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Abstract
Background: Metastatic melanoma is a severe disease. Few experimental animal models of metastatic melanoma exist.
MeLiM minipigs exhibit spontaneous melanoma. Cutaneous and metastatic lesions are histologically similar to human's.
However, most of them eventually spontaneously regress. Our purpose was to investigate whether the MeLiM model
could reveal markers of malignancy in human melanocytic proliferations.

Results: We compared the serial analysis of gene expression (SAGE) between normal pig skin melanocytes and
melanoma cells from an early pulmonary metastasis of MeLiM minipigs. Tag identification revealed 55 regulated genes,
including GNB2L1 which was found upregulated in the melanoma library. In situ hybridisation confirmed GNB2L1
overexpression in MeLiM melanocytic lesions. GNB2L1 encodes the adaptor protein RACK1, recently shown to influence
melanoma cell lines tumorigenicity. We studied the expression of RACK1 by immunofluorescence and confocal
microscopy in tissues specimens of normal skin, in cutaneous and metastatic melanoma developped in MeLiM minipigs
and in human patients. In pig and human samples, the results were similar. RACK1 protein was not detected in normal
epidermal melanocytes. By contrast, RACK1 signal was highly increased in the cytoplasm of all melanocytic cells of
superficial spreading melanoma, recurrent dermal lesions and metastatic melanoma. RACK1 partially colocalised with
activated PKCαβ. In pig metastases, additional nuclear RACK1 did not associate to BDNF expression. In human nevi, the
RACK1 signal was low.

Conclusion: RACK1 overexpression detected in situ in human melanoma specimens characterized cutaneous and
metastatic melanoma raising the possibility that RACK1 can be a potential marker of malignancy in human melanoma.
The MeLiM strain provides a relevant model for exploring mechanisms of melanocytic malignant transformation in
humans. This study may contribute to a better understanding of melanoma pathophysiology and to progress in diagnosis.
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Background
Cutaneous melanoma is a malignant tumor developing
by transformation of melanocytes. Its worldwide inci-
dence and mortality rate in fair-skinned populations are
on the increase. Presence of metastases carries a severe
prognosis because efficacious systemic treatments are still
lacking. An earlier detection of the primary melanoma
would help improve prognosis. To this aim, markers iden-
tifying malignant lesions are needed. Moreover, under-
standing the molecular bases of oncogenicity in
melanocytic proliferation may contribute to the develop-
ment of efficacious therapies. Among the animal models,
the MeLiM (Melanoblastoma-bearing Libechov Minipig)
strain affected by cutaneous melanoma is of particular
interest. This swine model has been recently characterized
[1-3]. Familial predisposition to cutaneous melanoma in
MeLiM is neither linked to the CDKN2A gene [4] nor to
BRAF [2], but rather depends on the complex interactions
between multiple genes [3]. In MeLiM, cutaneous tumors
develop in utero or in the first 3 months after birth with an
incidence reaching 50%. The cutaneous tumors dissemi-
nate to inner organs, with the highest incidence in lymph
nodes. However, MeLiM tumors and human melanomas
show a major difference in outcome: MeLiM melanomas
present a high propensity to regress, by contrast with
human melanomas [1,5].

To determine whether the MeLiM model could provide
valuable information on markers of the disease in
humans, we decided to identify genes involved in
melanocytic proliferation in MeLiM and to then assess
their expression in human specimens of normal skin as
well as benign and malignant melanocytic lesions. The
serial analysis of gene expression (SAGE) technology was
chosen because, unlike microarrays, it gives a complete
profile of the gene expression in the cells, regardless of the
sequences to be analysed. SAGE libraries can be compared
in silico to reveal genes specifically expressed in certain cell
types [6]. Interfollicular melanocytes make up 4% of the
cells in normal epidermis. To minimise the contribution
of cells other than melanocytes, we constructed SAGE
libraries from PigMel melanocytes derived from the skin
of a healthy Meishan minipig [7] and from primary
melanoma cells cultured from pulmonary melanoma
metastases in MeLiM. We report here the differences in
gene expression between malignant and normal melano-
cytes. The pattern of expression detected in situ in pig spec-
imens of one of these genes, encoding RACK1, was
confirmed in human melanocytic lesions. Our results
unveil a marker of malignancy for human melanocytic
proliferation.

