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ABSTRACT

The ecosystem service literature has drastically expanded since the Millennium Ecosystem Assessment, yet the
nature of how ecosystem services interact across space is still poorly understood. A key unresolved question is
how efforts in sampling (a proxy for data availability) affect the calculation of the interactions or associations
among ecosystem services. We contribute to answering this question by estimating a suite of ecosystem services
and asking how the values of their interactions — in the form of spatial correlations — change as a function of the
sampling rate of the landscape. Specifically, we estimate a set of seven ecosystem services for France (agricultural
production potential, biodiversity, carbon storage, livestock grazing potential, net ecosystem productivity,
pollination, and soil loss), applying four different measures for biodiversity, seven different methods for carbon
storage, and three for pollination. We find that spatial correlations are fairly robust to the sampling rate, sup-
porting the notion that moderate sampling rates across a heterogenous landscape are sufficient to obtain reliable
estimates of the average correlation occurring across the landscape. In other words, despite heterogeneity in the
spatial distribution of ecosystem services, at sufficient sample sizes we only need to randomly sample ten percent
of the landscape to acquire an accurate measure of the correlations between all ecosystem services averaged
across the entire landscape. Our results have implications for management, with applications for sampling extent

and intensity and the identification of ecosystem service bundles.

1. Introduction

The ecosystem service literature has seen an explosion of publica-
tions since the Millennium Ecosystem Assessment (Bennett et al., 2009;
Fisher et al., 2009; Vihervaara et al., 2010). Yet despite an immense
number of case studies being published, the nature of how ecosystem
services interact across space is still poorly understood (Bennett et al.,
2009; Seppelt et al., 2011). Indeed, effective estimation of the spatial
correlations among ecosystem services enables a better identification of
ecosystem service bundles, which is key to managing the landscape so as
to maximize total benefits.

The literature has progressed such that most papers measure at least
a set of services and report the spatial correlations between them
(Seppelt et al., 2011; Vihervaara et al., 2010), with a large variety of
tools available to measure the provisioning or supply of ecosystem ser-
vices (Crossman et al., 2013; Egoh et al., 2008; Martinez-Harms and
Balvanera, 2012; Schagner et al., 2013). However, issues of data

availability, quality, quantity, and uncertainty remain key limitations to
the field (Crossman et al., 2013; Egoh et al., 2012; Hou et al., 2013;
Layke et al., 2012; Martinez-Harms and Balvanera, 2012), and may
largely impact the estimation of spatial correlations. A key unresolved
question is how the effort in sampling (a proxy for data availability)
affects spatial correlations — often referred to as interactions or associ-
ations, sensu Vallet et al. (2018) — among ecosystem services. On-the-
ground estimates of ecosystem services are time consuming and
expensive to conduct. Furthermore, even with proxy-based methods that
rely on land use and land cover data, finding the balance between how
much of the landscape is needed to accurately measure a spatial inter-
action is tricky. Sampling too much of the landscape can be expensive in
terms of time, labor, computation time, and other costs; sampling too
little can ignore local heterogeneities that are averaged out when
calculating the spatial correlation.

We contribute to answering this question by estimating a suite of
ecosystem services and asking how the values of their spatial
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correlations change as a function of the sampling rate of the landscape.
Specifically, we estimate a set of seven ecosystem services for France
(agricultural production potential, biodiversity, carbon storage, live-
stock grazing potential, net ecosystem productivity, pollination poten-
tial, and soil erosion prevention), applying four different measures for
biodiversity, three for pollination, and seven different methods for
carbon storage. We vary the sampling rate of the data to calculate the
spatial correlations between our ecosystem services. We find that cor-
relations are fairly robust to the sampling rate, supporting the notion
that at sufficient sample sizes moderate sampling rates across a het-
erogeneous landscape are sufficient to obtain reliable estimates of the
average correlation calculated using data for the entire landscape.

Relatively few studies have explicitly evaluated uncertainty in esti-
mating ecosystem services. Plummer (2009) and Rosenberger and
Stanley (2006) focus on the extrapolation and transferability of
ecosystem service provisioning models, discussing the errors associated
with taking the value of ecosystem services at one site and applying
them to another. Eigenbrod et al. (2010) measure the overlap between
on-site, local estimates of ecosystem services and proxy-based land use
data. Schulp et al. (2014) reviewed and compared ecosystem service
maps at the European scale. Van der Biest et al. (2015) test for differ-
ences in the spatial correlations between ecosystem services across three
types of land use-based models and field data. Roussel et al. (2017)
compare the clustering or bundling of ecosystem services between a
proxy-based land use method and a set of models which compute seven
other individual ecosystem services. Vallet et al. (2018) compared
different methods to estimate the interactions between ecosystem ser-
vices, including how they might change over time. Rather than
comparing different models or data sources to measure ecosystem ser-
vices at a single scale, we test for differences in the spatial correlations
between ecosystem services as a function of the study sampling rate,
while testing for differences between models and/or data sources for
biodiversity, carbon storage, and pollination.

Our paper is outlined as follows: in the next section we present our
framework for modelling ecosystem service provisioning, the data, and
how we measure their interactions; our results are presented in the third
section; finally, we discuss the main take-aways of our results and how
they relate to ecosystem service management.

2. Methods

We model ecosystem services and their spatial interactions at the
national scale of France. Data availability was and still is one of the
major limitations of the field (Bennett et al., 2009; Crossman et al.,
2013; Egoh et al., 2012; Hou et al., 2013; Layke et al., 2012; Martinez-
Harms and Balvanera, 2012). Our study is no exception. We do not have
access to local, plot-level data with which to test our hypotheses. We do,
however, have access to national-level spatial data. As we will show
below, for some of our results, the data can be viewed as a generic
landscape — we would expect many of the general trends in our results to
hold regardless of the spatial scale of the study. However, for other re-
sults such as policy implications, it will be more important to keep in
mind that our study was conducted at the national level.

