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Abstract
As flood events are expected to become more frequent due to climate change, investigating how overland flow exports terres-
trial nutrients, carbon and living organisms into aquatic systems is essential for understanding both soil and stream ecosystem 
status. Here we assessed how dissolved organic carbon (DOC), total suspended sediments (TSS), and stream bacterial diver-
sity responded to stream discharge and overland flow during stormflow in a tropical catchment. A higher humification index 
and a decreasing ratio of allochthonous to autochthonous DOC indicated that DOC from soils was exported to stream during 
the flood. The δ13C and δ15N of particulate matter was indicative of a source in the cultivated areas of the upper catchment 
and of subsurface soils (stream banks and gullies) in the downstream section. Bacterial richness of particle-attached (PA) 
and the free-living (FL) fractions increased with the flood progression in the upstream section. Moreover, the community 
structure of the PA fraction in the stream was more similar to that of overland flow than was the FL fraction. This suggests 
that the soil PA bacterial community was washed-out with overland flow during the flood recession. The relative contribu-
tion of sources and the composition of TSS, rather than hydrological regime, significantly drove the composition of bacterial 
community. In conclusion, our results emphasize that overland flow during a flood event strongly influences the structure 
of stream bacterial communities further underlining the biological connectivity between terrestrial runoff and stream flow.

Keywords DOC · CDOM · Lao PDR (Laos) · Southeast Asia · Land degradation · Sustainability

Introduction

The increase in frequency and intensity in flash flood events 
due to global warming has caused alarm due to their impact 
on soil erosion and stream ecosystem functioning (Trenberth 
2011; Marengo and Espinoza 2016; Polade et al. 2017; Tal-
bot et al. 2018; Eccles et al. 2019). Flash floods in streams 
are generated by a combination of high rainfall rate with 
rapid and efficient runoff production. Flash floods take 
place rapidly within a few hours of a rainfall event and have 
relatively high peak discharges that are determined by the 
dynamic of rainfall variability and its complex interaction 
with basin characteristics (Syed et al. 2003). The amount 
and timing of overland flow occurring during a flood event 
are regulated by basin shape and size (Syed et al. 2003), soil 
moisture (Ali and Roy 2010), surface roughness and crust-
ing as well as vegetation cover (Valentin and Bresson 1992; 
Poeppl et al. 2012; Trevisani and Cavalli 2016).

Overland flow during floods redistributes material 
across the landscape mosaic when water, soil, nutrients 
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and organic material are transferred across the landscape 
(Belnap et al. 2005; Chaplot et al. 2005). The mobiliza-
tion of nutrients and organic matter may increase with soil 
erosion intensity and suspended matter transport during 
flooding, and land use is known to affect nutrient loading 
to downstream ecosystems (Lamers et al. 2006; Banach 
et al. 2009; Maiga-Yaleu et al. 2013; Gourdin et al. 2014a). 
Such transfer consequently impacts stream biology, espe-
cially its microbial component that can rapidly respond to 
environmental variations (Zeglin 2015; Kan 2018). Stream 
microbial communities are shaped by different processes 
relating to local environmental factors or to dispersal 
mechanisms (Lindström and Langenheder 2012) and the 
bacterial community transported from soils into streams 
can easily adapt and persist in new habitats due to frequent 
and high dispersal rates (Adams et al. 2014).

Dissolved organic carbon (DOC) from terrestrial sources 
influences stream microbial activity, growth and bacterial 
composition and diversity through selective local processes 
(Carvalho et al. 2003; Carney et al. 2015). The quantity 
and quality of allochthonous DOC drained from different 
soils and flushed into a stream play a critical role for aquatic 
bacterial growth (Kirchman et al. 2004; Agren et al. 2008). 
However, to our knowledge, the impact of overland flow, 
including the associated bacterial community, on shifting 
stream bacterial diversity and structure during a tropical 
flood event remains little studied, especially in tropical 
regions where flash floods are particularly frequent.

The Houay Pano catchment, Lao PDR is characteristic of 
tropical mountainous catchments in Southeast Asia in that 
it experiences heavy rainfall during the summer monsoon. 
Recent studies focused on suspended sediment transport 
and Escherichia coli (E. coli) numbers during rainy season 
storm flow events in this catchment have emphasized the 
influence of overland flow in the transfer of E. coli from 
the soil surface into the stream (Causse et al. 2015; Mügler 
et al. 2021; Nakhle et al. 2021). Ribolzi et al. (2016) found 
that a small percentage of overland flow, i.e. one tenth of the 
total flood volume in the flood event, was responsible for 
more than two thirds of the downstream transfer of E. coli in 
this catchment. Furthermore, other work has shown that the 
percentage of overland flow in stream water is strong predic-
tor of stream E. coli concentrations (Boithias et al. 2021a). 
These results raise the question of whether overland flow 
originating from the surface of upland soils is a major factor 
controlling stream bacterial diversity and structure including 
particle attached (PA) and free living (FL) bacterial frac-
tions at the scale of the flood. We therefore hypothesized 
that overland flow associated to a flood event would strongly 
structure PA and FL bacterial fractions and that proportions 
of the different fractions would follow flood hydrology, with 
the strongest influence observed at peak flood when overland 
flow was highest.

Materials and methods

Study sites

The study site is located 10 km south of Luang Prabang in 
northern Laos (Fig. 1). It is a sub-catchment of the Houay 
Xon River, a tributary of the Mekong River. The climate 
pattern is that of a tropical climate with summer monsoon 
characterized by a rainy season from mid-May to mid-
October and the dry season from November to March. The 
average annual rainfall is ca. 1366 mm with 77% occurring 
during the rainy season. The watershed is characterized 
by intense, monsoonal rain events of which around 20–30 
generate flood events annually. During these storms, rain-
fall reaches intensities of up to 100 mm  h−1 (over a time 
step of 6 min), similar to that commonly observed in other 
tropical systems (Richter et al. 2016).