Results
Comparative expression analysis between pig metastatic 
melanoma cells and melanocytes
Young MeLiM developed melanoma metastases in lymph
nodes, liver, heart and lung. To isolate melanoma cells
from lung metastases, primary cultures of tumors were
performed under conditions optimised for pig melano-
cyte proliferation [7]. After 48 hr in culture, adherent cells
were predominantly melanocytes. SAGE libraries were
constructed from 2.5 millions of these metastatic
melanoma cells (MMC) and control PigMel normal
melanocytes (NM). A total of 11,700 and 11,300 tags
were sequenced from the MMC and NM libraries, corre-
sponding to 6,131 and 5,466 different tags (transcripts),
respectively. Our data have been deposited at NCBI's
Gene Expression Omnibus [8] and are accessible through
the GEO Series number GSE5982.

To identify genes potentially involved in malignant pro-
gression, we compared the two libraries. Monte Carlo
simulations yielded 70 tags statistically significant at p
value < 0.05. Fifty-five (79%) matched expressed
sequence tags (EST), the remaining 15 (21%) tags pre-
sented no matches. A majority of tags matched genes
expressed at high levels. Among the EST, 39 (56% of tags)
matched to known cDNAs, the remaining 16 (23%) could
not be identified. The identified genes are involved in
RNA processing and protein synthesis (20% of the 70
tags), transcription (7%), signalling (4%) and the rest cor-
responded to scattered functional classes (24%). The list
of tags increased and decreased in MMC compared to NM,
arbitrarily ordered by functional classes of the genes they
represent, are shown in Tables 1 and 2, respectively. Sev-
eral of the genes in Table 1 have been shown to be differ-
entially expressed in various tumors, compared to their
normal counterparts. RPS12, Secernin, CDC10 were found
to be upregulated in human colorectal tumors, gastric
cancers, diffuse large B-cell lymphomas, respectively [9-
11]. Similarly, genes listed in Table 2 like COXIII, were
found to be downregulated in human glioblastoma [12].
The mRNA of GNB2L1 corresponded to a tag abundant 31
and 13 counts in MMC and NM, respectively. We chose to
study GNB2L1 expression in melanocytes and melanomas
in more detail because GNB2L1 encodes RACK1, receptor
for activated C kinase, whose mRNA was found to be up-
regulated in human carcinomas [13].

RACK1 mRNA overexpression in MeLiM melanoma
To define the distribution pattern of RACK1 mRNA, we
performed in situ hybridisation onto pig sections of nor-
mal skin, and on samples of cutaneous melanoma and
metastatic melanoma samples from lung, liver and lymph
nodes. To avoid background in heavily melanogenic
tumor areas, a bleaching treatment was added. Film auto-
radiography obtained with the antisense and sense probes
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Table 1: SAGE tags significantly increased in metastatic melanoma cells (MMC) compared to normal melanocytes (NM)

GATC preceded Tag Count p value GenBank match [accession number]

NM MMC

Translation, ribosomal structure and biogenesis

ACATCCATCA 28 73 0 Ss 40S ribosomal protein S20, RPS20 [AY550070]
AAACCAAAGA 1 10 0.004 Ss cDNA [AJ681350]homolog to Hs small nuclear ribo- nucleoprotein polypeptides B and B1, SNRPB [BC080516]
TGACTATAAC 18 35 0.007 Ss cDNA [BX923125] homolog to Hs ribosomal protein L24, RPL24 [BC000690]
AAGTTCCCGC 17 32 0.012 Ss cDNA [BX674755] homolog to Hs ribosomal protein L18a, RPL18A [BC066319]
AACCTAATTA 58 77 0.025 Ss 40S ribosomal protein S12, RPS12 [NM_214363]
AACTCAATAA 44 62 0.027 Ss ribosomal protein L10a, RPL10A [NM_001097477]
AAAGATTAAG 20 32 0.040 Ss ribosomal protein L27, RPL27 [NM_001097479]