In terms of measuring the provisioning of ecosystem services, the
literature is abound with different methodologies and modelling
frameworks such as the InVEST model (Daily et al., 2009; Nelson et al.,
2009), GUMBO (Boumans et al., 2002) and IMAGE (Schulp et al., 2012)
frameworks, or the Soil Water Assessment Tool (SWAT) (Arnold et al.,
1999; Lautenbach et al., 2013). We would direct the reader to reviews by
Crossman et al. (2013), Egoh et al. (2012), Martinez-Harms and Balva-
nera (2012), and Schagner et al. (2013) for detailed discussions of the
vast array of indices for measuring individual ecosystem services. We
provide a summary spreadsheet in Supplemental Material A. Rather
than taking one of the large modelling frameworks to estimate
ecosystem service provisioning, we have chosen to take them as inspi-
ration and build our phenomenological models of provisioning ourselves
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directly from the literature. We believe that doing so increases the
transparency of our work.

Furthermore, we modeled a set of seven ecosystem services, with
four types of measurements for biodiversity, three for pollination, and
seven for carbon storage, totaling eighteen indicators. While many case
studies measure a larger number of ecosystem services, we find that
considering a smaller set allows us to go deeper into understanding the
data, the models, and how their interactions affect the calculation of the
spatial correlation coefficients between ecosystem services, while
balancing the limitations of data availability and quality for a study at
the national scale. A summary of all ecosystem services and the methods
used to measure them is found in Table 1.

We measured the spatial correlation coefficients between ecosystem
services as a function of the percentage of the landscape sampled. Spatial
correlation coefficients are often used synonymously with the terms
“interactions” or “associations”, though there is a body of work discus-
sing what is an interaction versus an association, what are the types of
interactions (tradeoffs and synergies), how do they form (directly or
indirectly), and how do we measure them (see Lee and Lautenbach
(2016) and Vallet et al. (2018) for overviews of this literature). Rather
than be caught up in discrepancies about what-is-what, we will call our
“interactions” for what they are: spatial correlations between ecosystem
services across a given area.

Table 1
Summary of ecosystem service provisioning models.

Ecosystem service Model description

Agriculture Binary if annual summer or winter crops, orchards,

or vineyards”

Biodiversity

National Inventory of
National Heritage

Mauri et al. (2017)

Carbon storage (C)

Amoatey et al. (2018) -

Number of threatened species of amphibians, birds,
and reptiles”
Tree species richness*

Power law relationship, C = 4735 * exp (0.7075 *

Institutions NDVI)*
Amoatey et al. (2018) —Parks Power law relationship, C = 3453.6 * exp (5.9194 *
and gardens NDVI)?
Myeong et al. (2006) Power law relationship, C = 107.2 * exp (0.0194 *
NDVD)!

Yao et al. (2014) Power law relationship, C = 6445.014 *
(NDVI2.390)"

Low/intermediate/high potential by land use type®
Lookup table by land use type®

Aboveground carbon storage map*

Egoh et al. (2008)

Gibbs et al. (2007)
Spawn et al. (2020)

Net ecosystem productivity
Maes et al. (2015)
Pastureland

Pollination (P)

Ricketts et al. (2008)

Net ecosystem productivity map
Binary if natural or intensive grassland®

Exponential function of distance to natural forest, P
= exp (-0.00053 * distance)’

Map of percentage of suitable pollinator habitat
Map of pollinator visitation probability

Schulp et al. (2014)
Schulp et al. (2014)
Soil loss by water erosion

Panagos et al. (2020) Mean annual soil loss map®

Calculated at the 1 km resolution.

# Taken from the CESBIO land use and land cover data (https://labo.obs-mip.
fr/multitemp/) (10 m resolution).

b Aslisted by the National Inventory of Natural Heritage (INPN) (https://inpn.
mnhn.fr/) (10 km resolution).

¢ Compiled from species occurrence data, aggregated using a 10 km grid (10
km resolution).

4 Associated data from the Google Earth Engine are reported at < 1 m
resolution.

¢ Corresponding values of carbon storage by land use type can be found in the
Supplemental Material (10 m resolution).

f Natural forest data is provided by the European Commission Joint Research
Centre forest cover data (https://forest.jrc.ec.europa.eu/en/) (25 m resolution).

8 Estimated using the revised universal soil loss equation (RUSLE) (100 m
resolution).
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2.1. Measuring ecosystem service provisioning

As data availability and quality are key limitations, we relied pri-
marily on land use and land cover data in our models to estimate
ecosystem service provisioning, though there are notable exceptions as
discussed below. Land use and land cover data were downloaded from
the French Centre d’Etudes Spatiales de la Biosphere (CESBIO) (Inglada
et al., 2017) at the 10 m resolution. It includes seventeen land use types:
annual summer crops; annual winter crops; broad-leaved forest; conif-
erous forest; natural grasslands; woody moorlands; continuous urban
fabric; discontinuous urban fabric; industrial and commercial units;
roads; bare rock; beaches, dunes, and sand; water bodies; glaciers and
perpetual snow; intensive grasslands; orchards; and vineyards. Addi-
tionally, we used biodiversity data compiled from the National In-
ventory of Natural Heritage (INPN) (10 km resolution), reflectance data
taken from the Google Earth Engine (<1 m resolution), and forest cover
as provided by the European Commission Joint Research Centre (25 m
resolution). References for where to download spatial data are located in
Table 1 and, if available for public download, can be accessed on the
Open Science Framework (osf.io/7hk9v).

It is worth keeping in mind that in order to measure the correlations
between ecosystem services, we must align their associated raster data
layers, which requires that they be the same spatial extent and resolu-
tion. It is necessary to interpolate or aggregate (downscale or upscale)
the data to be the same resolution. We aggregated to the resolution of
the coarsest layer which, in doing so, transforms our binary measures of
ecosystem services (e.g., agriculture and grazing) into continuous
measures of potential probabilities of presence based on their proximity
to cell(s) with a presence of the service.

