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SPECIAL ISSUE: INFORMATIVE DATA IN HYDROLOGY

Impact of suspicious streamflow data on the efficiency and parameter estimates of 
rainfall–runoff models
Cyril Thébault a, Charles Perrin a, Vazken Andréassian a, Guillaume Thirel a, Sébastien Legrandb 

and Olivier Delaigue a

aUniversité Paris-Saclay, INRAE, HYCAR, Antony, France; bCompagnie nationale du Rhône, Lyon, France

ABSTRACT
Many sources of error in hydroclimatic data can affect hydrological modelling, yet the impact of stream-
flow data quality is poorly quantified. This work aims to investigate whether inconsistencies found in 
streamflow time series commonly available for hydrological studies (typically in national streamflow 
archives) have an impact on the efficiency and the parameter estimates of rainfall–runoff models. 
Hydroclimatic data were gathered at the hourly time step over the period 1998–2018 for a set of 30 
catchments in France. Hydrological modelling was carried out with the lumped conceptual GR5H 
(standing for modèle du Génie Rural à 5 paramètres Horaire, i.e. Hourly 5-parameter rural engineering 
model) model. A typology of “realistic” suspicious streamflow was established to set up several error 
models in order to corrupt the data. Our results suggest that common suspicious streamflow data do not 
have a strong impact on model efficiency and parameter estimates overall, but may be an important 
source of instability and lack of robustness when working on a single catchment.
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1 Introduction

1.1 Errors in streamflow estimates

There are many sources of errors in hydrological modelling. 
These stem from the choices made in the model structure, the 
techniques used to estimate model parameters, or the quality 
of observations used to run or calibrate the model (e.g. meteor-
ological forcing and streamflow time series). Various studies 
have highlighted the impacts of errors in precipitation and 
potential evapotranspiration data on modelling, either in 
terms of model performance or directly on model parameter 
values (Ibbitt 1972, Troutman 1985, Paturel et al. 1995, 
Andréassian et al. 2001, 2004, Oudin et al. 2006, McMillan 
et al. 2010b, Singh and Dutta 2017). Recently, a few studies 
focused on the uncertainties associated with air temperature 
data, which can be used for the calculation of potential evapo-
transpiration, snow accumulation or snowmelt (Ruelland  
2020, SchreinerMcGraw and Ajami 2022). Comparatively, 
fewer studies have focused on the impacts of errors in stream-
flow observations used to calibrate and evaluate rainfall–runoff 
models (Section 1.3). However, the sources of uncertainty in 
streamflow estimates are numerous.

By definition, a streamflow is the volume of water that 
a river produces per unit of time at a given cross-section. To 
calculate it, hydrometrologists measure the flow velocity pro-
file in the river over the wetted area, i.e. the cross-sectional area 
of the bed where the water flows. However, streamflow 
remains difficult to evaluate, as it is not homogeneous over 
the whole section (the width, depth and shape of the bed vary 

naturally). This is all the more true in high-flow conditions 
where there may be overbank flows, or in low-flow conditions 
where the heterogeneity of the riverbed may have strong 
impacts on the flow conditions (due to rocks, vegetation, 
etc.). The extreme flows are therefore also the most uncertain. 
Although hydrometric gauging techniques are becoming 
increasingly efficient, variability in measurements can be 
observed depending on the choice of the cross-section within 
a river reach or on the experience of the gauging crew (Despax 
et al. 2019). Direct measurements of streamflow are sparse and 
manually operated, hindering continuous measurement. 
Instead, water levels are automatically recorded and a rating 
curve based on simultaneous measurements of water depth 
and streamflow is used to create a streamflow record. 
Therefore, continuous streamflow observations should instead 
be called “streamflow estimates” since there is generally no 
direct measurement.

The water stage in the river is easier to obtain in a quasi- 
continuous and automatic way, typically using a sensor (e.g. 
float, pressure or electronic gauges). Like any measuring 
instrument, sensors are subject to errors linked to their cali-
bration, performance and precision, to the measurement con-
ditions (e.g. sensitivity to water temperature) or to the 
conversion into electrical signals for remote data transmission 
(Horner et al. 2018). A well-known issue in measured data is 
noise, which is due to random influences and inaccuracies that 
cannot be eliminated completely (Schouten et al. 1994). Some 
studies aimed to reduce noise in series with methods based on 
filters. They mostly concluded that this process is effective in 
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smoothing the data but that it can remove or distort 
a significant part of the original signal (Elshorbagy 2001, 
Peters et al. 2014, Karunasingha and Liong 2018, Wang et al.  
2019a, 2019b).

To estimate streamflow time series, a rating curve giving the 
stage–discharge relationship in each monitored section is 
defined. The more information available on the river close to 
the measurement section (e.g. high-frequency measurements or 
presence of nearby hydraulic controls), the smaller the uncer-
tainty in the rating curve (Le Coz et al. 2014). However, this 
stage–discharge relationship is likely to be modified with time 
since natural river beds evolve continuously, e.g. with vegetation 
growth or sediment transport, and especially during strong 
flood events or because of human activities (Mansanarez et al.  
2019, Darienzo et al. 2021, Perret et al. 2021). In addition, the 
extremities of the rating curve remain very uncertain, because 
gauging is difficult under extreme climatic conditions (i.e. 
drought or floods), and is thus a source of error in streamflow 
records. This relationship is all the more difficult to estimate in 
contexts where temperature can play a key role, typically in 
high-mountain or high-latitude regions where river ice and ice 
jams modify the stage–discharge relationship. During such per-
iods, the streamflow data may be created by gap-filling 
approaches involving subjective choices that might introduce 
biases and non-homogeneities. Streamflow reconstruction (e.g. 
post-flood) is therefore also a source of uncertainty.

However, the inconsistencies of streamflow time series are 
not limited to measurement errors and methodology. Indeed, 
human influences often result in non-natural streamflow, 
which is difficult to model. But the issue of naturalized stream-
flow records (see e.g. Terrier et al. 2021, for a review) or the 
inclusion of anthropogenic influences in hydrological models 
(Montanari et al. 2013) is out of the scope of our study.

When dealing with a large sample of catchments there can be 
numerous streamflow inconsistencies of varied or unknown 
causes. Wilby et al. (2017) proposed to summarize these error 
sources with 12 carefully chosen cases (the “dirty dozen”). They 
suggested several methods for detecting unrepresentative, poorly 
collected or erroneously archived data (e.g. visual inspection of 
raw data, comparison between sites, trend detection or metadata 
check). However, error detection and attribution are more diffi-
cult to conduct for large datasets, where observation networks are 
automated, or when various information sources have been 
combined.

Regardless of their sources, the various errors can be classi-
fied into two categories:

● Systematic errors: These most often result in a bias over 
a long period and are typically caused by an error in the 
rating curve or an incorrect initialization of the water 
depth measurement sensor.

● Random errors: These are sporadic and unpredictable; they 
can be directly inherited from metrological errors (e.g. the 
accuracy of measuring instruments), human errors (e.g. 
poor handling during measurement or data evaluation) 
or digital errors (e.g. data banking or remote transmission).