The catchment is part of the M-TROPICS network of 
instrumented catchments (Boithias et al. 2021b). Three 
hydrometric stations that allowed continuous monitor-
ing of stream discharge and water sampling at the out-
let of three nested catchments were selected for this 
work (Fig. 1). The Overland flow station (S8) is located 
upstream of the Intermediate station (S4), both are within 
the Houay Pano catchment. The Downstream station (S10) 
is located downstream and is within the Houay Xon catch-
ment, of which Houay Pano is a sub-catchment. During 
flood events, the Overland flow station drains ephemeral 
overland flow (Gourdin et al. 2015) from a small hollow 
(0.01  km2). The Intermediate and the Downstream gaug-
ing stations, corresponding to a drainage area of 0.62 and 
11.6  km2, respectively, monitor the permanent flow of the 
main stream during baseflow (groundwater contribution 
only) and stormflow (mixture of groundwater with over-
land flow) periods (Ribolzi et al. 2018). At the time of the 
study, the study site was covered by forests (56% of the 
total surface area), teak plantations (15%) and croplands 
(23%) (Fig. 1).

Water sampling and hydrological measurement

Water sampling took place during a flood event on June 
16th, 2014. Water samples were collected in new, double 
rinsed, 19 L plastic drinking water carboys by an auto-
matic sampler (Automatic Pumping Type Sediment Sam-
pler, ICRISAT) at each station (Overland (S8), Interme-
diate (S4) and Downstream (S10) (Fig. 1) Samples were 
collected every 2 cm during the flood stage and every 4 cm 
during the recession stage. Ten samples from the Inter-
mediate station, six samples from the Downstream station 
and two additional samples at the Overland station (at the 
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beginning and the end of the flood) were collected over 
the course of flood. We estimate that a maximum delay of 
2 h occurred between the end of the flood and the start of 
sample treatment in the laboratory.

Hydrological measurements were made at the Interme-
diate and Downstream stations. Rainwater intensity was 
measured (with a 1-min time step) using an automatic rain 
gauge. Stream discharge was measured at the catchment 
outlets (Intermediate and Downstream) using an automated 
water level recording station (OTT, Thalimedes/SE200). 

Water electrical conductivity (EC) normalized to 25 °C was 
measured for each sample with an YSI 556 probe.

EC‑based hydrograph separation

To separate overland flow and groundwater flow during 
the flood event, a tracer-based approach was used with a 
simple mixing model with two reservoirs and EC as a 
tracer (Ribolzi et al. 2016). It is described by the following 
equations:

Fig. 1  Location of study and 
sampling sites: in stream moni-
toring stations (Intermediate 
station, S4), the Downstream 
station, S10) and direct source 
sample locations and hillslope 
in situ sediment source sam-
pling station (Overland station, 
S8) (overland flow) (Evrard 
et al. 2016)
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where Qsw represents the instantaneous stream water dis-
charge at the catchment outlet, Qof, the instantaneous dis-
charge of overland flow and Qgw, the instantaneous discharge 
of groundwater (expressed in L  s−1).  ECSW is the instantane-
ous EC measured in the stream.  ECof is the average value for 
overland flow during the storm event.  ECof was measured 
on samples of overland flow that were collected from the 
soil surface on hillslopes draining to the stream during the 
rainfall event (Patin et al. 2018). Since groundwater feeds the 
stream during inter-stormflow periods (Ribolzi et al. 1997, 
2018), EC of groundwater  (ECgw) was approximated from 
stream measurements carried out prior to the storm event at 
the catchment outlets (Intermediate and Downstream).

Measurement of DOC, CDOM and TSS

The Intermediate and Downstream stations were used to 
monitor DOC, CDOM and TSS variations during the flood 
event. A subsample of 200 mL of each sample was filtered 
through 0.7 µm nominal porosity Whatman GF/F glass fiber 
filters to remove particles. Sample filtration for all of the 
samples took a total of 4 h to complete. For the determina-
tion of DOC concentration, duplicate 30 mL aliquots of this 
filtrate were kept in pre-combusted (450 °C, overnight) glass 
tubes, preserved with 36 µL 85% phosphoric acid  (H3PO4) 
and sealed with a Teflon lined cap. Samples were stored 
at ambient temperature and in the dark until measurement. 
DOC concentration was measured on a Shimadzu total 
organic carbon (TOC)  VCPH analyzer following the method 
described in Rochelle-Newall et al. (2011). DOC concentra-
tion is expressed as mg of organic C per liter of water.

For CDOM (colored dissolved organic matter) measure-
ments, 100-mL filtered samples were stored in pre-cleaned 
125-mL amber glass bottles sealed with Teflon lined caps. 
After collection, the samples were stored frozen (− 20 °C) 
until measurement. Before the optical measurements, the 
samples were thawed slowly to room temperature and re-
filtered at 0.2 μm (Sartorius Minisart NML Syringe filters). 
CDOM absorption was measured with a spectrophotometer 
(Analytica.Jena Specord 205 UV–VIS) from 200 to 750 nm 
using a 10 cm quartz cell and Milli-Q water as the blank.

Specific UV absorbance at 254 nm (SUVA) provides a 
proxy of DOM aromaticity (Weishaar et al. 2003) and was 
computed by dividing the UV absorbance at 254 nm by the 
concentration of DOC (mg C  L−1) (Hood et al. 2006). The 
spectral slope ratio, Sr was also calculated as the ratio of the 
slope of the shorter UV wavelength region (275–295 nm) 
to that of the longer UV wavelength region (350–400 nm) 

Qsw = Qof + Qgw,

QswECsw = QofECof + QgwECgw,

(Helms et al. 2008) and was obtained using linear regres-
sion on the log-transformed spectral ranges (Yamashita et al. 
2010).