2.1.1. Agriculture potential

As France possesses a large agricultural system across the country
(about a third of the country’s total surface area in 2018") and a high
degree of variation in its crops produced (exporting 346 different types
of crop and livestock products in 20187), we limited our study of agri-
cultural production to a binary agriculture/not agriculture index. To be
clear, agricultural data for France does exist. Aggregated data at the
departmental level can be accessed online via the Service Statistique
Ministériel de 1’ Agriculture (Agreste).® Parcel-level data of major agri-
culture types are available for each department through the Agence de
Services et de Paiement (APS) and the Institut National de I’Information
Géographique et Forestiere (IGN).* Specifically, this data is part of the
Registre Parcellaire Graphique (RPG), which is an annual declaration
agricultural parcels and their corresponding surfaces in accordance with
the acquisition of EU subsides from the Common Agricultural Policy.
However, due to the large diversity of agricultural products in France,
we believe that a proper treatment of this data is better left for future
studies.” The presence or absence of agriculture was taken from the
CESBIO land use and land cover data set. We defined a pixel of agri-
culture land to be annual summer or winter crops, orchards, or vine-
yards. We find that differentiating between agricultural types is more
important when considering the economic value of the ecosystem ser-
vice, where benefits and costs between crop types becomes more
important.

! https://data.worldbank.org/country/france.

2 https://www.fao.org/faostat/en/#data/TCL.

3 https://agreste.agriculture.gouv.fr/agreste-web/disaron/RA2020_1013/de
tail/.

4 https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-rpg-
contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire
/.
5 https://odr.inrae.fr/intranet/carto/cartowiki/index.php/Accueil_Porta
il RPG.
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2.1.2. Biodiversity

While biodiversity is notan ecosystem service perse, itis known to be
positively correlated with regulating services such as carbon seques-
tration, pest regulation, and soil mineralization (Cardinale et al., 2012;
Millennium Ecosystem Assessment, 2005). However, fine-scale national
surveys of biodiversity are few and far between. For example, through
the L’Inventaire National du Patrimoine Naturel or National Inventory
of Natural Heritage (INPN), it is possible to construct maps of species
richness by taxonomic groups — but this is at the departmental level.
Therefore, we used taxonomic species richness of threatened or pro-
tected species, where we have data at the national level, as a measure for
biodiversity. Data were compiled from the National Inventory of Natural
Heritage (INPN).® The database is based on an atlas (grid) of 10 km
spatial resolution, where species occurrences are aggregated by taxo-
nomic groups to produce a series of biodiversity maps for protected
species across the country. We focused on certain taxonomic groups with
different environmental requirements, thus representing different facets
of biodiversity. Namely, we produced maps for threatened amphibians,
birds, and reptiles. Similar approaches have been applied in the United
Kingdom using the Biodiversity Action Plan (BAP) list of species of
“conservation concern” (Anderson et al., 2009; Eigenbrod et al., 2009;
Eigenbrod et al., 2010), and numbers of threated or protected species are
often used as proxies for biodiversity in economic valuation studies
(Bartkowski et al., 2015).

However, biodiversity of threatened or protected species does not
necessarily correlate with common ones. In other words, it may not be a
good proxy for the biodiversity of common species, as the “number of
threatened species” and “number of total species” can be driven by
different processes. Threatened species may exist as endemic, refugia
populations with specific distribution patterns or may be oversampled
compared to common species (though the potential contribution of rare
species as keystone species cannot be completely discounted). There-
fore, we supplemented our maps of threatened species with a well-
established map of tree biodiversity in Europe (Mauri et al.,
2017). Inits raw form, the data exist as occurrences of 242 speciesacross
the European Union, compiled from existing European tree distribution
datasets (Forest Focus and Biosoil) and previously unpublished National
Forest Inventories datasets. We overlaid the raw data onto a 10 km by
10 km grid and aggregated species occurrences by species type within
each grid cell to measure tree species richness at the 10 km resolution.

2.1.3. Carbon storage potential

As carbon is one of the more well-studied ecosystem services in the
literature (Crossman et al., 2013; Feld et al., 2009; Issa et al., 2020;
Martinez-Harms and Balvanera, 2012; Seppelt et al., 2011), we adopted
a set of models to estimate carbon storage potential and investigate the
uncertainty around the choice of method. We first used two look-up
table approaches based on land use type. The first assigns a categori-
cal “low”, “intermediate”, or “high” carbon storage potential based on
the type of land occupation (Egoh et al., 2008; Rouget et al., 2004). The
second attaches a more quantitative weight to carbon storage potential,
assigning an average quantity of carbon stored per hectare for each pixel
of each land use type at a given moment in time (Bai et al., 2011; Chan
et al., 2006; Maes et al., 2012; Naidoo et al., 2008; Spawn et al., 2020;
Swetnam et al., 2011; Vallet et al., 2018). Specifically, we used the
carbon storage values of Gibbs et al. (2007), which is based on the
Intergovernmental Panel on Climate Change guidelines for national
greenhouse gas emissions (Intergovernmental Panel on Climate Change,
2006). Tables for the values of carbon stored per hectare of land use type
can be found in Supplemental Material B. We complemented this mea-
sure with the aboveground carbon storage map of Spawn et al. (2020),
which is based on a suite of local, regional, and national data sets
including national inventories. Each of these approaches were

6 https://inpn.mnhn.fr/.
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motivated by the literature and/or expert opinion and lend themselves
well to large-scale analyses, but ignore spatial heterogeneities across
landscapes with the same land use. Therefore, they should be seen as
averages rather than absolute values.

In an effort to account for finer-scale variation across the landscape,
we followed the methodology of Dong et al. (2003), Myeong et al.
(2006), Yao et al. (2014), and Amoatey et al. (2018), who relate
aboveground carbon storage and reflectance data, the latter measured
by the normalized difference vegetation index or NDVI. Each fitted non-
linear models (usually saturating functions such as power laws) of on-
the-ground field measurements of carbon storage to spatial reflectance
data. We obtained NDVI data from the Google Earth Engine (Ermida
et al., 2020; Jiang et al., 2008)” and transformed values of NDVI to
carbon storage per pixel using the functions derived by Myeong et al.
(2006), Yao et al. (2014), and Amoatey et al. (2018). It is worth noting
that their field experiments were based in arid climates (Amoatey et al.,
2018) or urban centers (Myeong et al., 2006; Yao et al., 2014), and so it
is unlikely that these functions will produce precise estimates of carbon
storage for other ecosystems like forests. However, rather than viewing
the transformed carbon storage data in absolute terms, we used these
models to give us a representation of carbon storage potential, and, by
measuring a suite of parameterizations, tested the sensitivity of carbon
storage estimation to model parameters.