With the increased availability of large databases, 
Wagener et al. (2021) recently put forward some issues 

in this context: where (regions) and when (periods) are 
available datasets informative or simply poor approxima-
tions of likely system properties? How can we best iden-
tify and acknowledge these gaps to better understand and 
reduce the uncertainty in characterizing hydrological sys-
tems? These questions are directly inherited from the 
works undertaken in Great Britain on the information 
(or disinformation) conveyed by various input data of 
hydrological models (Beven et al. 2011, Beven and 
Westerberg 2011, Beven and Smith 2015, Westerberg 
et al. 2020). Seibert and Westerberg (2022) have recently 
taken up this work to categorize disinformative data and 
their causes. However, it is difficult to reach a conclusion 
regarding when data are counterproductive for modelling, 
especially in a large sample of catchments. In addition, the 
causes of these inconsistent data are sometimes difficult, if 
not impossible, to find without studying the data pre-
cisely, catchment by catchment. The detection and treat-
ment of disinformative data and the understanding of 
their impact on hydrological modelling remain a major 
challenge today.

Since streamflow data form the basis of many hydrological 
studies, it is important to ensure their quality. In France, for 
example, these data are quality-checked and corrected by data 
producers through predefined quality control procedures 
before being archived and made available for various studies 
(Puechberty et al. 2017). This limits systematic and random 
errors in time series available for hydrological studies (Leleu 
et al. 2014). Although greatly reduced, suspicious streamflow 
data nevertheless remain in time series archived in national 
databases.

1.2 Quantifying uncertainty in streamflow data

Due to the various sources of errors detailed above, 
streamflow estimates are intrinsically uncertain. The level 
of uncertainty associated with flow estimates varies 
greatly, whether in space or time. Based on an extensive 
literature review, Pelletier (1988) estimated that the 
uncertainty in streamflow estimates varies between 8% 
and 20% for a 95% confidence interval according to the 
method used. Many studies focused on the role of the 
stage–discharge relationship, which is considered a major 
source of uncertainty. Di Baldassarre and Montanari 
(2009) focused on the uncertainties related to the rating 
curve, especially when used in extrapolation (i.e. below 
the lowest or above the highest flow measurement). They 
found that, under non-stationary flow conditions, or fol-
lowing seasonal changes in the river roughness, the overall 
uncertainty in streamflow varies between 6.2% and 42.8% 
(25.6% on average), for a 95% confidence level, over the 
river reach studied, which is far from negligible.

Various methods exist to estimate the uncertainty asso-
ciated with the rating curve. The Bayesian framework is 
well adapted to this, since new flow measurements can be 
considered as additional information useful for constrain-
ing the possible range of the rating curve (see e.g. Reitan 
and Petersen-Øverleir 2009, Le Coz et al. 2014). When 
applying the BaRatin method, which takes into account 
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the uncertainty of streamflow measurements but also the 
a priori knowledge of the hydraulic controls, Horner et al. 
(2018) highlighted the impact of water level errors on 
streamflow records and showed that random errors dur-
ing gauging or hydraulic head measurements generate 
little uncertainty in the time series of six catchments. On 
the other hand, systematic errors in water level have 
a strong impact on streamflow time series.

Uncertainty can also be quantified by ensemble 
approaches, as suggested by McMillan et al. (2017). 
Indeed, given the uncertainties in rating curves, it is 
possible to generate multiple flow records. The authors 
address this issue by showing the economic, social and 
environmental benefits of quantifying uncertainty in 
streamflow data, using case studies from Norway and 
New Zealand. At such national scales, there may also be 
issues in the heterogeneity of data quality, which should 
be accounted for. Hamilton and Moore (2012) highlighted 
that data can come from a wide panel of providers, who 
use different instruments, data collection practices and 
methods to quantify uncertainty. This information is 
rarely available to data users, and the authors make 
recommendations to unify practices for quantifying 
uncertainties in streamflow data.

The issues involved in quantifying uncertainty are 
manifold and there is consensus on the need to use good- 
quality streamflow data. For this purpose, the largest 
uncertainties, i.e. related to the rating curve or to sys-
tematic errors in the water level records, must be 
minimized.

1.3 Sensitivity of rainfall–runoff modelling to the quality 
of streamflow data

Since streamflow data are uncertain, it is important to 
perform a sensitivity analysis to determine whether the 
various errors in streamflow estimates affect the perfor-
mance and parameter estimates of rainfall–runoff models. 
Saltelli et al. (2000) define sensitivity analysis as the study 
of how the uncertainty in a model output can be attrib-
uted, qualitatively or quantitatively, to different sources of 
variation. In this work, sensitivity analysis focuses on how 
the model depends on the quality of the streamflow time 
series used for its calibration. We will therefore limit this 
review to issues related to data quality. Other studies have 
analysed the impact of the quantity of flow data on the 
performance and parameters of hydrological models (see 
e.g. Perrin et al. 2007, for a review).

Among the first sensitivity analysis studies, Ibbitt 
(1972) generated synthetic daily input data (precipitation, 
potential evapotranspiration and streamflow) and then 
corrupted them with random errors drawn from 
a normal distribution. The author concluded that errors 
usually encountered in hydrological records have 
a negligible effect on model parameter estimates since 
limited variations appear when the intensity of the errors 
is exaggerated. Borah and Haan (1991) used the same 
methodology in a real case study of a basin in 
Oklahoma, USA. In this study, corruption of precipitation 

data appeared to introduce more uncertainty in the para-
meter estimates than errors in the flow records did. The 
authors also show that correlated errors can introduce 
significant errors in the estimated parameters. Montanari 
and Di Baldassarre (2013) analysed the sensitivity of mod-
els to flow errors according to their structure. Results 
obtained on a tributary of the Po River (Italy) indicate 
that the lower the model complexity, the larger the 
impacts of flow errors. The effect of uncertainty can also 
depend on the type of errors, i.e. systematic or random. 
Tillaart et al. (2013) show for two tributaries of the Meuse 
River that systematic errors introduced in flow data 
strongly deteriorate the performance and parameter stabi-
lity of rainfall–runoff models, particularly those control-
ling the water balance. Random errors with 
autocorrelation also seem to influence the hydrograph 
shape, although to a lesser extent.

As discussed above, the rating curve is often considered 
a major source of uncertainty. McMillan et al. (2010a) ana-
lysed the impact of uncertainties associated with the rating 
curve on hydrological modelling at the hourly time step. By 
applying a method for quantifying the uncertainty in the 
stage–discharge relationship, they showed, for the Wairau 
River in New Zealand, that explicit consideration of stream-
flow uncertainty increases the variability in parameters. By 
analysing the effect of multiple sources of uncertainties 
(input data, parameters, and model structure) on streamflow 
simulation at the hourly time step in the Orsali basin in 
Norway, Engeland et al. (2016) confirmed that the use of 
different stage–discharge relationships, representing various 
levels of systematic errors, led to variability in the water 
balance parameters. However, it was difficult to determine 
a trend in the model performance while evaluating it within 
an independent period, as both positive and negative varia-
tions were shown. In Australia, Peña-Arancibia et al. (2015) 
concluded that rating curve uncertainties can have important 
consequences on the calibration and efficiency of hydrologi-
cal models by showing a variance heterogeneity (heterosce-
dasticity) in streamflow estimates and the existence of 
streamflow extrapolation beyond the highest or lowest stage 
measurement in many operational rating curves. Recently, 
Westerberg et al. (2020) studied the impact of uncertain 
streamflow data (due to the rating curve) on the calibration 
of hydrological models. The authors developed an objective 
function that considers streamflow uncertainties, which pro-
vides more reliable results.