Excitation–emissions matrices (EEM) measurements 
were made on a Gilden Fluorosens fluorometer using a 
1 cm quartz cuvette with 5 nm bandwidths for excitation 
and emission at an integration time of 100 ms. Excitation 
scans were made over a range of 200–450 nm at 5 nm incre-
ments and emission scans from 220 to 600 nm at 2.5 nm 
increment. EEMs were corrected for inner filter effects and 
the manufacturers’ machine correction was applied. EEM 
fluorescence of Milli-Q water blank was subtracted from that 
of sample EEM, and EEM converted to Raman units (RU).

Humification (HIX) was calculated from excitation 
255 nm as the ratio of the peak area under each curve at 
emission 434–480 nm and 300–346 nm. HIX indicates the 
humic content of DOM and ranges from 0 to 1 (Ohno 2002). 
The fluorescence index (FI) was measured as the ratio of 
fluorescence emission intensities at wavelength region of 
470:520 nm and an excitation wavelength of 370 nm. The 
values of FI of less than 1.4 suggest a dominant terrestrial, 
higher-plant DOC source and the values of more than 1.4 
suggest a predominant microbial DOC source (Cory et al. 
2010).

PARAFAC analysis was carried out in MATLAB (ver-
sion R2016a 9.0.0) with the DOMFluor toolbox for MAT-
LAB (Murphy et al. 2013) to decompose the fluorescence 
signal into a series of tri-linear structures. Data processing 
was done to minimize the impact of scatter lines (removal 
of Rayleigh and Raman scatter). EEM wavelength ranges 
were reduced to excitation 290–450  nm and emission 
300–600 nm. PARAFAC model generated three components 
using EEMs from our samples (n = 16). The three-compo-
nent model (C1–C3) was validated using split-half and ran-
dom initialization methods (Supp. Mats Figs. S1, S2).

Total suspended sediment (TSS) samples were grounded 
with an agate mortar, weighed and packed into tin contain-
ers (5 × 9 mm). Particulate organic carbon (POC) and total 
nitrogen (TN) concentrations, and stable C and N isotopes 
(δ13C and δ15N) were measured using the  Elementar® Vari-
oPyro cube analyzer on line with a  Micromass® Isoprime 
isotope ratio mass spectrometer (IRMS) facility (iEES-Paris, 
France) following the procedure described in Huon et al. 
(2017).

Assessment of bacterial diversity

DNA extraction and 16S rRNA gene sequencing

Fifty milliliters of each sample was first filtered through 
a 3 μm pore size filter (Polycarbonate Whatman) and a 
0.2 μm (Polycarbonate Supor) filters to separate the parti-
cle-attached (PA) (> 3.0 µm) from free-living (FL) fractions 
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(< 3.0 µm and > 0.2 µm) (Crump et al. 1999). All filters were 
stored at − 20 °C until DNA extraction following a modified 
protocol adapted from Fuhrman et al. (1988). Briefly, the 
filters were cut in half using ethanol cleaned scissors and 
placed in separate  Eppendorf® tubes. One tube was placed 
on ice and 525 μL of lysis buffer was added to start break-
ing Gram negative bacterial cells. The other tube was stored 
at − 20 °C as a back-up filter. Three cycles of freeze–thaw 
switches (65 °C for 2 min—ice for 5 min) were then per-
formed to facilitate cell membrane breakage. Then 0.5 g 
of glass beads (Ø = 0.5 mm) was added into the tubes. The 
tubes were shaken for 45 s at 6 m  s−1 using a  Fastprep® (Mil-
lipore,  Fastprep®-24, USA) and were incubated at 4 °C for 
5 min; these steps were performed twice. Eleven microliters 
of lysozyme (1 mg  mL−1, final concentration) was added to 
the tube and left for 30 min at 37 °C to break down bacterial 
cell walls. Sodium dodecyl sulfate (SDS 10%) and protein-
ase K (final concentration, 100 μg  mL−1) were added to the 
tubes and were incubated at 55 °C for 2 h under constant 
shaking conditions (180 rpm) to remove the lipid membrane. 
A sodium chloride (NaCl 5 M) and a cetyltrimethylammo-
nium bromide (CTAB) solution (final concentration, 1% in 
a 0.7 M NaCl solution) was added to the tubes, mixed and 
incubated at 65 °C for 10 min to separate DNA from pro-
tein. Nucleic acids were then extracted twice from diges-
tion products with phenol–chloroform–isoamyl alcohol 
(25:24:1); the aqueous phase containing nucleic acids was 
kept and purified by adding phenol–chloroform–isoamyl 
alcohol (25:24:1). After isopropanol (0.6 volume) addition, 
the nucleic acids were precipitated at − 20 °C for 12 h. After 
centrifugation, the DNA pellet was rinsed with 99% pure 
ethanol to remove the salt previously added. The samples 
were spun 20 min at maximum speed (15,000 rpm) at 4 °C 
and the supernatants were removed. The DNA pellets were 
dried in a Speed  Vac® (Labconco, USA) for 10 min and 
re-suspended in 50 μL of molecular cleaned distilled water. 
Nucleic acid extracts were stored at − 20 °C and sent over-
night to Molecular Research Laboratories (Texas, USA) for 
further PCR amplification, product cleaning, library con-
struction and high throughput sequencing.