Ideally, we would want to include finer scale assessments of carbon
storage such on-the-ground field surveys throughout the country (Gas-
coigne et al., 2010; Gleason et al., 2008) or compartmental or process-
based models calibrated to field data (Crossman et al., 2011b; Lands-
berg and Waring, 1997; Naidoo and Ricketts, 2006; Naidoo et al., 2008;
Schulp et al., 2012). However, obtaining the necessary fine scale data
was not possible at the national scale.

2.1.4. Gragzing potential

We considered pastureland or grazing as a binary pastureland/not
pastureland variable. Like agriculture, accurately classifying pasture-
land by species and production type is difficult and compounded by the
fact that farmers may routinely share their land between multiple flocks.
These difficulties are more apparent when attaching a value to a parcel,
which depends on the species and eventual use of the animal product(s)
(cheese, fur, meat, milk). We set a pixel to be pastureland if it is clas-
sified as a natural or intensive grassland in the CESBIO land use and land
cover data set.

2.1.5. Pollination potential

We adopted the methodology of Ricketts et al. (2004) and Ricketts
et al. (2008), who through a series of field experiments established a
relationship between pollinator visitation rates and distance to natural
forest. We used the European Commission Joint Research Centre (JRC)
Pan-European forest cover map to create a proximity map of the dis-
tances of the centers of each pixel to the nearest natural forest pixel
(broad-leaved, coniferous, or mixed). We then fitted the proximity data
to the function defined in Ricketts et al. (2008) to estimate the mean
visitation probability for temperate regions. We supplemented our
pollination map with two maps by Schulp et al. (2014), which include
the percentage of suitable pollinator habitat and the probability of
pollinator visitation. Both maps are based on Corine land cover and
landscape green elements data.

2.1.6. Regulating ecosystem services: Soil loss and net ecosystem
productivity

We supplemented our core analysis with published maps of two
regulating ecosystem services: soil loss (erosion prevention) (Panagos
et al., 2020; Panagos et al., 2015) and net ecosystem productivity (Maes

7 As reflectance changes seasonally and annually, we specifically use the
annual average between 2010 and 2020 for our analysis.
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et al., 2015). The former is based on the universal soil loss equation
(USLE) (Batjes, 1996; Nelson et al., 2009; Wishmeier and Smith, 1978),
which relates soil properties, topology, land management and vegeta-
tion cover, and precipitation to predict potential soil loss by water
erosion. Specifically, we used the published map of Panagos et al.
(2020), who adopted the updated revised universal soil loss equation
(RUSLE) to estimate mean annual soil loss rates (tons/hectare/year)
across the European Union in 2016.

Net ecosystem productivity (NEP) is defined as an ecosystem’s net
accumulation of carbon, which depends on the balance between gross
primary production and losses via plant and animal respiration, leach-
ing, plant emissions, methane fluxes, and disturbances (Chapin et al.,
2012). For ecosystems that experience little or no disturbances, then it is
given primarily by the difference between carbon gains from plant pri-
mary production (photosynthesis) and carbon losses by respiration and
leaching. We used the published net ecosystem productivity map of
Maes et al. (2015), prepared as part of an European Commission Joint
Research Council report to measure spatial-temporal trends in
ecosystem services across the European Union. Specifically, they used
reflectance data as a proxy for net ecosystem productivity, defining it as
the difference between net primary productivity and decomposition
rates of dead organic matter (taken to represent heterotrophic respira-
tion). They adopted the “Phenolo” algorithm of Ivits et al. (2013) to
convert spatial maps of NDVI data to plant primary productivity, adjust
for decomposition of dead organic matter, and normalize net ecosystem
productivity to a dimensionless scale of 0 to 1.

To ensure data comparability, we aligned raster layers to the same
spatial extent and resolution. Layers were resampled using a bilinear
nearest-neighbor aggregation up to the resolution of the coarsest layer
(10 km resolution), and then all layers were cropped to the same spatial
extent using the ‘raster’ package R v.3.6.2. By aggregating our binary,
presence/absence measures of ecosystem service provisioning (e.g.,
agriculture and grazing), we implicitly transformed them to be a prob-
ability of presence based on their distance to a cell where the service is
present.

2.2. Calculation of spatial correlation coefficients

We calculated the spatial coefficients between ecosystem services
across a suite of random sampling rates of the landscape. That is, we
randomly selected a certain percentage of pixels in the landscape
(without replacement), and calculated the Pearson spatial correlation
coefficients between each pair of ecosystem services using that subset of
the data. While other methods exist in the literature for measuring in-
teractions between ecosystem services such as principle component
analysis, production possibility frontiers, or regressions (Feld et al.,
2009; Lee and Lautenbach, 2016; Vallet et al., 2018), correlation co-
efficients are widely used, accepted, and provide reasonable estimates of
interactions (Chan et al., 2006; Raudsepp-Hearne et al., 2010; Vallet
et al., 2018). We then resampled the data and recalculated the corre-
lations for N = 1000 repetitions, and calculated the mean and standard
deviations for each pair of services for that percentage of the landscape
sampled. We tested a set of proportions ranging from (0,100] percent of
the landscape. As we are able to resample the landscape N number of
times, and standard errors depend on sample size, hypothesis tests for
statistical significance or p-values are largely inappropriate.

Analyses were carried out in R 3.6.2 using the ‘raster’ and ‘sp’
packages. Scripts for our analysis and final raster layers can be down-
loaded on the Open Science Framework (osf.io/7hk9v).