This short literature review shows the evolution of research 
from studies that corrupted the time series with random errors 
at the daily time steps, with a limited impact on model results, 
towards more detailed studies at the hourly time step, consid-
ering various types of uncertainties affecting streamflow obser-
vations. Systematic errors linked to bias in the water level time 
series or generated by the uncertainty of the rating curves were 
shown to be detrimental to model performance and/or para-
meter estimates.

However, to our knowledge, only a few studies have 
focused on random errors, and most such studies were 
based on the hypothesis of errors drawn from a normal dis-
tribution without any real expertise on their typology (i.e. 
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without considering the types of errors most likely to affect 
real time series). In addition, the majority of the studies 
reviewed above focus on a single case study or on synthetic 
data.

1.4 Objectives

To overcome the limitations of existing studies, we propose to 
investigate the sensitivity of the performance and parameter 
estimates of rainfall–runoff models when the information on 
streamflow is corrupted in a random and realistic way. By 
“realistic” we mean comparable to the level of errors com-
monly found in streamflow time series available for hydrolo-
gical studies, i.e. typically available in national flow archives. 
Here we will not focus on raw flow records directly retrieved 
from measurement devices, but rather on time series that have 
undergone an initial quality control based on the expertise of 
the data producer before being stored in a database accessible 
to end users. More specifically, we address the issue from 
a large-sample hydrology (LSH) perspective (Andréassian 
et al. 2006, Gupta et al. 2014), in which several catchments 
are used and where the detailed critical analysis of streamflow 
time series is complex. We wish to answer the following ques-
tion: Do errors in streamflow time series have a strong impact 
on model performance and parameter estimates when working 
with several catchments?

To this end, we first tried to characterize the errors com-
monly found in hourly time series available for hydrological 
studies, by expert analysis. We then carried out a sensitivity 
analysis using flow series corrupted by simple error models 
representing the various types of errors identified.

The remainder of the paper is organized as follows. First, 
the hydroclimatic data, catchment sets, and hydrological 
model used for these tests are presented. A typology of suspi-
cious data found in the time series is proposed before addres-
sing the methodological approach used for this work. We then 
present, analyse and discuss the results. Last, we summarize 
the main conclusions of this work and introduce different 
research perspectives.

2 Material and methods

2.1 Hydroclimatic data

This study was conducted at an hourly time step using pre-
cipitation, potential evapotranspiration and streamflow time 
series over the 1998–2018 period (Delaigue et al. 2020).

Precipitation data were extracted from the COMEPHORE 
(standing for COmbinaison en vue de la Meilleure Estimation 
de la Precipitation HOraiRE, i.e. Combination for best hourly 
precipitation estimate) re-analysis produced by Météo-France 
(Tabary et al. 2012), which provides information at a 1 km2 

resolution and which has already been extensively used in 
hydrological studies (Artigue et al. 2012, van Esse et al. 2013, 
Bourgin et al. 2014, Lobligeois et al. 2014, Saadi et al. 2021).

Potential evapotranspiration is calculated with the formula 
proposed by Oudin et al. (2005). This equation was chosen for 
its simplicity, as the only input required is daily air tempera-
ture (from the SAFRAN (standing for Système d’Analyse 

Fournissant des Renseignements À la Neige, i.e. Reanaysis 
system providing information on snow) reanalysis of 
Météo-France, see Vidal et al. 2010) and extra-terrestrial radia-
tion (which depends only on latitude). Once calculated, the 
daily potential evapotranspiration was disaggregated to the 
hourly time step using a simple parabola (Lobligeois 2014).

Streamflow time series were extracted from the national 
flow archive Banque Hydro (Leleu et al. 2014). This database 
gathers data produced by hydrometric services in regional 
environmental agencies in charge of measuring flows in 
France as well as by other data producers (e.g. hydropower 
companies, dam managers, etc.). Before being archived, 
streamflow data undergo quality control strategies applied by 
data producers, with corrections and gap-filling procedures 
applied when necessary (Puechberty et al. 2017). Quality 
codes are also available, although this information is not uni-
formly provided for all stations. These data are freely available 
on the Banque Hydro website (https://www.hydro.eaufrance. 
fr) and are widely used in France for hydraulic and hydrolo-
gical studies. They can therefore be considered as standard 
streamflow data.

2.2 Catchments

A total of 30 catchments spread over mainland France within 
the hydroclimatic database set up by Delaigue et al. (2020) 
were selected for this study, 15 because of the common suspi-
cious data they display in streamflow records, and 15 for the 
apparent quality of their streamflow time series. They were 
also chosen to represent a variety of hydrological behaviours in 
terms of physical characteristics or hydroclimatic conditions 
and to provide complete streamflow time series over the period 
1998–2018 (with a maximum of 5% missing data per year). 
Nevertheless, this set may not be representative of all condi-
tions over France (e.g. dominant snow or glacial regimes are 
missing here due to incomplete time series). Although a larger 
catchment set could have been used, the identification of these 
catchments within the large Banque Hydro (> 4000 gauging 
stations) was time consuming and we found that this number 
was a good compromise between the time necessary to set up 

Figure 1. Catchment boundaries of the clean (green) and suspicious (red) French 
catchment sets selected for this study. Black dots are catchment outlets.
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the study and perform the test, on the one hand, and the 
generalizability of our results on the other.

The first subset of 15 catchments, called the “suspicious 
set”, was used to identify a variety of errors in streamflow 
data and to build a simple typology of suspicious data in 
streamflow records (Section 2.3). The second subset of 15 
catchments, called the “clean set”, was used to apply data 
corruption (Section 2.4) and to perform a sensitivity analysis 
(Section 3). The quality of the record is defined according to 
the occurrence of errors listed in the typology (Section 2.3). 
The catchment locations are illustrated in Fig. 1 and the main 
characteristics are summarized in Table 1 (details are given in 
Appendices A and B). Both subsets are rather uniformly 
spread over France, and their characteristics follow similar 
ranges (except for the maximum catchment area).

2.3 Typology of suspicious data

As a reminder, the actual streamflow is never known and suspi-
cious data may arise from recording errors or from unusual – 
but real – natural or human-induced processes. Here, by “sus-
picious data” we mean data that appear hydrologically incon-
sistent compared to neighbouring data in the time series or 
within the record itself. The automatic detection of such data 
is not trivial because it can be tricky to differentiate between 
hydrologically consistent and inconsistent streamflow without 
expertise. For example, a very slow recession can be detected as 
a linear interpolation issue while a short and intense rainfall can 
lead to a curious spike. The objective is not to find the origin of 
this inconsistency (upstream influence, problem in the measure-
ment device, etc.) but to identify data that do not seem to be 
related to common natural catchment responses to climate 
inputs. Some detection algorithms (Vallis et al. 2014, Dancho 
and Vaughan 2020) from the domain of signal processing have 
been tested without success since they did not enable the differ-
entiation between natural and suspicious behaviours of the 
streamflow time series (many false positives were detected). 
Therefore, the suspicious set of catchments was submitted to 
expert visual inspection in order to detect hydrologically incon-
sistent data in the records. These time series were plotted in 
linear and logarithmic scales to better identify errors in high and 
low flows, respectively. Each streamflow record was analysed by 
two hydrologists (among the authors of this article) to enhance 
consistency. Due to the variety of the natural behaviours of 
rivers or to possible human influences, it is difficult to categorize 
all the suspicious data. However, four main patterns (Fig. 2) 
seem to stand out from our analysis:

(A) Noise: It is characterized by an additive random signal 
(both positive or negative) to the initial signal carrying 
the information. It appears most often during low-flow 
periods (sometimes over several weeks). It may origi-
nate from the measuring device, from issues of sensi-
tivity or from local anthropogenic influences.