The PCR primers 515F AGR GTT TGATCMTGG CTC 
AG and 806R GTNTTACNGCGGCKGCTG (Capone et al. 
2011) with sample-specific barcodes on the forward primer 
were used to amplify the V4 variable region of the 16S rRNA 
gene. Thirty (30) cycles of PCR were performed using the 
HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the 
following conditions: 94 °C for 3 min, followed by 28 cycles of 
94 °C for 30 s, 53 °C for 40 s and 72 °C for 1 min, after which 
a final elongation step at 72 °C for 5 min was performed. After 
amplification, PCR products were checked in 2% agarose gel 
to determine the success of amplification, the relative intensity 
of bands and to check the expected amplicon size (291 bp). 
The samples included in this study were pooled together in 

equal proportions based on their molecular weight and DNA 
concentrations. Pooled PCR products were purified using 
calibrated Agencourt AMPure XP magnetic beads according 
to the manufacturer’s instructions. The purified PCR product 
was then used to prepare a DNA library by following Illumina 
TruSeq DNA library preparation protocol. Sequencing was 
performed at MR DNA (http:// www. mrdna lab. com, Shallowa-
ter, TX, USA) on an Illumina MiSeq machine following the 
manufacturer’s guidelines.

Sequences processing and data analysis

The MOTHUR software (v. 1.33) was used to process 16S 
rRNA gene sequence reads following the standard operative 
protocol (Schloss et al. 2009). Short reads (< 250 bp) and 
reads with ambiguous primer or barcode sequences were dis-
carded. Corresponding reads were paired in single sequences. 
Sequencing errors were reduced by aligning remaining reads 
to the SILVA database (Pruesse et al. 2007), screening the 
alignment to the overlapping region, and pre-clustering 
sequences distant by < 2 bp. Chimeric sequences were iden-
tified using the integrated version of UChime (Edgar et al. 
2011) and removed accordingly. To avoid misinterpretation, 
sequences that were classified as “Chloroplast”, “Mitochon-
dria”, or “unknown” lineages were removed before clustering 
into operational taxonomic units (OTUs). Rarefaction curves 
were calculated for all samples using the MOTHUR software 
(v.1.33). All samples were subsampled to 10,000 sequences 
before clustering into OTUs with a pairwise distance < 0.03 
substitutions per nucleotide with the average neighbor method 
and considered for further analyses. Taxonomic assignments 
were performed on the alignment of consensus sequences with 
the RDP database (Cole et al. 2005). OTUs are classified to the 
finest taxonomic level possible from phylum to genus.

Alpha and Beta diversity assessment

Nonmetric multidimensional scaling (NMDS) based on 
Bray–Curtis dissimilarity were calculated to estimate the dis-
similarity in structure between all samples using the metaMDS 
commands from the vegan package in R (Oksanen et al. 2017).

The ratio of shared OTUs between overland flow and 
stream water and the total number of OTUs in stream (FL-
OTU and PA-OTU, for the FL and PA fractions, respectively) 
was determined for each fraction using:

where Shared  OTUoverland presents the number of shared 
OTU in the FL (or PA) fraction between Overland and Inter-
mediate (or Downstream) and Total  OTUstream is the total 
number of OTU in the FL (or PA) fraction. Values close to 

FL - OTU(or PA - OTU)

= Shared OTUoverland ÷ Total OTUstream,

http://www.mrdnalab.com


 H. T. Le et al.

1 3

    7  Page 6 of 16

1 indicate a dominance of shared OTU (i.e. the samples are 
more similar) and values closer to 0 indicate a low propor-
tion of shared OUT (i.e. the samples are more dissimilar).

A canonical correspondence analysis (CCA) was per-
formed to determine the relationship between the sig-
nificant environmental variables (DOC, Sr, SUVA254, 
fluorescence components (C1, C2 and C3) and TSS) 
and the stream PA or FL bacterial community fractions. 
Only OTUs with the total number of sequences > 10 was 
included in CCA.

The links between environmental factors (DOC concen-
tration, fluorescence components, TSS) and bacterial OTUs 
were analyzed using network analysis for PA and FL sepa-
rately. A correlation matrix was constructed by calculating 
all possible pairwise Spearman’s rank correlations. Only 
OTUs with total number of sequences > 10 and an occur-
rence at least at 5 time points of the flood were taken into 
consideration. Results with a Spearman’s correlation coef-
ficient of R > 0.7 and a significance level of p < 0.05 were 
used to build the networks. Only positive correlations are 
shown in the networks. The nodes in each network repre-
sent OTUs or environmental factors and the edges that con-
nect these OTUs show the correlation coefficients between 
OTUs. Node size corresponds to the number of sequences 
for each OTU. Networks were visualized in Gephi v. 0.9.1 
using the Fruchterman–Reingold layout algorithm (Bastian 
et al. 2009).

Microbial putative functions were identified using 
FAPROTAX (functional annotation of prokaryotic taxa). 
The FAPROTAX software contains a database that converts 
taxonomic microbial community profiles into putative func-
tional profiles, based on taxa identified in a sample (Louca 
et al. 2016). FAPROTAX was ran on the OTUs from the PA 
and FL fractions separately.

Statistical analyses

Correlations between environmental factors were estimated 
using the Pearson correlation coefficient with the Hmisc 
package in R (Harrell 2018). A one-way ANOSIM test was 
performed with Bray–Curtis dissimilarity using vegan pack-
ages in R to determine the significance of the difference in 
bacterial community structure. The betadisper function in 
vegan was used to test for homogeneity of variance between 
microbial communities in different sites for PA and FL sepa-
rately to ensure the meeting of assumptions of the ANOSIM. 
The env.fit function was applied to the Bray–Curtis dissimi-
larity matrices (vegan package in R) (Oksanen et al. 2017) 
to evaluate the significance of relationship between PA and 
FL bacterial structure and the environment factors (DOC and 
CDOM). Differences were considered significant when the 
p value of the tests was lower than 0.05.

Results

Overland flow discharge during the 16 June 2014 
storm flow event

At the Intermediate station, the maximum rainfall intensity 
occurred between 13:34 and 13:35 and reached 60 mm  h−1. 
The peak of flood occurred at 14:18 with a discharge of 
33 L  s−1 corresponding to 21% overland flow contribu-
tion using EC-based hydrograph separation. Overland flow 
peaked at 9 L  s−1 between 14:33 and 14:35 (Fig. 2). At 
the Downstream station, rainfall peaked at 13:42 with an 
intensity of 156 mm  h−1. The peak of discharge (543 L  s−1) 
and overland flow (60% of total discharge) occurred at 
14:00 (Fig. 3).