Signal transduction mechanisms

ATTGTAGATG 13 31 0.002 Ss guanine nucleotide beta like protein GNB2L1, RACK1 [NM_214332]
AGTTATGAAG 0 5 0.028 Ss cDNA [CN160727] homolog to Hs ras-related GTP-binding protein, Rheb [D78132]
AAGCTACACA 4 11 0.043 Ss cDNA [CJ016486] homolog to Hs calmodulin 1 [phosphorylase kinase, delta], CALM1 [BC011834]

Transcription

CAGAGGGACA 1 10 0.004 Ss cDNA [CN 157150] homolog to Hs retinoblastoma binding protein, RbAp48 [X74262]
ACAACTGGGG 0 6 0.014 Ss cDNA [CJ020293] homolog to Hs general transcription factor IIB, GTF2B [NM_001514]
TGATAGAAGA 6 15 0.025 Ss cDNA [CF792678] homolog to Hs activating transcription factor 4, ATF4 [BC073754]
TATGAATAAG 4 11 0.043 Ss non-metastatic cells 1 protein NM23A [NM_001044610]

Secondary metabolites biosynthesis, transport and catabolism

AGTATCAACA 24 46 0.002 Ss TYRP1 tyrosinase related protein1 [AB207240]
Secretion

TGCTCAGGCT 0 13 0.000 Ss cDNA [BX674961] homolog to secernin
Energy production and conversion

AATACAAGTT 3 12 0.014 Ss NADH dehydrogenase [ubiquinone]1 alpha subcomplex 4 NDUFA4 [NM_001097468]
Posttranslational modification, protein turnover

GAGGTGGAGA 3 10 0.043 Ss cDNA [CJ014518] homolog to Hs peptidylprolyl isomerase B [cyclophilin B], PPIB [NM_000942]
General prediction only

ATTTCTAGGC 0 5 0.028 Ss cDNA [CK455473] homolog to Hs CDC10 cell division cycle 10 homolog [S. cerevisiae], CDC10 
[NM_001788]

Function unknown

TCACCCGCAA 0 9 0.0015 No reliable matches
TCGTCCCTGT 0 8 0.0031 Ss cDNA [BX665592]
CCTGTGCTGA 0 7 0.0064 Ss cDNA [AJ647874]
GGTCATTCAT 0 7 0.0064 No reliable matches
TCGCCTGGAC 0 7 0.0064 No reliable matches
TCGTCCCTTC 0 7 0.0064 No reliable matches
ATTCATGTCA 3 13 0.0079 Ss cDNA [BP164587]
GTCTAATCAC 2 10 0.0134 No reliable matches
AATGACCGAC 0 6 0.0147 No reliable matches
CACCCGCAAT 0 6 0.0149 No reliable matches
CCTTCCGACT 0 6 0.0149 No reliable matches
CGTCCCTGTG 0 6 0.0149 No reliable matches
AGATAATTTG 0 5 0.0285 Ss cDNA clone [EW659942]
ATAGACGAGC 0 5 0.0285 No reliable matches
CTGCATTGCT 1 7 0.0321 Ss cDNA [BX922537]
AGAATATAAG 5 13 0.0341 No reliable matches
CCGCGTTGCT 41 57 0.0362 Ss cDNA [AJ666089]
ATGAAGATAT 2 8 0.0434 Ss cDNA [CB286104]
TGCTGCAGGG 4 11 0.0435 Ss cDNA [CA780804]