(B) Curious spikes: These are sharp peaks over a short 
period (a few hours), which differ from the expected 
trend. It is the most common pattern detected in the 
hourly time series. Curious spikes are typically the 
effect of random error (e.g. measurement problems) 
but can also be explained by human interference, such 
as river pumping or effluent discharge.

(C) Drops: This pattern corresponds to a sudden change, 
lowering or raising the hydrograph, before returning to 
the initial signal. It is an uncommon error, appearing as 
a systematic error in a moderate part of the time series 
(e.g. a few days or weeks). The pattern may have various 
origins. For example, a sudden decrease may appear 
when obstructions disrupt the water level station. The 
influence of water management operations (typically 
outputs of reservoirs for low-flow augmentation in sum-
mer) may also be responsible for these behaviours.

(D) Linear interpolations: This error is directly visible 
when a segment is drawn between two points far 
apart in the time series (some weeks). It stems from 
a problem with the coding of missing data. Instead of 
creating a gap, the data are filled by linear interpola-
tion, which leads to a source of disinformation.

Note that the term “suspicious” was intentionally preferred to the 
term “erroneous” in the article to avoid reference to the origin of 
the data considered inconsistent. Suspicious data may originate 
from problems in measurements (i.e. actual errors), but also from 
unusual natural behaviour or artificial influences (i.e. not actual 
errors). A more comprehensive analysis would be to find the 
actual source of inconsistency in each case, but this is out of the 
scope of this article.

On average, over the 15 catchments analysed, almost 3% of the 
total record was assessed as suspicious, which represents about 
7 months out of 20 years of data. These errors are mostly found 
during low-flow periods, since 87% of them are detected below 
the median flow in each time series. Although numerous, the 
curious spikes do not have a strong temporal impact since they 
are point errors over a few hours. Noise is the pattern that affects 
the most time steps. Note that several different patterns can be 
found in the same record (Fig. 3).

Table 1. Minimum, median and maximum values of the main characteristics of the catchment sets.

Suspicious set Clean set

Min. Med. Max. Min. Med. Max.

Catchment area [km2] 42.0 230.0 1978.0 8.0 119.0 81 314.0
Mean annual precipitation [mm y−1] 680.0 958.0 1506.0 755.0 992.0 1310.0
Mean annual potential evapotranspiration [mm y−1] 614.0 668.0 829.0 648.0 687.0 801.0
Mean annual flow [mm y−1] 116.0 391.0 985.0 227.0 355.0 569.0
Humidity index (P/PE) [-] 1.0 1.4 2.4 1.1 1.4 2.0
Runoff coefficient (Q/P) [-] 0.2 0.4 0.7 0.2 0.3 0.5

P: precipitation; PE: potential evapotranspiration; and Q: flow.
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2.4 Corruption of streamflow time series using simple 
error models of suspicious data

In this study, we want to evaluate the impact of suspicious 
streamflow data on modelling results, all else being equal. 
Since the process of correcting suspicious data to produce 
natural data is not straightforward, we chose to corrupt the 
streamflow data in non-erroneous time series (i.e. starting 
from the clean dataset). Therefore we obtained non- 
erroneous and erroneous time series differing only in the 
corrupted time steps. Oudin et al. (2006) proposed to corrupt 

precipitation and potential evapotranspiration time series with 
biased and random errors, and then to analyse their impact on 
the parameters and performance of hydrological models. This 
approach was repeated here by attempting to reproduce the 
four patterns found in streamflow records. The objective was 
to implement realistic suspicious data in the streamflow time 
series of the clean set according to the typology defined pre-
viously (Section 2.3).

Noise most often corresponds to the appearance of 
values close to the initial signal, in terms of intensity and 
spaced out by short time intervals, corrupting the main 

Figure 2. Illustration of the main suspicious patterns – (a) noise, (b) curious spikes, (c) drops and (d) linear interpolations – found in the hourly streamflow data of four 
catchments in the database.
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information up to several weeks. For this purpose, a simple 
positive multiplier coefficient k, greater than 1, was applied 
to a percentage f of the time window t on which the pattern 
is applied. The ascending or descending factor of the spikes 
was determined randomly over the pattern period 
(Fig. 4(a)).

Curious spikes are random errors that can be visible at the 
hourly time step. This pattern often shows a triangular shape. 
Here, we proposed to implement this error by defining the 
peak by the intensity coefficient k for an increase (or its inverse 
for a decrease) and then to link this erroneous flow value to the 
surrounding parts of the observed hydrograph by simple linear 

Figure 3. Distribution of total duration of suspicious data (in months) over the suspicious set (15 catchments over the 20-year period), according to their type.

Figure 4. Illustration of (a) numerical implementation of the noise, (b) curious spike, (c) drop and (d) linear interpolation patterns within the time series of the clean 
catchment set. Original series are in black and corrupted parts are in red.

Table 2. Ranges for the parameters of the error models used for streamflow corruption according to the 
typology of suspicious data adopted. n is the number of patterns in 10 years, k the multiplicative 
coefficient of the suspicious pattern, t the length of the time window of the suspicious pattern, and f the 
percentage of time steps to be corrupted by the suspicious pattern over the time window.

n [-] k [-] t [h] f [%]

Noise [1; 7] [1.3; 2.1] [360; 1800] 5
Curious spikes [1; 4] [1.3; 2.1] [1; 12] n/a
Drops [5; 30] [1.3; 2.1] [120; 600] n/a
Linear interpolation [1; 4] n/a [288; 1440] n/a
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interpolation over the time window t representing the duration 
of the pattern (Fig. 4(b)).

The behaviour of drops seems to resemble a bias affecting 
the time series up to several weeks and appearing randomly 
within the record. This pattern is implemented here by shifting 
the time series upward with an intensity coefficient k (or 
downward with its inverse) applied on the whole pattern 
over the time window t (Fig. 4(c)).

Finally, the linear interpolation pattern was implemented 
by linearly linking flow values chosen at both ends of a time 
window t (Fig. 4(d)).

Table 2 summarizes the set of parameters that can be 
modified to represent artificial, yet realistic, suspicious 
streamflow patterns. For this study, the parameter f was set 
to 5% because it does not seem to vary strongly in the 
suspicious set analysed. A parameter n was used representing 
the number of identical suspicious patterns introduced over 
10 years in the streamflow record. The corruption parameters 
of the records were chosen to represent the actual dynamics 
of the suspicious data found in streamflow time series. For 
this purpose, a gamma distribution, based on the real suspi-
cious data encountered in the suspicious dataset 
(Section 2.3), was assigned to each corruption parameter of 
each pattern (Fig. 5).

The analysis of the impact of suspicious data was carried 
out on the clean set by alternatively considering the origi-
nal and corrupted flow time series. Each error pattern 
could be studied separately and implemented in various 
conditions (e.g. calibration/evaluation, high flows/low 
flows).