Environmental variables

The concentration of TSS at the Intermediate station 
increased during the flood rising stage from 17.5 mg  L−1 
prior to the flood to 1174.7 mg  L−1 at flood peak and then 
decreased to 191.9 mg   L−1 during the recession stage 
(Fig. 2). At the Downstream station, the TSS load reached 
a peak of 2195 mg  L−1 following the peak of discharge and 
then declined to 409.3 mg  L−1 at the end of flood event.

The temporal evolution of POC, C/N, δ13C and δ15N 
in TSS varied less at the Intermediate station than at the 
Downstream station over the course of the flood. The mean 
value of the C/N at the Downstream station was higher 
(11.8 ± 1.68) than at the Intermediate station (9.2 ± 0.4). 
Similarly, at the Downstream station, the mean values 
of δ13C and δ15N in TSS (− 22.3 ± 0.8 and 7.2 ± 0.15, 
respectively) were higher than at the Intermediate station 
(− 25.4 ± 0.34 and 6.5 ± 0.15, respectively) (Figs. 2, 3).

DOC results

DOC concentration at the Intermediate station increased 
during the rising stage of the flood. It increased from 
2.6 mg  L−1, and peaked at 6.2 mg  L−1 at 15:10 after the 
peak of flood it then decreased to 4.2 mg  L−1 toward the 
end of the flood. Similarly, fluorescence index (FI), which 
indicates the ratio between allochthonous and autochtho-
nous DOC contributions, gradually decreased during the 
rising flood. The index thereafter increased as the over-
land flow decreased. Humification (HIX) also gradually 
rose from 0.18 to 0.54 mg  L−1, meanwhile the aromaticity 
of DOC (SUVA) had a decreasing trend at the time of 
high allochthonous DOC supply. The inverse of molecular 
weight of DOC (Sr) remained relatively stable from 0.91 to 
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1.02 during the flood event. The molecular weight of DOC 
was lower during the flood compared to base flow (Fig. 2).

At the Downstream station, DOC concentrations and HIX 
concomitantly peaked at 4.4 and 0.39 mg  L−1, respectively. 
Low FI (1.12) values also suggested the presence of more 
allochthonous DOC. The SUVA fluctuated from 4.97 to 

6.18, but tended to rise with increasing DOC and discharge 
flow (Fig. 3) whereas Sr varied from 0.85 to 1.05, similar 
to the values recorded for the Intermediate station (Fig. 2).

During the progress of flood, DOC concentration, the 
aromaticity of DOC (SUVA) and humification (HIX) 
at the Intermediate station were higher than that at the 

Fig. 2  Hydrograph (rain 
intensity and total discharge of 
ground water) and environmen-
tal variables measured during 
the flood event at the Interme-
diate station. Total suspended 
solid (TSS) concentration, 
particulate organic carbon 
(POC), stable C and N isotopes 
 (d13C and  d15N) in TSS, 
particulate C/N ratio (C/N), dis-
solved organic carbon (DOC), 
fluorescence index (FI), the 
aromaticity of DOC (SUVA), 
humification (HIX), the inverse 
of molecular weight (Sr), PA-
OTU and FL-OTU, the ratio of 
shared OTU number with over-
land flow (OF) in the stream 
water for particle attached (PA) 
and for free-living (FL). Each 
dot indicates a sampling event 
during the continuous meas-
urements of discharge at the 
Intermediate station
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Downstream station, in contrast to what was observed for 
TSS. Using the PARAFAC model, three components were 
identified as indicative components of optical character-
istics of DOC (Table S1). Component 1 (C1) had a peak 
at excitation/emission (Ex/Em) wavelength of 340/457 
corresponding to the UVC humic-like (peak C) (Fellman 

et al. 2010). Component 2 showed a peak of 420/475 for 
Ex/Em wavelength that is similar to the humic acid frac-
tion (Yamashita et al. 2011). Component 3 had an Ex/Em 
peak of 300/352 similar to that previously identified as 
being tryptophan-like (Coble 1996; Yamashita and Tanoue 
2003).

Fig. 3  Hydrograph (rain 
intensity and total discharge of 
ground water) and environmen-
tal variables measured during 
the flood event at the Down-
stream station. Total suspended 
solid (TSS) concentration, 
particulate organic carbon 
(POC), stable C and N isotopes 
 (d13C and  d15N) in TSS, 
particulate C/N ratio (C/N), dis-
solved organic carbon (DOC), 
fluorescence index (FI), the 
aromaticity of DOC (SUVA), 
humification (HIX), the inverse 
of molecular weight (Sr), PA-
OTU and FL-OTU, the ratio of 
shared OTU number with over-
land flow (OF) in the stream 
water for particle attached (PA) 
and for free-living (FL). Each 
dot indicates a sampling event 
during the continuous meas-
urements of discharge at the 
Downstream station
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Bacterial community during the flood event

The number of observed OTUs (Sobs) and the estimated 
Chao richness of the PA bacterial community was signifi-
cantly (p < 0.05) higher than for the FL bacterial community 
in stream during the flood event at both the Intermediate and 
Downstream stations (Table S2). The InvSimpson and Shan-
non index for both PA and FL had an increasing trend at the 
beginning of the flood and decreased at the end of flood at 
the Intermediate station (Table S2).

