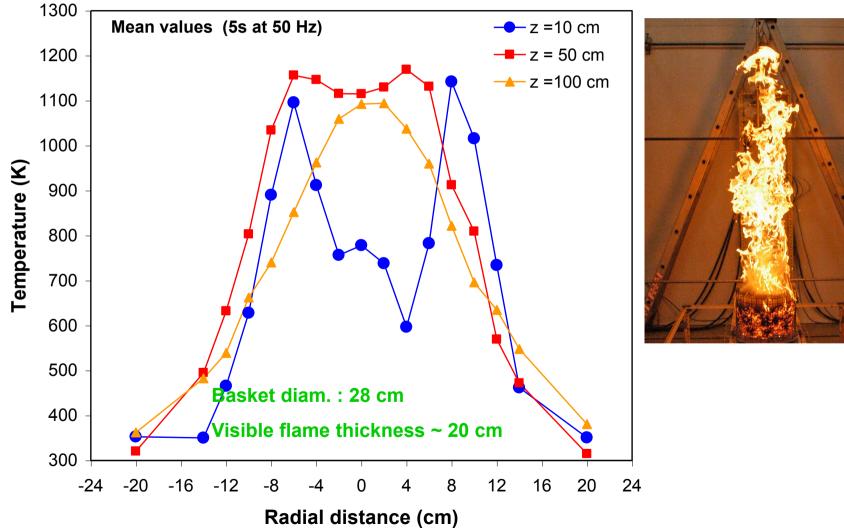

typically 800- 1000°C in average in the core of the flames

$$Z = \frac{Z}{H}$$

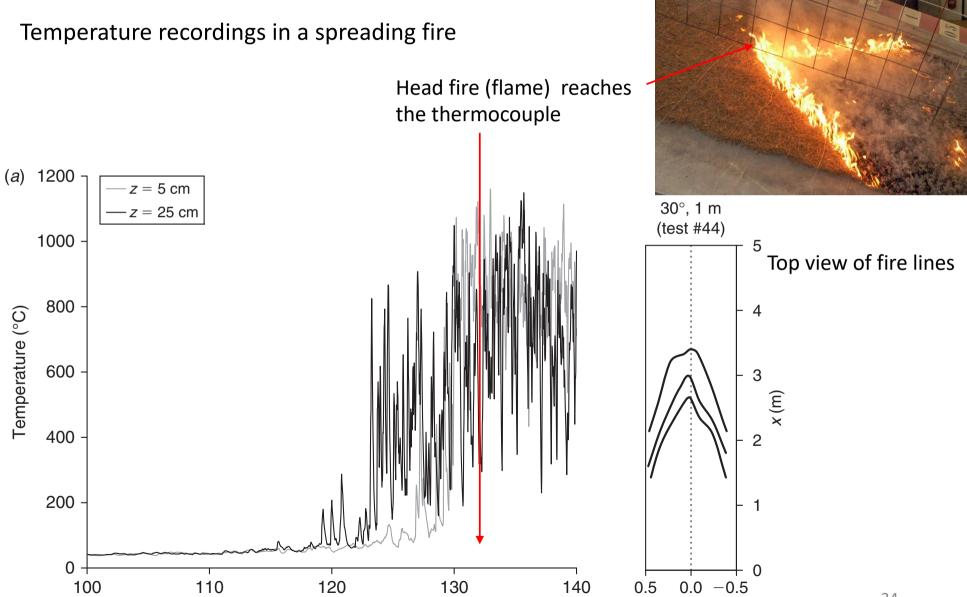
Local, instantaneous values fluctuate a lot


Average temperature decreases above the persistent flame, and radially

Flame - temperature


Flame - temperature

Vertical profile of time-averaged temperature


Flame - temperature

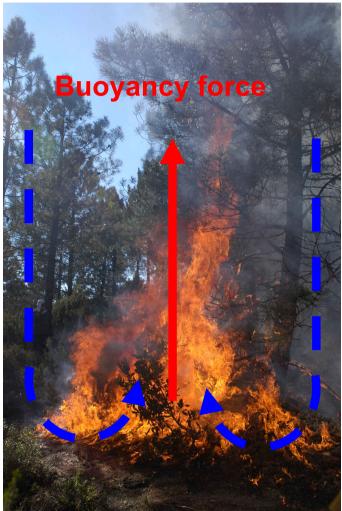
Radial profile of time averaged temperature

Basic fire processes

Flame - temperature

Time (s)