In this work, we focused on analysing the sensitivity of 
hydrological models (performance and parameter estimates) 
to the suspicious patterns commonly found in streamflow time 
series.

2.5 Rainfall–runoff model

We used the continuous GR5H (standing for modèle du Génie 
Rural à 5 paramètres Horaire, i.e. Hourly 5-parameter rural 
engineering model) hydrological model, which is lumped and 
runs at the hourly time step (Le Moine 2008, Ficchì 2017, 
Ficchì et al. 2019). The model estimates river streamflow 
from previous meteorological conditions, using three stores 
(interception, production, and routing), a unit hydrograph, 
and a function to account for inter-catchment groundwater 
exchanges (Fig. 6).

The model seeks to represent in a synthetic way the catch-
ment-scale dynamics of processes at play in the catchment (e.g. 
infiltration, evapotranspiration, runoff, etc.). All the calcula-
tions in the model are mathematical relationships, which 
depend on different parameter values that need to be deter-
mined during the model calibration phase (Table 3). The 
model was implemented using the airGR package (Coron 
et al. 2017, 2021), which includes a calibration algorithm well 
adapted to the model.

Although other models could have been used, the GR5H 
model has two main advantages for our study. First, it has already 
been tested extensively in France on several hundreds of catch-
ments and has shown a good level of performance (Ficchì et al.  

2019). Second, its parsimony (only five free parameters to esti-
mate) makes it easy to calibrate and facilitates the interpretation of 
parameter variations in terms of sensitivity analysis.

Here the model was used without any snowmelt module. 
The influence of snow remains limited on most catchments, 
and we preferred to limit model complexity and avoid intro-
ducing additional parameters. Given the comparative frame-
work of our methodology, we think that this choice has no 
significant impact on our conclusions.

2.6 Hydrological model testing methodology

For this study, the common calibration–evaluation testing 
framework (Klemeš 1986) was applied for the 1999–2018 per-
iod with the hydrological model. The first decade, 1999–2008, 
was used to estimate the parameters of the hydrological model 
and the second, 2009–2018, was used to evaluate the simula-
tion. The 1998 data were used for model initialization. 
However, one year of warm-up may not be enough for some 
basins. Therefore, the pre-1998 decade was added by uni-
formly disaggregating the SAFRAN daily precipitation at the 
hourly time step.

Hydrological model testing was performed for the 15 catch-
ments of the clean dataset only (the catchments of the suspi-
cious set were only used to set up the error models). The 
hydrological model was first applied (i.e. calibrated and eval-
uated) using the original flow time series (considered without 
suspicious data) and the corresponding simulations were con-
sidered as the reference. Then, the hydrological model was 
applied to each catchment using the flow series corrupted 
with the four types of suspicious data and various levels of 
corruption by modifying the parameters of the error models. 
This resulted in 8820 corrupted time series over the 15 catch-
ments, i.e. 588 per catchment (1680 tests for the noise type, 
3360 for the curious spikes type, 3360 for the drops type and 
420 for the linear interpolations type). Although the actual 
series frequently displays a mix of suspicious patterns (see 
Fig. 3), we excluded the case of mixing different error types 
in our tests because it would have resulted in too many com-
binations, rendering the results difficult to interpret. We 
believe the results that had a single suspicious pattern in each 
case already provide useful insights.

The chosen criterion for calibration and evaluation is the 
Kling-Gupta efficiency (KGE) (Gupta et al. 2009) calculated on 
the square root of streamflow in order to obtain a compromise 
between low and high flows: 

where r is the correlation, α is the ratio of standard deviations 
and β is the ratio of means (bias) of the observed and simulated 
streamflow.

Two types of tests were performed:

(A) First, only the calibration period was corrupted and the 
evaluation period was left unchanged (see Section 3.1). 
This would correspond to the practical case where 
a modeller uses raw flow data as retrieved from 
a database for model calibration, without further 
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Figure 5. Chosen pattern parameters and gamma distributions defined to mimic suspicious data for the four types of errors.
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quality checks. The model was calibrated using either 
original or corrupted data, which leads to several sets 
of parameters. In order to assess the impact on the 
parameter values of the model, a variation can be 
calculated between the parameter values obtained by 
model calibration with the corrupted streamflow time 
series and with the original record. In this case, the 
variation is defined as follows:

where Xori and Xcor are the model parameters obtained with 
the original and corrupted flow series, respectively. A positive 

(negative) value of var param indicates an increase 
(a decrease) in the parameter value when moving from the 
original to the corrupted series.

The model performance in the calibration and evaluation 
periods is calculated using the original observed streamflow 
record as the reference, and thus the performance is strictly 
comparable between the various tests. The value of a relative 
approach in this context is to bear in mind that the closer the 
KGE value is to 1, the more difficult it is to improve the 
performance. Lerat et al. (2012) proposed to calculate the 
variation in performance between two time series by: 

where m(X ~ Y) is 1 − KGE(X ~ Y). KGE(X ~ Y) is the KGE 
criterion calculated for the variable X as an estimate of the 
reference variable Y. Qsimcor and Qsimori are, respectively, the 
corrupted and original simulated streamflow time series, while 
Qobsori is the original observed streamflow record. A positive 
(negative) value of var perf 1 indicates an increase (a decrease) 
in performance value when moving from the original to the 
corrupted series. A more detailed interpretation of this relative 
performance is available in Table 4.

(A) Then, the calibration period was left unchanged (i.e. 
using the original uncorrupted data) and the evalua-
tion period was corrupted (see Section 3.2): The model 
was calibrated on the original data, and the impact was 
assessed only on model performance in the evaluation. 
This would correspond to the case where a modeller 
uses flow data that are as good as possible for model 
calibration, but then applies the model to a period with 
suspicious streamflow data, which may be the case 
typically for real-time applications. This test therefore 
has no impact on the parameter values or the calibra-
tion performance. However, a sensitivity analysis on 
the performance during the evaluation period can be 
carried out, using the single simulated streamflow 
record as the reference and the observed corrupted 
time series as the variable. To this end, a variation 
can be calculated between the performance values 
obtained with the corrupted streamflow time series 
and with the original record. The variation is also 
based on Lerat et al. (2012) and is here defined by:

where Qobscor is the corrupted observed streamflow time series. 
A positive (negative) value of var perf 2 indicates an increase 
(a decrease) in performance value when moving from the 
original to the corrupted series. A more detailed interpretation 
of this relative performance is available in Table 4.

Figure 6. Schematic diagram of the GR5H model (X1 to X5 represent model 
parameters; see Table 3); P, E and Q stand for precipitation, potential evapotran-
spiration and streamflow, respectively; other letters are internal state variables) 
(Coron et al. 2021).

Table 3. Parameters of the GR5H model.

Parameter Meaning Unit Typical range in France

X1 Production store capacity mm 100 to 400
X2 Inter-catchment exchange coefficient mm h−1 −0.4 to 0.0
X3 Routing store capacity mm 40 to 390
X4 Unit hydrograph time constant h 2 to 27
X5 Inter-catchment exchange threshold – 0.1 to 0.3
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The choice to calculate variations rather than absolute 
values was made in order to have an equivalent comparison 
for each basin, whatever the range of parameters or 
performances.