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY550070
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ681350
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC080516
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BX923125
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC000690
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BX674755
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC066319
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_214363
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001097477
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001097479
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_214332
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN160727
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D78132
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CJ016486
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC011834
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN 157150
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X74262
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CJ020293
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001514
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CF792678
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC073754
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001044610
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB207240
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BX674961
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001097468
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CJ014518
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000942
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK455473
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001788
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BX665592
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ647874
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BP164587
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EW659942
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BX922537
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ666089
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CB286104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA780804
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Table 2: SAGE tags significantly decreased in metastatic melanoma cells (MMC) compared to normal melanocytes (NM)

GATC preceded Tag Count p value GenBank match [accession number]

NM MMC

Translation, ribosomal structure and biogenesis

GTCGTTCTGG 52 29 0.015 Ss eukaryotic translation elongation factor 1 alpha 1 [NM_001097418]
GACTTTGACA 6 0 0.016 Ss cDNA [BX676185] homolog to Hs eukaryotic translation initiation factor 3 subunit k, eIF3k [AY245432]
TGTCAAAAAA 22 9 0.025 Ss ribosomal protein L29, RPL29 [NM_213950]
TCTGGAAAGA 24 11 0.027 Ss cDNA [BX675247] homolog to Hs ribosomal protein S2, RPS2 [BC019021]
TCTGACTACC 5 0 0.031 Ss cDNA [BX922533] homolog to Hs mitochondrial ribosomal protein L40, MRPL40 [NM_003776]
AGAAAGCTGT 9 2 0.042 Ss ribosomal protein L6, RPL6 [NM_001044542]
AGCGTTCAGC 39 23 0.049 Ss 40S ribosomal protein S16, RPS16 [AY550068]

Transcription

AGGGGAAATG 11 3 0.041 Ss cDNA [BX665090] homolog to Hs small nuclear ribonucleoprotein D3, [BC034447]
Secondary metabolites biosynthesis

ACCCTGGCTG 90 46 0.000 Ss cDNA [BX 920958] homolog to Equus caballus melanocyte protein 17 precursor, PMEL17 [AF076780]
CACTGCTCAA 16 6 0.038 Ss glycoprotein [transmembrane] nmb GPNMB [NM_001098584]

Energy production and conversion

CTAAAAAAAA 18 5 0.006 Ss mitochondrial COX III [AJ953126]
TCAGAAGAGA 15 4 0.012 Ss cDNA [CN155299] homolog to Hs ATP synthase, H+ transporting, mitochondrial F1 complex, a subunit, 

isoform 1, ATP5A1 [BC008028]
TCACCTGGGG 9 2 0.042 Ss cDNA [CB477260] homolog to Hs ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit, 

ATPE [BC003671]
Cell division

CCCAACAATG 5 0 0.031 Ss beta 5-tubulin, [NM_001044612]
Posttranslational modification, protein turnover

TCTAAAGCGG 7 0 0.009 Ss cDNA [BX672659] homolog to Hs glucose regulated protein 58 KD, GRP58 [NM_005313]
AGTGGCTTTG 7 1 0.043 Ss cDNA [CJ007805] homolog to Hs proteasome [prosome, macropain] subunit, beta type, 4, HsN3 [BC008314]
AGGGAATGGA 5 0 0.031 Ss cathepsin B, CTSB [NM_001097458]

General prediction only

AGCATCCAGA 5 0 0.031 Ss cDNA [BX925627] homolog to Hs nuclear distribution gene C homolog, NUDC [NM_006600]
CAGAGCTGCC 5 0 0.031 Ss cDNA [CK459123] homolog to Hs SET binding factor 1, SBF1 [NM_002972]
CTAGACGACT 7 1 0.043 Ss cDNA [BX676609] homolog to Hs arginine-rich, mutated in early stage tumors, ARMET [NM_006010]