3. Results
3.1. Estimates of ecosystem service provisioning

Our estimations for ecosystem services are presented in Figs. 1 and 2.
Agriculture and pastureland are inversely related, which is expected
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Fig. 1. Estimated ecosystem services: (a) agriculture; (b) pastureland; (c-e) biodiversity taken as the number of threatened or protected species amphibians, birds,
and reptiles; (e) biodiversity measured as the number of tree species (Mauri et al., 2017). Note that the units in (a) and (b) are interpreted as the probability of the

presence of agriculture and grazing.
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Fig. 2. Estimated levels of carbon storage and carbon storage potential: (a) Amoatey et al. (2018) (institutions); (b) Amoatey et al. (2018) (parks and gardens); (c)
Myeong et al. (2006); (d) Yao et al. (2014); (e) Egoh et al. (2008); (f) Gibbs et al. (2007); and (g) Spawn et al. (2020). Units for each measure are in tons/hectare.

given the modeling framework (Fig. 1a, b). Land is either used for
agriculture (crops) or pastureland (animals), not both simultaneously.
Biodiversity of threatened amphibians is more-or-less distributed
throughout the country, although with high local heterogeneity
(Fig. 1c); diversity of threatened birds is distributed throughout the
country, especially on the coasts; biodiversity of protected reptiles is
concentrated in the southern half of France, particularly in the “arc
méditerranéen” (Fig. 1d, e). Tree diversity is highest in forest areas
(Fig. 1f, Supplemental Material B).

We observe spatial variation in the distribution of carbon storage
across the country (Fig. 2), with levels of carbon storage unsurprisingly

higher within forests (Supplemental Material B). However, we find large
quantitative differences in the quantity of carbon stored between our
carbon models (Fig. 2), the reason for which is grounded in the type of
data used for the calibration of each model. The NDVI relationships are
derived from urban forest (Myeong et al., 2006; Yao et al., 2014) or
desert ecosystems (Amoatey et al., 2018); others, such as Gibbs et al.
(2007) and Spawn et al. (2020) are derived from a variety of sources and
ecosystems.

Net ecosystem productivity is mainly concentrated in forests, with its
lowest values at higher elevations in the Alps and Pyrenees (Fig. 3a). Soil
loss is similarly lowest at high slopes (Fig. 3b). Pollination potential is
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quite high throughout the country (Fig. 3c, e), with some exceptions
being along the coasts.® Pollination as measured by the percentage of
suitable pollinator habitat follows forested areas (Fig. 3d, Supplemental
Material B), with pockets of highly suitable habitat in mountain regions.

3.2. Within-service correlations

While there is certainly some debate about what level of correlation
is meaningful for ecosystem services (Lee and Lautenbach, 2016), we
interpret our correlations in a purely positive/negative mathematical
way and prefer to focus on the trends in the results rather than their
absolute values.

We find positive correlations between our measures of carbon
(Fig. 4a-c), our measures of biodiversity as the number of threatened
species and tree diversity (Fig. 4d), and pollination. (Fig. 4e). A notable
exception is the negative correlation between trees and threatened birds,
which is intuitive. We would expect diverse forests to be suitable habitat
for bird species, and subsequently tree diversity to be inversely related to
number of threatened or protected bird species. This example serves as a
good reminder that our measures of amphibian, avian, and reptile di-
versity are the numbers of threatened or protected species. If we were
using the total number of avian species in this case, then we would likely
observe a positive correlation.

Overall, correlations are more-or-less constant as long as we sample
more than ten percent of the landscape. Despite heterogeneity in the
spatial distributions of biodiversity, carbon storage, and pollination,
estimation of their interactions is robust to the sample size. In fact, it is
only until we sample less than one percent of the data do we see vari-
ation in the mean spatial correlations — a claim that is confirmed by
looking at the variance of our estimates (Fig. 4b, d-e).

Specifically for carbon storage, we find strong correlations between
all measures, with mean correlation coefficients greater than 0.4
(Fig. 4c), even though their absolute value in tons/hectare differ.
Qualitatively, these models give us similar information as to the spatial
distribution of carbon storage across France. The fact that these models
are correlated is expected. Forests, for example, will have a high carbon
storage regardless if it is evaluated by a land use/land cover model or via
plant reflectance. However, the quantitative degree to which they are
correlated is another question. The NDVI methods are very strongly
correlated to each other and robust to sample size, with mean correla-
tion coefficients greater than 0.9 and variance close to zero regardless of
the percentage of the landscape sampled, despite having quite different
functional forms and parameter values.

3.3. Between-service correlations

Spatial correlations between ecosystem services are robust to sample
size (Fig. 5). Mean interactions between ecosystem services are the same
as long as we measure greater than ten percent of the landscape
(Fig. 5a), and, for some services, do not change even when we sample
less than one percent of the landscape. That is, the mean spatial corre-
lation using fifty percent of the landscape is more-or-less identical to
calculating the mean spatial correlation with ten percent of the land-
scape sampled. We see differences in the mean spatial coefficients only
when randomly sampling less than ten percent of the landscape.

This result is confirmed when measuring the variance of spatial

8 Pollination potential exhibits a high degree of fine-scale spatial variation,
much of which is lost when we aggregate the data. For example, the farthest
distance from natural forest in our proximity analysis was 10.12 km. Aggre-
gating the data to the 10x10 km resolution of the biodiversity data expectedly
results in a loss of much of this information. However, we do see some variation
in the pollination potential, though its overall values across the landscape are
high. We would not expect this to affect the calculation of our spatial
correlations.
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correlations (Fig. 5b). As we decrease the proportion of the landscape
sampled, the variance in the spatial correlation coefficient calculated
across all samplings increases exponentially. By simple back-of-the-
envelope calculations between the mean and the variance it can be
illustrated that there are likely qualitative differences between sample
calculations when we calculate the spatial correlation coefficient using a
low proportion of the landscape. In other words, calculating the corre-
lation coefficient using different small subsets of the landscape can yield
both positive and negative values.