The bias (β component of the KGE, Equation 1) will also 
be used as evaluation criterion, to show the impacts of suspi-
cious data on total volume. Due to the dissymmetry of β 
around the optimal value of 1 for under- and overestimation, 
we chose the symmetrical formulation proposed by Perrin 
(2000), which varies between] −∞; 1] (1 being the optimal 
value): 

It is possible to compute meaningful β’ values over the set of 
catchments but at the cost of a loss of information about over- 
and underestimation of the water balance.

The modelling tests were applied to two different cases:

(1) when data were corrupted without a preconceived 
notion of streamflow range;

(2) when only data in low-flow periods, i.e. under the 
median, were corrupted.

3 Results

Here we investigate the impact of the suspicious patterns 
usually encountered in streamflow records on hydrological 
modelling, i.e. on model parameter values and model perfor-
mance (in calibration and evaluation). All the results are pre-
sented in terms of relative variation from the initial value (i.e. 
before the corruption). However, a table summarising the 
distribution of absolute parameter and performance values 
over the whole clean sample, whatever the suspicious pattern 
implemented, is available in Appendices C and D.

3.1 Data corruption over the calibration period

3.1.1 Impact on parameter estimates
Here we focus on the impact of suspicious streamflow data on 
model parameters when the corruption was made only during 
the calibration period. To this end, the variation used for this 
section was var_param (Equation 2).

Figure 7 represents the distribution of parameter variations 
obtained from the 15 catchments under this analysis frame-
work. This corruption was initially carried out without any 
preconceived notion of streamflow range (shown in blue in 
Fig. 7). The distribution of the variations in the five model 

Figure 7. Distribution of parameter estimate variations obtained from calibration of the 15 catchments. The box plots represent the 10th, 25th, 50th, 75th and 90th 
quantiles and contain 8820 values each, including outliers. Red corresponds to corruption in the low-flow periods and blue to corruption without restriction in the flow 
range. Data corruption was performed over the calibration period only.

Table 4. Interpretation of the relative performance (var_perf) comparing the performance of 
a benchmark simulation (ori) with an alternative (cor) using a metric m = 1 − KGE (adapted from 
Lerat et al. 2012).

var_perf Interpretation

1 cor is perfect according to the metric m: m
ffiffiffiffiffiffiffiffiffiffiffiffi
Qsimori
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ ¼ 0
1/2 cor is three times smaller (better) than ori according to the metric m: 

3�m
ffiffiffiffiffiffiffiffiffiffiffiffi
Qsim cor
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffi
Qsimori
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ

0 cor and ori are equal according to the metric m: 
m

ffiffiffiffiffiffiffiffiffiffiffiffi
Qsim cor
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffi
Qsimori
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ
−1/2 cor is three times larger (worse) than ori according to the metric m: 

m
ffiffiffiffiffiffiffiffiffiffiffiffi
Qsim cor
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ ¼ 3�m
ffiffiffiffiffiffiffiffiffiffiffiffi
Qsimori
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ

−1 ori is perfect according to the metric m: m
ffiffiffiffiffiffiffiffiffiffiffiffi
Qsimori
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Qobs ori
p

ð Þ ¼ 0
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parameter estimates over the entire set of 8820 calibration tests 
shows that the variations in parameter values are very limited. 
Indeed, whichever parameter is considered, its variation is 
lower than 10% for at least 80% of the cases. However, it 
should be noted that, occasionally, some parameter values 
can increase by up to 50% and decrease by up to 100%. The 
variations in the production store capacity, X1, remain small 
(between −4% and +6% for the 10th and 90th quantiles). 
Streamflow data corruption has little impact on the routing 
part of the model since parameters X3 and X4 remain mostly 
unaffected. X2 is the most sensitive parameter to data corrup-
tion when considering the 10–90 inter-quantile range of the 
distribution. X5 shows strong variations in some cases 
(between −100% and +44% when considering all the tests). 
The X2 and X5 parameters control the water exchange function 
with aquifers but also act to close the catchment water balance.

Let us recall that 87% of the suspicious streamflow data 
were in low-flow periods, i.e. below the median streamflow of 
each record (Section 2.3). Therefore, corruption was re-applied 
only to the low flows in order to assess the impact of the 
suspicious patterns under these conditions (shown in red in 
Fig. 7). Results show that parameter values are less impacted 

when suspicious data occur only during low-flow periods. It 
should be recalled that the calibration criterion is calculated 
over the entire range of streamflow.

Figure 8 extends this analysis by separating the types of 
error. It indicates that although noise and spike patterns are 
the most frequent, they seem to have little impact on the 
calibration of the parameters since they show variations 
lower than 5% in 80% of the cases. On the other hand, drops 
and linear interpolations lead to larger variations, especially in 
X1, X2, and X5 values whose fluctuations can reach between 
15% and 26% for the 10th or 90th quantiles.

3.1.2 Impact on model performance
Here we focus on the impact of suspicious streamflow data on 
model performance (in both calibration and evaluation) when 
the corruption was applied only during the calibration period. 
To this end, the variation calculation used for this section was 
var_perf1 (Equation 3).

Figure 9 represents the distribution of performance varia-
tions in the 15 catchments under this analysis framework. It 
highlights that performance variations are small in both cali-
bration and evaluation periods, after corrupting either low 

Figure 8. Distributions of parameter estimate variations according to the suspicious pattern. The box plots represent the 10th, 25th, 50th, 75th and 90th quantiles. They 
contain 1680 (a: noise), 3360 (b: spikes, c: drops) and 420 (d: linear interpolations) values each, including outliers. Red corresponds to corruption in the low-flow periods 
and blue to corruption without restriction in the flow range. Data corruption was performed over the calibration period only.
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flows or the whole flow range. Evaluation performance seems 
to be more impacted than calibration performance. This result 
may be due to the specificities of the calibration and evaluation 
periods used in this study but may also show an impact of 
suspicious streamflow data on the model robustness. Note 
that, in a certain number of cases, the KGE tends to improve 
in calibration and evaluation following the implementation of 
the errors. However, this increase is negligible because the 
variation of the 90th quantile is very close to zero.

Figure 10 aims to differentiate the impact on the model 
performance of each suspicious pattern implemented in the 
streamflow time series. Noise and curious spikes have almost 
no impact on model performance. Once again, drops and 
linear interpolations seem to be responsible for the perfor-
mance variations, although these remain very low.

Predicting total water availability is a frequently desired 
output of hydrological modelling. Figure 11 shows the differ-
ence with the initial value of the bias reformulated into β’ in 
order to quantify the impact of the various suspicious patterns 
generated on the water balance. As for the KGE, the largest 
variations come from drops and linear interpolations. 
However, differences with the initial value remain limited, 
whether beneficial or detrimental.

3.2 Data corruption over the evaluation period

Here we focus on the impact of suspicious streamflow data on 
model performance (in evaluation) when the corruption was 
made only during the evaluation period. To this end, the 
variation used for this section was var_perf2 (Equation 4).

Figure 12 represents the distribution of performance varia-
tions obtained in the evaluation of the 15 catchments when the 
corruption is made only over the evaluation period. It shows 

that, in general, suspicious streamflow data in the evaluation 
period have little (if any) influence on the performance criter-
ion, although occasionally they can lead to a sharp decrease in 
performance when the corruption is applied without 
a preconceived notion on streamflow range. Note that the 
biases were also analysed but did not show significant varia-
tions (less than 0.04% for 90% of cases and reaching 
a maximum of 6%).