Shared OTUs between overland flow and stream 
water

The ratio between the number of shared OTUs between 
overland flow and stream water per total number of OTUs 
in stream indicates the contribution of bacterial community 
from overland flow to stream water during the flood event 
(Figs. 2, 3). At the Intermediate station, this ratio increased 
with discharge flow and overland flow at the beginning 
of the flood recession, from 0.17 to 0.25 for PA and from 
0.01 to 0.04 for FL. The values then decreased at the end 
of the flood (Fig. 2). At the Downstream station, the ratio 
for the FL fraction varied slightly from 0.03 to 0.04 during 
the course of flood. The value for the PA fraction tended to 
decrease at the beginning of the flood event, thereafter it 
peaked again (0.09) concomitantly with the peaks of DOC, 
TSS and HIX (Fig. 3). In addition, the ratio of shared OTUs 
with overland flow in the stream water was higher in the PA 
than the FL fraction in both the Intermediate and Down-
stream stations.

Effect of environmental factors on bacterial 
community structure

Community structure was significantly separated between 
sites and between PA and FL fractions during the flood 
(ANOSIM, R = 0.5, p = 0.001). The PA fraction at the Inter-
mediate and Downstream stations was more similar to the 
Overland station than was the FL fraction (Fig. 4). The 
relationships between environmental factors and the stream 
bacterial community were tested in canonical correlation 
analyses (CCA) and Monte Carlo permutation tests (999 
permutations) for the stream PA and FL bacterial commu-
nity fractions separately (Fig. 5; Table S3). The cumulative 
percentage of variance of the relationship between the bacte-
rial community and environmental factors indicated that the 
first and second canonical axis explained 27.6% and 21.8% 
of this variance, respectively, for the PA fraction and 17.2% 
and 16% of this variance, respectively, for the FL fraction 
(Fig. 5). DOC, the humic component (C1) and TSS load 

were significantly correlated with a shift in spatial bacterial 
structure between upstream and downstream for both PA and 
FL fractions (Fig. 5).

The relationship between environmental factors and 
bacterial community was assessed at the Intermediate 
station using network analysis (Fig. 6; Table S6). In the 
PA network, we found 9 OTUs belong to Proteobacteria 
(Cupriavidus, Polyangiaceae, Rhizobiales, GR-WP33-
30, 2 OTUs of SC-I-84, 2 OTUs of Phenylobacterium, 
Xanthomonadaceae); 9 OTUs belong to Acidobacteria (8 
OTUs of Acidobacteriaceae and Candidatus_Koribacter), 
3 OTUs belong to Planctomycetes (2 OTUs of Plancto-
mycetaceae, Pirellula), 2 OTUs belong to Firmicutes 
(Anaerococcus, Epulopiscium), 4 OTUs belong to Act-
inobacteria (AKIW543, Propionibacterineae) and 3 OTUs 
belong to other phylum (Nitrospira, Chloroflexales, Opi-
tutus). The FL network has 6 OTUs belonging to Proteo-
bacteria (Rhodobium, 2 OTUs of unclassified, Pedomicro-
bium, Acinetobacter, Comamonadaceae), 3 OTUs belong 
to Acidobacteria (Acidobacteriaceae), 1 OTUs belong 
to Planctomycetes (Plantomycetaceae), 1 OTU belong 
to Actinobacteria (AKIW543), 3 OTUs belong to other 
phylum (DA101, Bacteroides, Opitutus). The resulting 

Fig. 4  Nonmetric multidimensional scaling (NMDS) based on Bray–
Curtis distance for all samples in different sites for both particle 
attached (filled symbols) and free-living (open symbols) fractions 
during the flood at the hydrometric stations (Intermediate, Down-
stream and Overland stations). Circle: Intermediate station, trian-
gle: Downstream station, square: Overland station. Note: due to low 
sequence cover, the sample 5 from the Intermediate station for free-
living was removed
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networks revealed that DOC was significantly associated 
with the humic components (C1 and C2) and TSS. These 
factors were significantly correlated with more PA-OTUs 
than FL-OTUs. For the PA fractions, DOC concentration 
was significantly correlated with 13 OTUs belonging to 
Nitrospira, Propionibacterineae, Acidobacteriaceae, Xan-
thomonadaceae, Opitutus, Phenybacterium, AKIW543, 
Epulopiscium, Plantomycetaceae, Chloroflexales. The 
genus of Nitrospira and Acidobacteriaceae were the most 
abundant OTUs amongst the OTUs related to DOC con-
centration. The humic component C2 was correlated with 
6 OTUs including Anaerococcus, Cupriavidus, Acidobac-
teriaceae, Plantomycetaceae, AKIW543, Chloroflexales. 
TSS was correlated with 17 OTUs among which 5 OTUs 
were classified as Acidobacteriaceae, and the other as 
SC-I-84 (3 OTUs), Phenybacterium 2 OTUs), AKIW543 
(2 OTUs), Priellula (1 OTUs), Anaerococcus (1 OTU), 
Rhizobiales (1 OTUs), Candidatus_Koribacter (1 OTU) 
and GR-WP-33-30 (1 OTU).

For the FL fraction, DOC concentration was signifi-
cantly correlated with 11 OTUs classified as Acidobacte-
riaceae (3 OTUs), Pedomicrobium (3 OTUs), Bacteroides 
(2 OTUs), AKIW543 (1 OTU), Opitutus (1 OTU) and 
Plantomycetaceae (1 OTU). The humic component C2 was 

correlated with 3 OTUs including the genus Rhodobium 
and one OTU belonging to the Gamma-Proteobacteria. 
Meanwhile TSS was correlated with 3 OTUs including 
the genus of Comanonadaceae, Pedomicrobium and Aci-
dobacteriaceae. The most abundant OTU in the network 
correlated with DOC concentration was from the Acido-
bacteriaceae (Fig. 6).