Expanding on our pairwise correlation coefficients from the previous
section, agriculture was negatively correlated with all services except
threatened amphibian biodiversity. Biodiversity of threatened amphib-
ians was positively correlated with biodiversity of protected birds, rep-
tiles, trees, and net ecosystem productivity, and negatively correlated
with grazing, pollination, and soil loss. Interestingly, it showed mixed
positive and negative correlations with our carbon models. Protected
avian biodiversity was positively correlated with threatened reptile di-
versity, and negatively correlated with tree diversity, carbon, grazing,
net ecosystem productivity, pollination, and soil loss. Biodiversity of
threatened reptiles exhibited weak or positive correlations with most
carbon models, positive correlations with tree diversity, grazing, polli-
nation, and soil loss, and a weak negative correlation with net ecosystem
productivity. Tree diversity showed positive correlations with all carbon
models and net ecosystem productivity, and negative correlations with
grazing and soil loss. It exhibited mixed correlations with pollination.
Carbon models were positively correlated with net ecosystem produc-
tivity, but showed mixed correlations with soil loss and pollination.
Grazing was positively correlated with all carbon models, net ecosystem
productivity, pollination, and soil loss. Net ecosystem productivity was
negatively correlated with soil loss, with mixed effects with pollination.
Soil loss exhibited mixed, and often weak, correlations with pollination.
Detailed figures of the trends within each ecosystem service can be
found in Supplemental Material B.

4. Discussion

Data quality and quantity are two of the main limitations for esti-
mating ecosystem services and ecosystem service management (Bennett
et al., 2009; Crossman et al., 2013; Egoh et al., 2012; Hou et al., 2013;
Layke et al., 2012; Martinez-Harms and Balvanera, 2012). We show that
it is possible to obtain reliable estimates of the correlations between
ecosystem services at the landscape level (the average correlation
occurring across the landscape) when randomly sampling ten percent of
the landscape for all ecosystem services studied, and close to one percent
for some. Despite heterogeneity in the spatial distribution of ecosystem
services, we only need to sample ten percent of the landscape to acquire
an accurate measure of the average correlations between all ecosystem
services at the landscape level.

To use the words of Mark Williamson (Williamson, 1996), our main
finding is a type of “tens rule” applied to the statistical calculation of the
spatial correlation coefficient.” Ten percent is the minimum proportion
of the landscape that needs to be sampled in order to minimize variation
in the calculation of the spatial correlation relative to the average cor-
relation using the full sample. Below this level, variance in the calcu-
lation of the spatial correlation increases exponentially, and we also see
variability in the calculation of the mean (Figs. 4 and 5). This result is at
least partly a statistical phenomenon similar to general relationships
between ecological process and spatial scale in ecology, such as the

9 The tens rule from ecology is a statistical generalization of the establish-
ment and spread of invasive species. It states that of the set of novel species
introduced to a new local, ten percent are able to establish a self-sustaining
population, and of those, ten percent become pests. For captive species, there
is another initial step of ten percent of introduced species escaping captivity
and becoming feral in the wild.
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Fig. 3. Estimated ecosystem services: (a) net ecosystem productivity (dimensionless) (Maes et al., 2015); (b) soil loss (tons/hectare/year) (Panagos et al., 2020); (c-e)
pollination. Note that the units for pollination are visitation probability (c, e) and the percentage of suitable pollinator habitat (d).

species-area relationship (SAR) (Arrhenius, 1921; Lomolino, 2000;
Schoener, 1986), stability-area relationship (StAR) (Delsol et al., 2018),
or relationships between biodiversity and ecosystem functioning (BEF)
(Cardinale et al., 2011; Gonzalez et al., 2020). For each of these, the
greater the spatial area studied, the greater the biodiversity (SAR), sta-
bility (StAR), or total community biomass (BEF). In our case, the greater
the proportion of the landscape sampled, the lower the variation in the
calculation of the correlation coefficients between ecosystem services.

As we increase the spatial scale of the analysis from very local to
regional or national, we may change who, how, and how much parcels
of land are managed (which will affect the underlying physical and
biological processes occurring at each site) or exceed limits for species
dispersal or pollination, both of which overall potentially change the
driving factors for ecosystem service supply (Bennett et al., 2009; de
Groot et al., 2010; Hou et al., 2013; Lee and Lautenbach, 2016; Mil-
lennium Ecosystem Assessment, 2005). From a purely statistical stand-
point, increasing the sample size will minimize spatial heterogeneities in
the data and, by consequence, variance in the calculation of the spatial
correlation coefficients. Indeed, applying a measure of stability to the
data — calculated as invariability or the ratio of the mean to the standard
deviation (Shanafelt and Loreau, 2018; Wang and Loreau, 2016; Wang
et al., 2017) — confirms this claim. Stability of the correlation co-
efficients increases exponentially as a function of the landscape sampled
(Supplemental Material B), which is primarily driven by decreases in the
variance (as opposed to increases in the mean), which approaches zero
as the entire landscape is sampled. Thus, our “tens rule” is the threshold
percentage of the landscape that minimizes variation in the calculation
of the correlation coefficient. It is worth emphasizing that our threshold
most likely directly applies to similar large-scale studies that use remote
sensing land use and land cover data as proxies for ecosystem services.
There are many ways to measure ecosystem services (Supplemental
Material A), and other methods of data collection such as field surveys
may not support the 10% sampling rate.

Our individual estimates of the spatial correlations between
ecosystem services at the landscape scale are consistent with

expectations from the data and the models used to estimate them, and
are in general agreement with the rest of the literature. For example,
Raudsepp-Hearne et al. (2010) identified a consistent, negative rela-
tionship between agriculture and carbon sequestration. Mattison and
Norris (2005), Phalan et al. (2011), and Reidsma et al. (2006) discuss the
general negative relationships between agriculture and biodiversity. We
find a positive correlation between agriculture and biodiversity of
threatened amphibians, and negative relationships between agriculture
and the number of threatened bird and reptile species. We attribute this
to the fact that amphibians are most threatened by lowlands with agri-
culture (as opposed to pastoral highlands), and it is likely that more
threatened amphibians will be located in agricultural areas. For pro-
tected birds and reptiles, we suppose that viable habitat for those species
is either not used for agriculture or not as suitable for it compared to
other land uses. (In contrast, if we were using the total number of species
in each taxonomic group rather than the number of threatened species,
we could expect to find the opposite signs of these relationships.) Many
of our correlations are at least partially due to the nature of the data
(discussed below), and we test only a small set of provisioning and
regulating services. It would be interesting in future studies to test our
findings across a broader set of ecosystem services, specifically a greater
number of supporting and regulating services. Indeed, the literature has
identified general trends in the trade-offs and synergies (positive or
negative correlations) between broad types of ecosystem services (Lee
and Lautenbach, 2016). For example, in a review of synergies and
tradeoffs, Lee and Lautenbach (2016) found that synergistic relation-
ships were more common between regulating services, and no-effect
relationships between provisioning and cultural services.