Figure 13 shows the previous results separated by type of 
error. It highlights that this loss of performance is mostly 
driven by linear interpolations (and, to a lesser extent, by 
drops), while noise and curious spikes seem to have no effect. 
It should be noted that for linear interpolations, the difference 
in performance impact between all-flow and low-flow corrup-
tion is much higher than for the other patterns.

4 Discussion

In this work, we decided to use actual measurements and not 
theoretical synthetic time series. Consequently, the actual 
streamflow (i.e. the streamflow that would have been observed 
if no error or influence had occurred) is not known and we 
thus needed to make the following hypotheses:

(1) Each implemented suspicious pattern approximated 
the observed reality by a simple and parsimonious 
error model, constrained by one, two or three realisti-
cally varying parameters.

(2) Each original streamflow record was assumed to repre-
sent the actual streamflow.

The parameters used to represent the suspicious patterns were 
carefully generated from a gamma distribution representative 

Figure 9. Distribution of the variation in KGE values (calculated on the square root of flows), in the calibration period (left) and the evaluation period (right). The box 
plots represent the 10th, 25th, 50th, 75th and 90th quantiles and contain 8820 values each, including outliers. Red corresponds to corruption in the low-flow periods 
and blue corresponds to corruption without restriction in the flow range. Data corruption was performed over the calibration period only. A positive value of the 
variation represents an improvement in performance after the corruption of streamflow records.
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of the reality observed in the 15 catchments of the suspicious 
set (Section 2.3). A more detailed study with a larger number 
of catchments would allow us to define a more suitable dis-
tribution of these parameters, but this would be an extremely 
time-consuming task.

The results of the streamflow data corruption in the 
model (Section 3) highlight that suspicious patterns, espe-
cially during low-flow periods, generally have a limited 
impact on performance (KGE and bias) or parameter 
values. This finding must be put into perspective against 
the quality of the input data. Indeed, in France, although 
many suspicious data remain in the records, the data 
producers carry out a streamflow validation procedure to 
remove aberrations before making them available, which 
may explain the low impact on the efficiency and para-
meter estimates of rainfall–runoff models. However, the 
quality-checking methodology varies around the world 
and is sometimes lacking, resulting in a wide disparity 

in the quality of the streamflow records in the different 
national archives. Extending the database to catchments 
located all over the world and not only in France could 
lead to different results, potentially widening the range of 
parameters of the error models and perhaps identifying 
new suspicious patterns. In addition, this finding also 
needs to be put into the context of the modelling choices. 
The criterion used for calibration or evaluation is the 
KGE on the square root of the flows. Although this cri-
terion takes into account low flows, greater weight is still 
given to high flows (Santos et al. 2018). Given that 87% of 
the detected patterns are present during low-flow periods, 
it is likely that suspicious streamflow data would be more 
impactful for a study focusing on low-flow periods only. 
Moreover, all patterns except linear interpolations are 
implemented with a multiplicative coefficient k to repre-
sent the intensity of the suspicious pattern. This choice is 
intended to produce consistent relative variations 

Figure 10. Distribution of the variation in KGE values (calculated on the square root of flows) according to the suspicious pattern, in the calibration period (left) and the 
evaluation period (right). The box plots represent the 10th, 25th, 50th, 75th and 90th quantiles. They contain 1680 (a: noise), 3360 (b: spikes, c: drops) and 420 (d: linear 
interpolations) values each, including outliers. Red corresponds to corruption in the low-flow periods and blue corresponds to corruption without restriction in the flow 
range. Data corruption was performed over the calibration period only. A positive value of the variation represents an improvement in performance after the corruption 
of streamflow records.
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regardless of the streamflow range but also has the effect 
of amplifying the absolute error during floods. The linear 
interpolations appear to be much more sensitive to the 
range of streamflow compared with the other implemen-
ted patterns. The natural dynamics of the river can partly 
explain this. Indeed, during low-flow periods the river can 
have a stable behaviour over several weeks when it does 
not rain, which can be approximated by a straight line. 
On the other hand, this hypothesis is not suitable when 
phenomena fluctuating rapidly in time, such as floods, are 
taken into account. The results of the streamflow data 
corruption in the model also highlight that suspicious 
patterns might occasionally have a strong impact on per-
formance or parameter values. However, a remaining 
issue is that there is no clear trend between error char-
acteristics (intensity, time window affected or number of 
patterns existing in the time series) and their impact on 
the efficiency and the parameter estimates of rainfall–run-
off models. Of course, the more pessimistic the scenario, 

the more likely the drop in performance. However, it is 
difficult to anticipate whether a suspicious pattern will 
have an impact or not because it is also largely dependent 
on its location in the corrupted time series. Figure 14 
highlights this phenomenon: counterintuitively, the KGE 
is here much more affected by the less pessimistic sce-
nario (−20% vs. −1%).

Data corruption over the calibration period mainly leads 
to a variation of the X1, X2 and X5 parameters 
(Section 3.1.1). While it is possible that suspicious stream-
flow data can lead to a variation in the parameter X1, i.e. 
the production part of the model, the fluctuations of X2 
and X5 are quite surprising because implemented patterns 
should not have such an impact on the underground flows. 
Here, these parameters seem to deviate from their original 
function and instead aim to close the water balance of the 
system modified by the data corruption. It should also be 
noted that these parameter estimates are usually close to 0 
(Table 3). The relative variation in regard to the initial 

Figure 11. Distribution of the difference with the initial value in reformulated bias β’ according to the suspicious pattern, in the calibration period (left) and the 
evaluation period (right). The box plots represent the 10th, 25th, 50th, 75th and 90th quantiles. They contain 1680 (a: noise), 3360 (b: spikes, c: drops) and 420 (d: linear 
interpolations) values each, including outliers. Red corresponds to corruption in the low-flow periods and blue corresponds to corruption without restriction in the flow 
range. Data corruption was performed over the calibration period. A positive value of the variation represents an improvement in performance after the corruption of 
streamflow records.
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value, therefore, tends to be more sensitive than for the 
other parameters.

Finally, suspicious data lead to a stronger variation in 
performance, although they remain small, when they 
appear during the evaluation period (Section 3.2). 
A large variation in performance values between the cali-
bration and evaluation period is often attributed to the 
model robustness, while this phenomenon can be directly 
inherited from the suspicious streamflow data.

5 Conclusion

The main conclusions of this work are as follows:

(1) On average, over several catchments, the errors 
(noise, curious spikes, drops and linear interpola-
tions) affecting commonly available streamflow 
time series for hydrological studies have a limited 
impact on model results. However, they may still 
be an important source of model instability and 
lack of robustness when working on a single 
catchment.

(2) Amongst the four types of model error tested, 
drops and linear interpolations have a higher 
impact on model results in specific catchments, in 
terms of either performance or parameter esti-
mates. However, there is no clear trend between 
the characteristics of the errors (intensity, time 
window affected or number of patterns existing in 
the time series) and the impact on hydrological 
modelling.

(3) The suspicious patterns seem to more greatly affect 
the production function of the model (i.e. the part 
of the model responsible for adjusting the catch-
ment water balance) than the routing part. The 

parameters initially intended to control under-
ground water exchanges can be utilized to compen-
sate for the loss or gain of volume to close the 
water balance.