FAPROTAX assignations of the potential functional 
groups during the flood was possible for ~ 29.6% of the 
OTUs detected in PA samples and 20.4% of the OTUs 
detected in FL samples. The two most abundant functions 
in both fractions were chemoheterotrophy (from 25.4 to 
36% for PA and from 20 to 39.4% for FL of total abun-
dance of functional groups) and aerobic chemoheterotro-
phy (32.9% for PA and 31.2% for FL of total abundance of 
functional groups). Other abundant functional groups were 
aromatic compound degradation (0.2–5.8%), nitrate reduc-
tion (2–8.5%), fermentation (0.9–7%), nitrogen fixation 
(0.9–16.7%) and nitrate respiration (0.9–5%) for PA and 
fermentation (0.5–11.2%), nitrogen fixation (0.2–11.9%) 
and nitrate reduction (0.5–11.6%) for FL (Fig. S3a, b). 
Only nitrogen fixation was significantly different between 
the PA and FL fractions (p < 0.003).

Fig. 5  Canonical correspondence analysis (CCA) analysis between 
environmental factors and bacterial community for the particles 
attached (left) and free-living fractions (right) for stream water sam-

pled at the hydrometric stations the Intermediate (filled circle) and 
Downstream stations (open circle)
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Discussion

Source and composition of particle borne 
organic matter in TSS and DOC in stream water 
during the flood event

The peak of TSS was synchronous with discharge dur-
ing the flood course at the Intermediate station but not at 
the Downstream station. This variability in synchronicity 
between flood and TSS peaks has already been shown for 
this system and is due to a variety of factors, such as rain 
height, spatial distribution and intensity (Boithias et al. 
2021a). Huon et al. (2017) have previously observed that 
the evolutions of POC, POC/PN, δ13C and δ15N in TSS at 
the Intermediate station follow hyperbolic trends with sus-
pended sediment loads, reflecting the dilution of particle 
borne organic matter by in-channel or allochthonous mineral 
matter supply. The low value of δ13C (− 25.4 ± 0.34) at the 
Intermediate station in our study matches the mean surface 
soil, reflecting the dominance of C3 photosynthesis pathway 
plants (upland rice, fallow vegetation and teak plantation) 

across the catchment (Huon et al. 2013, 2017; Gourdin et al. 
2015). The δ13C, δ15N in TSS values at the Downstream sta-
tion were higher than in the upper parts of the catchment (the 
Intermediate station) and matched subsurface soil signatures 
(stream banks and gullies). This reflects both the input of 
C4-plant derived organic matter originating from swamps 
covered with Napier grass along the Houay Xon catchment 
and of subsurface particles supplied by channel banks and 
gullies (Huon et al. 2013, 2017; Gourdin et al. 2015). Our 
results are in accordance with these conclusions that surface 
soil is the dominant potential source of particles from culti-
vated areas in the upper catchment parts (Huon et al. 2017) 
and that sediment remobilization processes play a key role 
in downstream areas (Gourdin et al. 2014b).

DOC concentration did not concomitantly peak with 
discharge. However, DOC concentration increased during 
the rising stage, suggesting an increase in the inflow of soil 
derived DOC into the stream. Similar, significant increases 
in DOC have been observed in the Hunter river and its tribu-
taries in Australia, after a major flood event (Carney et al. 
2015) and Besemer et al. (2005) found that flood events 

Fig. 6  Network analysis of relationship between environmental fac-
tors: dissolved organic carbon (DOC), humic components (Parafac) 
(C1, C2), total suspended sediment (TSS) and particle attached-
OTUs (left panel) and free-living—OTUs (right panel). Node colors 

indicate the bacterial phylum, node labels indicate genus. Node size 
is proportional to the number of sequences. The OTUs are listed in 
Table S6. *Unidentified OTUs belonging to family or order level
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increased the amount of DOM, probably as a consequence 
of inputs from previously disconnected pools and increased 
terrestrial inflows. The decrease of FI, a proxy of DOC ori-
gin, with increasing DOC concentration during the flood 
course also points towards the allochthonous origin of DOC 
in overland flow (Fellman et al. 2010) as do the PARAFAC 
components (C1–C3) that considered to be characteristic 
of humic-like substances (Fellman et al. 2010; Yamashita 
et al. 2011). Finally, compared to before the flood event, a 
decrease of  SUVA254 and of molecular weight (increase of 
Sr) at high flow at the Intermediate station indicated that the 
composition of the DOC released during the flood event was 
less aromatic and of lower molecular weight. Fellman et al. 
(2008b) showed that a high SUVA is associated with lower 
bioavailability and biodegradation is known to increase the 
aromaticity of DOM (Kalbitz 2003). Therefore, the DOC at 
the Intermediate station during the flood event was probably 
less degraded, less aromatic and more bioavailable (Buffam 
et al. 2001; McLaughlin and Kaplan 2013). This suggests 
that soil water comprised more fresh, less degraded DOC 
than in stream water at base flow (Evans et al. 2007). In 
contrast to our results, some studies have reported that the 
aromatic content of DOM (SUVA) increased with storm dis-
charge (Hood et al. 2006; Fellman et al. 2009; Inamdar et al. 
2011). The explanation for this difference is not clear, but 
may be related to pedoclimatic characteristics, soil type and 
soil organic matter origin in the catchment. Our SUVA val-
ues are high compared to the range of published values and 
it is important to keep this caveat in mind. This difference 
may be related the factors mentioned above or to interfer-
ence from Fe or other solutes (Weishaar et al. 2003). As we 
were unable to analyze the samples directly in the field, we 
had opted to freeze the samples and this may also explain 
the high values. Several articles have looked at the question 
of storage with sometimes contrasting results (Fellman et al. 
2008a; Rochelle-Newall et al. 2014), it is therefore difficult 
at this stage to determine the reason for these high values.