Function unknown

AGATGGCCAG 7 0 0.009 No reliable matches
AGCTTAAGCA 6 0 0.016 Ss cDNA [BX922388]
ATGTGCCTGG 6 0 0.016 Ss cDNA [BX674457]
AGACTTTTAA 6 0 0.016 Ss cDNA [EW337487]
TATGGGGGTC 6 0 0.016 Ss cDNA [EW673617]
AGCCTGGACC 5 0 0.031 No reliable matches
CCTAGCCTGG 5 0 0.031 Ss cDNA [DY430777]
TGGCATGGCT 5 0 0.031 Ss cDNA [BX920198]
AGCTGTTCTA 11 3 0.041 Ss cDNA [BX670542]
CACCCGCAAT 9 2 0.042 No reliable matches
AGTCCCTGTG 7 1 0.043 No reliable matches
TTTGCAAGGG 7 1 0.043 Ss cDNA [CJ006347]

showed a faint signal of RACK1 mRNA in healthy tissues,
except in the lymph nodes where the signal was strong
(Figure 1A), as reported in human lymph nodes [13]. By
contrast, an intense signal was observed in tumoral
regions of cutaneous melanoma, lung and liver metastasis
samples; non-tumoral regions displayed a much lower
signal (Figure 1A). The sense probe autoradiographic sig-

nal was almost negligible (Figure 1B). Darkfield illumina-
tion on emulsion autoradiography highlighted the silver
grains on the tumoral region of lung melanoma (Figure
1C). These results confirmed the overexpression of RACK1
mRNA in melanoma, as predicted by our SAGE data.
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Expression of RACK1 mRNA in pig tissuesFigure 1
Expression of RACK1 mRNA in pig tissues. (A-B) In situ 
hybridisation autoradiography of RACK1 antisense (A) and 
sense (B) probes on depigmented sections. For each probe, 
normal (N) tissues are displayed on the left (skin, lung, liver 
and lymph node) and tumoral (T) tissues on the right (cuta-
neous melanoma, metastatic melanoma from lung, liver and 
lymph node). Note the intense signal on the tumors com-
pared to the healthy or non-compromised tissues, with the 
antisense probe, except for lymph node. (C) Darkfield phot-
omicrograph taken from a MeLiM melanoma lung metastasis 
hybridised with the RACK1 antisense probe. (D) Consecutive 
section stained with hematoxylin and eosin. The pigmented 
area in the tumor matches the region which exhibits silver 
grains on (C). Bar = 1 cm for A and B and 100 µm for C and 
D.

Identification of melanoma cells from MeLiM by MITFFigure 2
Identification of melanoma cells from MeLiM by 
MITF. Melanocytes were visualized as brown nuclear gran-
ules, by immunohistochemistry with MITF antibody (A-C) 
and without the primary antibody (D-F). (A, D) Normal skin. 
(B, E) Cutaneous melanoma. (C, F) Melanoma metastasis in a 
lung. a, alveolae; be, bronchiolar epithelium; d, dermis; e, epi-
dermis; hf, hair follicle. Arrows point to normal melanocytes 
(black) and melanoma cells (white). Bar = 100 µm.

RACK1 protein localisation in skin, primary and metastatic 
melanoma in pigs
On tissue sections, identification of melanoma cells was
achieved with an antibody against the microphthalmia
transcription factor MITF, which produces a specific
nuclear signal in melanocytes. Immunohistochemistry
showed that normal melanocytes in the basal layer of con-
trol skin epidermis, were labelled for MITF (Figure 2A).
Tumoral cells in cutaneous melanoma as well as in metas-
tases were also labelled with the MITF antibody (Figure
2B, C). Unspecific labelling was not detected with this
antibody (Figure 2D–F). Thus, MITF is a sensitive marker
of the melanocytic lineage, useful to study melanoma pro-
gression in the pig.