(4) Model outputs seem to be more impacted by suspicious 
streamflow data during high-flow periods. However, 
this result is dependent on the modelling framework. 
Here, the objective function and the evaluation criter-
ion used is the KGE on the square root of the stream-
flow, which makes it possible to take into account the 
whole range of flows but gives a greater weight to the 
high-flow values.

These results suggest that, when working on several 
catchments, using time series directly retrieved from an 
existing database without further quality checks may have 
only a limited impact on the overall modelling results. 
Therefore, the time-consuming task of checking the 
streamflow series a second time may not be necessary. 
However, note that we say “a second time”, because we 
assume that this work has already be done by the hydro-
metric services in charge of streamflow data collection.

The results were obtained here with a single hydrological 
model and using data from the French national flow archive, 
which has its own quality check rules. Further tests may be 
necessary to generalize these results to other models or datasets 
and under other conditions (e.g. typically different objective 
functions, the presence of gaps in data or the time window of 
calibration–evaluation periods). It would also be useful to 
evaluate the relative role of errors in flows in comparison 
with other variables used in the model, typically precipitation 
and potential evapotranspiration (see the study by Oudin et al.  
2006). This would help in offering recommendations regard-
ing prioritizing where efforts should be made when checking 
datasets for large-sample hydrology studies.

Figure 12. Distribution of KGE on the square root of the flow variations, in the evaluation period. The box plots represent the 10th, 25th, 50th, 75th and 90th quantiles 
and contain 8820 values each, including outliers. Red corresponds to corruption in the low-flow periods and blue to corruption without restriction in the flow range. 
Data corruption was performed over the evaluation period only. A positive value of the variation represents an improvement in performance after the corruption of 
streamflow records.
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Figure 13. Distribution of the variation in KGE values (calculated on the square root of flows) according to the suspicious pattern, in the evaluation period. The box plots 
represent the 10th, 25th, 50th, 75th and 90th quantiles. They contain 1680 (a: noise), 3360 (b: spikes, c: drops) and 420 (d: linear interpolations) values each, including 
outliers. Red corresponds to corruption in the low-flow periods and blue to corruption without restriction in the flow range. Data corruption was performed over the 
evaluation period only. A positive value of the variation represents an improvement in performance after the corruption of streamflow records.

Figure 14. Difference between corrupted and initial streamflow record for the River La Clauge at La Loye during the evaluation period for a linear interpolation over 
2 months with n (number of patterns) equal to one (grey) and four (black). Arrows represent the corrupted time steps and dotted lines mean that only low flow is 
affected.
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Appendices

Appendix A.

Appendix B.

Table A1. Main characteristics of the 15 catchments included in the suspicious set.

Suspicious set

Code Name
Area 
[km2]

Average annual 
precipitation [mm y−1]

Average annual potential 
evapotranspiration [mm y−1]

Average annual streamflow 
[mm y−1]

A8006210 Vaux stream at Morgemoulin 42 863 652 264
B4631010 Chiers at Carignan 1978 914 651 391
H4223110 Remarde River at Saint-Cyr-sous- 

Dourdan
152 680 690 116

I2001010 Dives River at Saint-Lambert-sur-Dive 88 783 667 144
J2233020 Léguer River at Pluzunet 362 1067 652 512
K1753110 Alène River at Cercy-la-Tour [Coueron] 333 1035 699 398
M3423010 Jouanne River at Forcé 404 796 705 239
O4704030 Dadou River at Paulinet [Saint-Jean-de- 

Jeanne]
71 1140 712 557

O7035010 Bramont River at Saint-Bauzile [Les 
Fonts]

117 1036 619 424

P3001010 Vézère River at Saint-Merd-les- 
Oussines [Maisonnial]

42 1384 614 985

S2134010 Petite Leyre River at Belhade 413 958 800 225
U1204010 Tille River at Crécey-sur-Tille 230 941 674 351
U2345040 Savoureuse River at Vieux-Charmont 235 1437 668 790
V1315050 Leysse River at la Ravoire 87 1506 631 836
Y1364010 Fresquel River at Carcassonne [Pont 

Rouge]
936 845 829 173

Table B1. Main characteristics of the 15 catchments included in the clean set.

Clean set

Code Name
Area 
[km2]

Average annual precipitation 
[mm y−1]

Average annual potential 
evapotranspiration [mm y−1]

Average annual streamflow 
[mm y−1]

A4632010 Avière River at Frizon 103 992 668 360
E4907005 Peene Becque River at 

Ochtezeele
55 755 648 253

H5033310 Suize River at Villiers-sur- 
Suize

83 965 658 401

H6221010 Aisne River at Givry 2887 883 667 322
J3601810 Aulne River at Scrignac [Le 

Goask]
117 1196 655 569

K1341810 Arroux River at Rigny-sur- 
Arroux

2271 978 684 326

L8000020 Loire River at Saumur 81 315 844 707 227
N0113010 Falleron River at Falleron 33 817 748 313
O1584610 Douctouyre River at Dun 136 1056 763 354
P7001510 Isle River at Bassilac 

[Charrieras]
1859 1048 754 362

S2242510 Eyre River at Salles 1678 981 801 273
U2425260 Cusancin River at Baume-les- 

Dames
541 1310 664 396

U2565020 Clauge River at La Loye 119 1092 729 264
V0355010 Foron River at Sciez 51 1222 665 465
V4025010 Embroye River at Toulaud 8 1027 745 457
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Appendix C.

Appendix D.

Table C1. Distribution of the parameter values obtained before and after data corruption.

X1 [mm] X2 [mm h−1] X3 [mm] X4 [h] X5 [-]

Before After (Cal) Before After (Cal) Before After (Cal) Before After (Cal) Before After (Cal)

min 71 66 −0.36 −0.40 20 19 1 1 0.05 0
Q10 101 93 −0.25 −0.27 50 44 4 3 0.07 0.06
Q25 148 151 −0.17 −0.21 64 62 6 6 0.09 0.09
Q50 180 180 −0.09 −0.09 116 116 11 11 0.12 0.12
Q75 221 232 −0.08 −0.08 173 186 18 19 0.17 0.16
Q90 342 391 −0.04 −0.04 216 226 47 48 0.19 0.19
max 628 664 −0.04 −0.02 349 427 68 77 0.24 0.24

Table D1. Distribution of the performance values obtained before and after data corruption depending on the calibration and evaluation period.

KGE [-] Bias β [-]

Before After (Cal) After (Eval) Before After (Cal) After (Eval)

Cal Eval Cal Eval Cal Eval Cal Eval Cal Eval Cal Eval

min 0.86 0.83 0.86 0.77 0.86 0.65 0.99 0.91 0.97 0.89 0.99 0.88
Q10 0.88 0.85 0.87 0.84 0.87 0.84 0.99 0.93 0.99 0.93 0.99 0.93
Q25 0.91 0.88 0.91 0.88 0.91 0.88 0.99 0.95 0.99 0.95 0.99 0.95
Q50 0.92 0.91 0.92 0.91 0.92 0.91 1.00 1.00 1.00 1.01 1.00 1.01
Q75 0.96 0.93 0.97 0.95 0.97 0.95 1.00 1.02 1.00 1.03 1.00 1.03
Q90 0.97 0.96 0.97 0.97 0.97 0.97 1.00 1.03 1.01 1.03 1.00 1.03
max 0.98 0.97 0.98 0.98 0.98 0.97 1.00 1.04 1.04 1.04 1.00 1.05
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