Overland flow drives bacterial community structure 
during the flood event

We observed an increase in richness of bacteria during the 
flood as compared to base flow. This was driven by the dis-
persal of the PA bacteria originating from overland flow 
during the rising stage of the flood (Fig. 2) as indicated by 
the closeness between the structure of the stream water PA 
fraction to that from the Overland station as compared to the 
stream water FL fraction. Besemer et al. (2005) indicated, 
in a temperate river-floodplain system, that compared to the 
FL fraction the PA bacterial fraction was probably more 
strongly impacted by changes in hydrological and environ-
mental conditions such as the inflow of terrestrial organic 
matter. Moreover, Adams et al. (2014) found, during large 

storm events, that the high dispersal rate periodically dis-
rupts a stable community composition, resulting in a similar 
bacterial community between inlet and outlet. In our data, 
the similarity between PA fraction from Overland, Inter-
mediate and Downstream also reflects this dispersion. Such 
strong impacts of super storms on freshwater bacterial com-
munity composition and function have also been previously 
observed elsewhere (Ulrich et al. 2016; Kan 2018).

The Overland station is located within a teak plantation. 
Previous work has underlined the strong negative impact 
of teak plantation on soil erosion (Ribolzi et al. 2017) and 
other work from this catchment has underlined the influ-
ence of past and present vicinal land cover on bacterial 
community structure and organic carbon in soils and in 
overland flow (Le et al. 2020). The similarity of PA frac-
tions between the Overland, Intermediate and Downstream 
stations (Fig. 4) suggests that the source of the PA fraction 
was soils that were washed out from under teak plantations 
via overland flow during the flood event. The higher propor-
tions of allochthonous DOC and OTUs’ ratios exported from 
overland flow into stream water at the Intermediate station 
relative to the Downstream station point towards a stronger 
effect of overland flow at the Intermediate station. Moreover, 
although the stream received overland flow during the flood, 
this mixture of flow from the basin hillslopes and ground-
water was rapidly washed out as a consequence of the high 
flood discharge rate. This mechanism probably explains why 
the ratio of OTUs from overland flow in the stream water 
decreases (i.e. is less similar) at the end of the flood.

Relationship between bacterial community 
structure and environmental variables

We found that TSS was one of the most important factors 
driving bacterial community composition for both PA and 
FL at different sites during the flood. Staley et al. (2015) 
observed that particle sediment bacterial community compo-
sition strongly influenced water column bacterial community 
structure. Luef et al. (2007) also proposed that the PA frac-
tion was more affected by particle composition rather than 
by the hydrological characteristics of the system. Tang et al. 
(2017) also indicated that turbidity or TSS (an indicator of 
sediment and phytodetritus resuspension) was one of the 
main factors controlling the structure of bacterial commu-
nities in the PA fraction. Thus, storm water influx and the 
associated sediments in free-flowing water are probably the 
principal factor influencing bacterial community structure 
during the flood (Ulrich et al. 2016; Kan 2018).

In our study, the connection between particle composi-
tion sources rather than hydrological regime played a key 
role in driving the bacterial community. DOC and humic 
components were more related to the temporal shift in the 
PA bacterial community than in the FL fraction because the 
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PA community structure changed with increasing DOC con-
centration during the water level rising stage (Fig. 4). This 
pattern is supported by the network analysis, which shows 
that more PA-OTUs were significantly correlated with DOC, 
the humic components and TSS than FL-OTUs. Similarly, 
DOC and the humic components were found to have a more 
important role in PA co-occurrence networking than for the 
FL fraction in this catchment at base flow in the wet season 
(Le et al. 2018). This suggests that the stream bacterial com-
munity was driven by upland soil supply through hydrologi-
cal connectivity at base flow (Le et al. 2018) and by overland 
flow during the flood event (this work).

The genus Nitrospira, the most abundant OTU in the PA 
fraction, was correlated to DOC concentration in stream 
water during the flood event. Nitrospira is an aerobic, nitrite-
oxidizing bacterium and through its role in the nitrification 
process this bacterium plays a key role in soil N dynamics 
(Daims et al. 2015; Le Roux et al. 2016). Nitrospira has 
also been identified as possessing a substantial metabolic 
versatility in the utilization of organic compounds and urea 
degradation (Daims et al. 2015; Gruber-Dorninger et al. 
2015; Koch et al. 2015). This suggests that the loss of this 
taxa and other taxa in overland flow into stream water may 
shift in-stream metabolic function.

FAPROTAX (Fig. S3) revealed that the two most abun-
dant functions in both PA and FL were chemoheterotrophy 
and aerobic chemoheterotrophy. These functions were also 
found to be abundant in soil and runoff water during a rain 
simulation in the same catchment (Lamers et al. 2006). 
Almost all of the genera found correlated with DOC con-
centration, for example Nitrospira, Propionibacterineae, 
Acidobacteriaceae, Xanthomonadaceae, Opitutus, Acido-
bacteriaceae and all belong to the functional group aerobic 
chemoheterotrophy.

Moreover, the functional groups relating to the nitrogen 
cycle such as nitrogen fixation, nitrate respiration, and nitrate 
reduction were abundant in the different sites, especially in 
the PA community. This corresponds to the results from Le 
et al. (2018) in the same catchment who observed that the 
functional groups for nitrate reduction and respiration were 
more abundant in runoff from upland rice planted soils.

Conclusion

During the flood event, stream water was strongly influenced 
by overland flow and its associated characteristics including 
allochthonous DOC, POC and the particle-bound bacterial 
community. The number of PA taxa originating from over-
land flow increased in stream water as the flood progressed 
and was higher than that of FL taxa. This means that the 
PA fraction is more dependent on eroded particle material 
flow from hillslope terrestrial runoff than is the FL fraction. 

The higher representation of specific taxa (e.g. Nitrospira, 
Acidobacteriaceae) also points towards a strong impact of 
overland flow on aquatic microbial ecosystem function. This 
study provides fundamental insights into our understanding 
of how the transportation of the soil bacterial community, 
via overland flow, impacts the stream bacterial community 
during a flood event, underlining the biological connectivity 
between terrestrial runoff and stream flow.
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