To explore whether overexpressed RACK1 mRNA was
translated, we analysed the cellular distribution of RACK1
protein by confocal microscopy, with double immunos-
taining for MITF. In control Meishan and healthy MeLiM
skins, RACK1 protein was expressed in the epidermis, and
found in the cytoplasm of keratinocyte (Figure 3A–D). In

MITF-positive (MITF+) melanocytes, RACK1 expression
was not detected (Figure 3A, C). Consistent with this,
when testing dopachrome tautomerase (DCT), a melano-
genic enzyme restricted to melanosomes, double labelling
of RACK1 and DCT did not overlap in normal skin (Figure
3D).

In cutaneous melanoma, nests of MITF+ cells expressed
RACK1 protein (Figure 4A). The RACK1 signal was scat-
tered in the cytoplasm, mostly in the perinuclear area (Fig-
ure 4A). In metastases of melanoma to lymph nodes, lung
and heart, RACK1 protein was abundant on MITF+ cells
(Figure 4B–D). The RACK1 signal was cytoplasmic in
MMC. However, an additional labelling on nuclear punc-
tae was observed in 15% of MMC (Figure 4B–D, yellow
arrowheads). Thus, in MeLiM, RACK1 overexpression in
tumoral tissues was observed in the cytoplasm of
melanoma cells at different stages of progression, from
cutaneous melanoma to melanoma metastases, with an
additional nuclear localisation in MMC.

Nuclear RACK1 in pig melanoma cells is not associate with 
BDNF expression
Nuclear translocation of RACK1 has already been
recorded [14] and was shown to mediate the induction of
BDNF [15]. Since melanoma metastases express BDNF
more frequently than primary melanomas [16], we
Page 5 of 12
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checked whether BDNF would be expressed in MeLiM
metastases. No BDNF expression was found in melanoma
cells of MeLiM metastases (data not shown).

High levels of RACK1 in human melanoma
To further investigate the expression of RACK1 in human
melanoma, we ascertained its presence in a series of sam-
ples. Formalin fixed tissue from 4 normal skin biopsies,
14 nevi, 5 cutaneous and 18 metastases of melanoma
were analysed using MITF as melanocytic marker [17].
The results are summarized in Table 3. In normal skin,
RACK1 was present in negligeable amounts in melano-
cytes whereas adjacent keratinocytes displayed a strong
cytoplasmic signal (Figure 5A). In nevi, RACK1 signal was
heterogenous within a given nevus and between nevi
showing two patterns: in 7 out of 14 nevi, RACK1 signal
was either not detectable (arrowheads, Figure 5B–D) or
faint (arrow, Figure 5D). When detected in epidermal or
dermal melanocytes, the signal was essentially membra-

nous. In the 7 other nevi, a cytoplasmic or perinuclear sig-
nal was observed in nests of epidermal (arrow, Figure 5C)
as well as in dermal melanocytes. By contrast, in cutane-
ous melanoma, whether superficial spreading melanoma
or recurrent dermal melanoma, MITF+ fusiform dermal
cells as well as dermal nest of melanocytic cells displayed
a strong RACK1 cytoplasmic signal which was homogene-
ous over the whole lesion (Figure 5E, F respectively). In
summary, RACK1 signal was low in nevi and very much
increased in cutaneous melanoma.

In lymph nodes as well as in liver metastases, cells pre-
sented a strong granular, regular cytoplasmic pattern of
RACK1 distribution underlining cell shape (Figure 6A–
D). RACK1 overexpression was consistently observed in
all MITF+ cells from each of the 23 malignant melanoma
samples examined. No nuclear RACK1 labelling was
found in these melanoma samples. In summary, overex-
pression of RACK1 was detected in human melanoma
with no apparent changes between cutaneous lesions and
metastatic melanoma.

Altogether, screening of human lesions indicates a differ-
ential expression of RACK1 in nevi and melanoma. In
benign nevi, RACK1 signal was low and heterogeneous on
melanocytic cells. By contrast, RACK1 signal presented
two distinct features in melanoma: a dramatic increase of
intensity and an homogeneous cytoplasmic distribution
over the lesion.