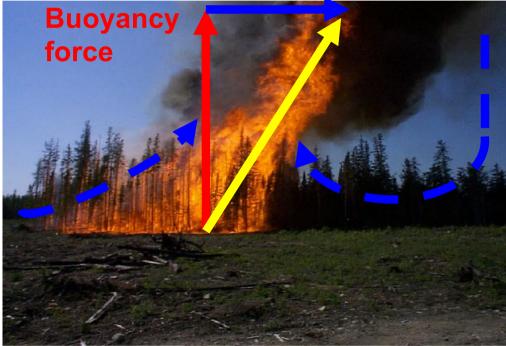
34

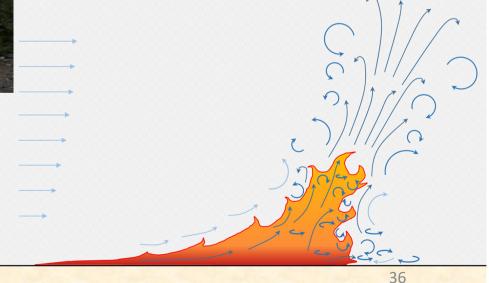

y (m)

Buoyancy and fire-induced flow

Hot air is much less dense than fresh air (ambient a), generating a buoyancy force :

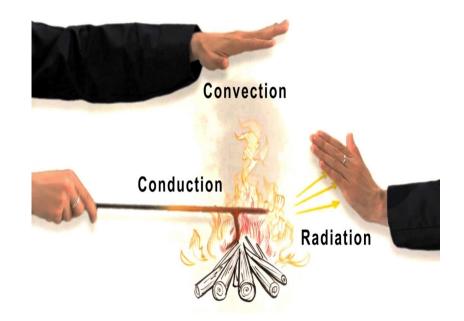
 $F = g (\rho_a - \rho), g$ is gravity and ρ is density (F expressed as forced per unit volume of air)


Rising hot air and gas must be replaced by fresh air


Fire-induced downdraft 35

Buoyancy and wind interactions

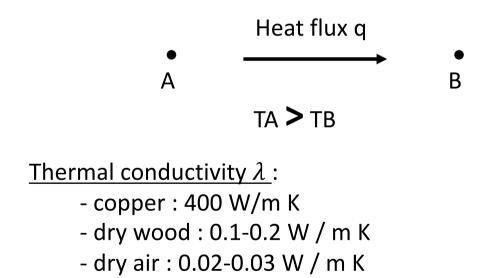
Inertia force (wind)



Heat transfer

The process by which heat (thermal energy) is exchanged between two objects or two parcels of matter of different temperatures

3 modes :


- conduction
- thermal radiation
- convection

Conduction

Conduction is the transfer of heat from one molecule of matter to another by direct contact

In fires : relatively slow transfer, operating within solid fuels and soil layers

Fourier law

$$q = -\lambda \frac{\partial T}{\partial x}$$
 (kW/m²)

Thermal radiation

Thermal radiation is the transfer of heat energy by electromagnetic waves from a heat source to an absorbing material

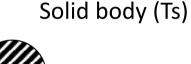
Semi-transparent bodies (the air) allow the waves to pass, so the transfer

Any body emits radiant energy due to its temperature T (Stefan-Boltzman law):

 $E_e = \varepsilon \sigma T^4$ (Emissive power of grey bodies, W/m²)

 ε is body emissivity (=1 for a black body, 0 for a non emitting surface) σ the Stefan-Boltzman constant

The heat flux decreases with the square of the distance to the source


Any non-transparent body absorbs incident radiant energy according to $q_a = \alpha \ qinc$ (absorptivity $\alpha = \varepsilon$ for diffuse - grey bodies)

Convection (convective heat transfer)

Convection is the transfer of heat resulting from the motion of a fluid. In fires : the fluid is air or hot gases (flame, smoke).

The fluid transports heat and exchanges it (by conduction) with the solid body, mnamely, in fires, the fuel elements

Fluid (U, T)

Newton's law for convection

$$q = h \left(T - T s \right)$$

The convective heat transfer coefficient h depends on U (fluid velocity), T (fluid temperature), and other fluid properties, as well as on body geometry

This is a very efficient way of heating, especially when flame is in contact with fuel.

Note : the term *convection* is also widely used to designate the natural movement of fluid due to fluid density differences, for example above a fire ...

Dominant heat transfer in horizontal fire spread

Head Fire

Wind and/or slope affect fire spread with radiant and convective heat.

Backing Fire

Conduction/radiation within fuel bed is dominant factor in fire spread. Much less dependent on wind and slope.

Basic fire processes

Dominant heat transfer in vertical fire spread

Convection above the fire heats and may ignite tree foliage

Dominant heat transfer in glowing embers

Radiation, and conduction within charring material