While we would certainly express caution in interpreting our results
in absolute terms, they do offer interesting questions for the manage-
ment of ecosystem services and experimental design going forward. For
example, when evaluating ecosystem service provisioning for urban
development, what is the minimum amount sampling that is needed to
effectively capture a landscape-level average measure of their in-
teractions while still accounting for local heterogeneities? Given a
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Fig. 4. Within-service spatial correlations for measures of carbon (a-c), biodiversity (d), and pollination (e). Mean and variance of carbon storage, biodiversity, and
pollination as a function of the percentage of the landscape sampled are presented in (a-b) and (d-e) respectively. Note that these are meant to visualize the trends in
the correlations as a function of the landscape sampled rather than the individual values of each pairwise correlation. From left to right, dotted vertical lines indicate
one, ten, and fifty percent of the landscape sampled. Pairwise correlations between carbon storage estimates at the full landscape scale are given in (c). Values of each
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sufficiently large sample size (discussed in more detail below), our “tens
rule” would suggest a rate of greater than ten percent of the whole.
Alternatively, we could flip the nail on its head by asking if fine-scale
heterogeneities are important, what is the maximum amount of
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sampling that should occur to preserve this heterogeneity? We believe
that this result could be useful in designing field surveys. For instance, if
we were to randomly sample individual plots, sampling at the ten
percent level would suffice; sampling above this would result in greater
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Fig. 5. Trends in the mean and variance of spatial interactions as a function of sample size (a, b), and mean spatial correlations at the full landscape scale (c). In (a)
and (b), marker color and style indicate a correlation between two ecosystem services at a given proportion of the landscape sampled. Note that these are for
illustration of the trends rather than identifying individual correlation coefficients. From left to right, dotted vertical lines indicate one, ten, and fifty percent of the
landscape sampled. In (c), the qualitative (color) and quantitative (value) of the correlations are presented as pairwise (row, column) combinations of each ecosystem
service, with the transparency of the numbers paralleling the strength of the correlation.
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costs without yielding additional returns in terms of the mean correla-
tion at the landscape level. Indeed, we would expect our “ten’s rule” to
hold even more strongly in homogeneous landscapes or sites of the same
type or terrain, with even fewer data points being needed to estimate the
average correlation occurring across the landscape. Our paper also offers
a perspective for how we sample the landscape. In our study, we apply a
random sampling approach with replacement. In reality, certain areas
will be prioritized over others, with non-random sampling and spatial
differences in sampling intensity (Brus, 2022; de Gruijter et al., 2006).

Particularly when making management decisions or environmental
policies for heterogeneous landscapes, it is important to consider not
only summary measures like the average correlation, but also the vari-
ation of correlations across the landscape. A country such as France, for
example, contains a range of heterogeneous landscapes, each with
different management profiles and bio-physical properties and pro-
cesses, which can potentially lead to different ecosystem service corre-
lations between them. It is certainly possible that the dominant
correlation between two ecosystem services does not occur everywhere
in the country. By comparing the mean and variances of our correlation
coefficients across different sampling rates (Figs. 4 and 5), it is clear that
it is possible for a correlation coefficient between two ecosystem services
calculated from an individual sample draw to be qualitatively different
from the average correlation calculated at the landscape level, particu-
larly at low sampling rates. Summary measures have their place — it is
useful to understand general relationships between ecosystem services,
and establishing their common trade-offs and synergies is a frequent,
reoccurring theme in the literature (Bennett et al., 2009; Lee and Lau-
tenbach, 2016). But considering only the mean can hide variation that is
averaged out during the aggregation process. Assuming that an associ-
ation between ecosystem services occurs everywhere, and implementing
a management policy at a large scale (regional or national), can likely
lead to perverse outcomes.

One way to account for this is to break up the landscape into smaller
subsections or ecoregions, and measure the correlations between
ecosystem services at scales which preserve local heterogeneities that
would be lost at larger scales. We subdivide the data into the thirteen
political regions in France (Supplemental Material B) and re-run our
analysis. Plots of the trends in ecosystem services and tables of corre-
lation coefficients are found in Supplemental Material B. In general, we
find that agreement between our estimates of correlation coefficients for
all of France (Fig. 5) and at the full regional level (Supplemental Ma-
terial B), though there are certainly differences particularly for regions
with lower sample sizes such as Corse. Our “tens rule” holds reasonably
well in most regions, but functions most generally across all regions in
France at the fifty percent level. This highlights the potential role of
sample size in driving the statistical phenomenon of minimizing the
variance in the calculation of the correlation coefficients. Interestingly,
the ten percent level of the national sample has more observations (533)
than all but three regions (Auvergne-Rhone-Alpes, Nouvelle-Aquitaine,
and Occitanie); the one percent level of the national sample is greater
than the fifty percent level of the regions of Corse and Ile-de-France. The
threshold level for minimizing variation in the correlation coefficients
likely varies from landscape to landscape as a function of landscape
properties (e.g., heterogeneities in land use and land cover, manage-
ment, soil properties and climate, etc.). Developing the contribution of
each of these factors to the threshold requires a deeper statistical anal-
ysis across multiple landscapes and is left for future work.