Activated PKCαβ detected in situ in human melanoma 
cells
Finally, we checked whether activated protein kinase C
(PKC) was a partner of RACK1 in melanoma cells. Double
labelling for MITF and phospho-PKCαβ showed a distinct
increase in PKC signal in metastases compared to nevi
(Figure 7A, B). When double labelling for RACK1 and
phospho-PKCαβ was performed, both signals were
observed in the cytoplasm of MMC (Figure 7C, D). Both
proteins were expressed at higher levels in MMC com-
pared to nevi and there was a partial cytoplasmic colocal-
isation. An additional nuclear signal for phospho-PKCαβ
was detected in epidermal (not shown) and dermal (Fig-
ure 7C) melanocytes and in metastatic melanoma cells
(arrow in Figure 7D). In cutaneous melanoma, phospho-
PKCαβ signal was heterogeneous, lower or at the same
level than in MMC (data not shown). These data suggest
that PKCα and/or β are involved in the functional role of
RACK1 in metastatic melanoma.

Taken together, these results demonstrate that RACK1
mRNA and protein are up-regulated in human melano-
mas as found in pig melanomas, and demonstrate a cor-
relation between the melanoma tumoral status and high
levels of RACK1.

RACK1 expression in normal pig epidermisFigure 3
RACK1 expression in normal pig epidermis. (A, C, D) 
Confocal microscopy analysis of RACK1 protein (green fluo-
rescence), and double labelling for either MITF (A, C) or 
DCT (D) (red fluorescence) on pig skin. Normal epidermis 
were from control Meishan minipig (A, B), and MeLiM (C, D). 
(B) Transmission photograph corresponding to (A). (C) 
Three dimensional 'orthogonal' slice projection analysis is 
included: the large central panel shows a single optical slice 
through which an x axis (green line) and a y axis (red line) 
were defined for sliced z-axis reconstruction. The corre-
sponding results for the x, z slice (top) and the y, z slice 
(right) are shown. The blue line represents the position of 
the central panel image in the z stack. Nuclear counterstain-
ing is shown in blue. Note the RACK1 cytosolic spotty signal 
on keratinocytes and its absence in the melanocyte indicated 
by the white dashed line. Dotted lines indicate epidermis-
dermis boundaries. e, epidermis; d, dermis. Bar = 5 µm.
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Discussion
Few animal models exist for cutaneous malignant
melanomas. The murine models require a combination of
gain of function and loss of function mutations in a proto-
oncogene and tumor suppressor gene, respectively [18].

Severe sunburn in newborn mice may be needed to
induce skin melanomas with high penetrance [19]. By
contrast, the MeLiM swine model exhibits spontaneously
cutaneous melanomas with histopathological features
similar to those of human melanomas [1]. Here, we pro-

Table 3: RACK1 level expression and localisation in normal skin, nevi and melanoma from patients

Tissue type Age of patient (year-old) Number of specimens 
examined

RACK1 expression level

Undetected or faint 
membranous

Low cytoplasmic High cytoplasmic

Normal skin melanocytes 4 4 0 0
Benign nevi 26 to 73 14 7 7 0
Cutaneous melanoma 34 to 79 5 0 0 5
Nodal metastatic 
melanoma