Certainly, reliance on aggregated or proxy data and stylized models
for estimating ecosystem services are a limitation to our study, but this is
a general problem for this field of research (Crossman et al., 2013; Hou
et al., 2013; Layke et al., 2012; Martinez-Harms and Balvanera, 2012).
Take, for example, the relationships between agriculture, grazing, and
the Gibbs et al. (2007) and Egoh et al. (2008) carbon models. Each
ecosystem service is derived from land use and land cover data. Agri-
culture and grazing are calculated directly from the presence or absence
of each respectively. The Gibbs et al. (2007) carbon model assigns an
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average storage of carbon by land use type, with forests and grasslands
storing more carbon than agriculture; the Egoh et al. (2008) carbon
model classifies carbon storage potential as “low”, “intermediate”, or
“high” based on land use type. We would expect to find negative in-
teractions between these three. Physically measuring ecosystem services
in the field is time consuming and expensive, and other compartmental,
phenomenological, or simulation models still require fine-scale data,
much of which is not readily available. For instance, the Terrestrial
Ecosystem Model (McGuire et al., 2001; Naidoo et al., 2008) and 3-PG
tree growth model (Crossman et al., 2011a; Crossman et al., 2011c)
both require local information on locally present species and manage-
ment, as well as biophysical and weather data. Estimating recreation
often involves conducting interviews or surveys to establish visitation
rates (Tardieu and Tuffery, 2019). Air and water quality notoriously
require point measurements of nitrogen and phosphorus inputs and re-
movals, land use, hydrology, soil profiles, and weather (Bai et al., 2011;
Guerry et al., 2012; Jansson et al., 1998; Maes et al., 2012; Nelson et al.,
2009; Raudsepp-Hearne et al., 2010). For these reasons many studies
rely on proxy data such as land cover, even though there are discrep-
ancies between land cover-based proxy methods and actual fine-scale
point measurement (Eigenbrod et al., 2010; Roussel et al., 2017). For
example, Eigenbrod et al. (2010) found that models based on land-use
data worked well for broad-scale applications but there were errors
when applied to fine-scale resolutions. Roussel et al. (2017) found that
finer-scale, phenomenological models were able to better account for
local heterogeneities in service provisioning, leading to an identification
of a greater number of clusters of ecosystem services than a lookup table
model.

These ideas touch on a broader discussion of potential bias in the
models used to estimate ecosystem service provisioning, and bias due
to the structure of the data used by them. Firstly, in terms of biases
inherent to models used to estimate the provisioning of ecosystem
services, our analysis advises caution against interpreting estimates as
concrete, ab-solute measures of ecosystem service supply and the blind
application of proxy-based methods or benefits transfer. Our carbon
models provide a straight-forward illustration of this. While they
are quite positively correlated with each other (e.g., carbon hotspots
in one model corre-spond to carbon hotspots in another), we find
gross differences in the quantity stored between them, often of several
orders of magnitude. The main reason for this is the type of data used
in the calibration of each model. The NDVI methods rely exclusively
on proxy data, being cali-brated to either urban forest urban forest
(Myeong et al, 2006; Yao et al, 2014) or desert ecosystems
(Amoatey et al., 2018). We would not expect these calibrations to
perform well outside of urban areas or in temperate ecosystems. Other
measures, such as Gibbs et al. (2007) and Spawn et al. (2020), are
derived from a variety of datasets including forest inventories and
expert opinion, and likely present a more accurate representation of
carbon storage. However, that being said, our “tens rule” holds across
all of the ecosystem services in this study - including external,
published maps of ecosystem service provisioning - which is
encouraging.

Secondly, it is possible that the structure of the landscape (the
data) can potentially bias the calculation of the correlation
coefficient. To illustrate this, let us focus specifically on land use-
based estimates of ecosystem services. When randomly sampling the
landscape, the land use type with the highest proportion will be
greater represented in the sample, which can potentially impact the
calculation of the correlation coefficient. (In contrast, a landscape with
an even proportion of land use types will always return the same
proportion in the sample on average and will be constant irrespective
of the sampling rate.) Landscapes with one dominant land use type
could be more or less likely to exhibit “bundles” of ecosystem
services, which have been shown to occur be-tween certain types or
groups of spatially autocorrelated ecosystem services (Bai et al.,
2011; Raudsepp-Hearne et al., 2010). Thus, the physical structure of
the landscape has a role in shaping the resulting correlations of

10 ecosystem services. Very rarely do we find landscapes
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with an even proportion of anything. There is almost always some het-
erogeneity, with landscapes being composed to greater proportions of a
particular land use, micro-climates, soil conditions, etc. How should we
account for potential biases caused by this in the analysis? On the one
hand, we could try and control for it by restricting the analysis to regions
with a more even proportion of land use types. But on the other hand,
the data is the data, and in doing so we actually introduce bias to the
analysis in the opposite direction. In a more traditional regression
analysis, we would include a set of dummy variables that explicitly ac-
count for the effect of land use types in the data. This is not an option
here. Perhaps this is a limitation of using the correlation coefficient to
measure interactions between ecosystem services, as opposed to other
methods such as linear regression, principle-components analysis (PCA),
or production possibilities frontier (Feld et al., 2009; Lee and Lau-
tenbach, 2016; Tardieu and Tuffery, 2019). One solution is to break up
the data and explicitly test for potential differences caused by aggre-
gations of the landscape, much like what we have done in our regional
analysis (Supplemental Material B). Indeed, this approach is similar to
general tests for bias caused by endogeneity in frequentist statistics
(Angrist and Pischke, 2009; Cameron and Trivedi, 2005). We leave a
comprehensive treatment of this to future work.

Our results indicate that it may be possible to reliably capture the
value of an interaction between ecosystem services at low sample sizes —
a hypothesis that could be tested empirically. The resolution of the data
is fairly coarse, with a total of 5339 observations (pixels or study sites),
which is comparable to smaller scale but finer resolution landscapes. At
the national level, it should be feasible to obtain adequate sample sizes
in the field to test our findings, particularly with larger, multi-lab
collaboration networks (see, for example, the “NutNet” Nutrient
Network, an ecological research network of over 130 grassland sites
worldwide). Alternatively, it could be possible to exploit national plot
data, such as the French National Forest Inventory (IFN) or the European
Farm Accountancy Data Network (FADN). Future research could repeat
our analysis at the local scale, using on-the-ground estimates of a
broader range of ecosystem services. In this way, we can move away
from binary ecosystem service measures, taking into account local het-
erogeneities in management, nutrient update/deposition, soil type,
temperature, elevation, or precipitation.

Understanding how a measure of an interaction between services
changes depending on the data type or quality is but one piece of the
overall uncertainty puzzle. We believe that our study complements the
existing literature and has important implications for landscape and
ecosystem service management. We hope that it brings to light new
questions previously unconsidered in the field.
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