33 to 80 13 0 0 13

Liver metastatic 
melanoma

36 to 69 5 0 0 5

Cellular distribution of RACK1 in MeLiM melanoma at different progression stagesFigure 4
Cellular distribution of RACK1 in MeLiM melanoma at different progression stages. Confocal microscopy analysis 
of RACK1 (green fluorescence), and double labelling for MITF (red fluorescence). (A) Cutaneous melanoma. (B-D) Melanoma 
metastasis in a lymph node (B), lung (C) and heart (D). Three dimensional 'orthogonal' slice projection analyses are presented 
as in Figure 3. Nuclei are shown in blue. (A1) Transmission photograph corresponding to (A2). (A3) Zoom on (A2) inset. 
White arrowheads in (A1-A3) point at a dermal cutaneous melanoma cell positive for MITF and analysed by orthogonal projec-
tion. Note the comparable RACK1 cytosolic signal on dermal melanoma cells and epidermal keratinocytes. High levels of 
RACK1 are seen in cutaneous and metastatic melanoma cells with perinuclear localization. Furthermore, in metastases, 
RACK1 is seen within the nuclei, as indicated by yellow arrowheads on the optical slice and the orthogonal projections. Dot-
ted lines in (A1) and (A2) indicate epidermis-dermis boundaries. e, epidermis; d, dermis. Bar = 5 µm.
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vide evidence that the hereditary disorder in MeLiM is use-
ful for the identification of regulatory complexes involved
in the development of melanomas in humans. Indeed, we
found that the adaptor protein RACK1 in pig melanoma
is overexpressed as in human melanoma. This is the first
time that a prediction based on the MeLiM model finds
confirmation in human melanoma. This suggests that
similar mechanisms may be operating in the malignant
transformation of melanocytes in pigs and man.

Global gene expression profiling on melanoma using var-
ious techniques including SAGE has been reported. The
nature of the starting material determines the outcome of
the comparisons. Noteworthy, the results seem comple-
mentary, and differential expression of RhoC [20], WNT5a
[21], NOTCH2 [22], Ubc9 [23] and genes associated with
calcium signalling [24] among others, highlighted path-
ways involved in cell motility, tissue invasion and resist-
ance to apoptosis. In our SAGE analysis, the RACK1 tag
was more abundant in the library established from pri-
mary culture of metastatic melanoma cells than in the
library from normal skin melanocytes. Consistently,
RACK1 mRNA and protein were not detected in normal
epidermal melanocytes, while they were both found at
high levels in tumoral cells of cutaneous and metastatic
melanomas. RACK1 was barely detected in melanocytes
of normal skin in pigs and humans. This is opposed to
cultured pig and human melanocytes, in which RACK1
mRNA and protein expression is readily detected [25,26]
(and our observations). One explanation to this discrep-
ancy is the microenvironment itself : in culture, melano-
cytes are grown as a pure population of cells with close
interaction [27], in a medium containing factors known
to activate the RACK1 promoter [28]. It is noteworthy that
melanoma cell lines express even more RACK1 than cul-
tured melanocytes [26]. The latter observation suggests
that RACK1 upregulation in MMC was maintained while

Cellular distribution of RACK1 in human cutaneous melano-cytic proliferationsFigure 5
Cellular distribution of RACK1 in human cutaneous 
melanocytic proliferations. Confocal microscopy analy-
sis of double labelling of RACK1 protein (green fluores-
cence), with MITF (red fluorescence). (A) Control human 
skin: an MITF-positive melanocyte is localised to the basal 
membrane. (B-D) Nevi: lentiginous proliferation in B, junc-
tional nest of melanocytes in C, with an additional dermal 
component in D. (E, F) Cutaneous melanoma samples. Basal 
and suprabasal keratinocytes display a strong cytoplasmic 
RACK1 signal. RACK1 is almost not detected in normal 
melanocytes (A). This also holds true in hyperproliferative 
lesions of nevi (B-D). In some nevi, RACK1 heterogeneous 
expression is recognized in melanocytic cells (C). By con-
trast, in cutaneous melanoma, all MITF+ cells displayed a 
strong RACK1 signal (big arrow in E and F). Sections of skin 
are from 6 different patients. Arrowheads point to melano-
cytes where RACK1 is not detected. Arrows indicate 
melanocytes expressing cytoplasmic RACK1. Nuclear coun-
terstaining is shown in blue in B. Dotted line indicates epider-
mis-dermis boundary. e, epidermis; d, dermis. Bar = 10 µm.

RACK1 in human melanoma metastasisFigure 6
RACK1 in human melanoma metastasis. Confocal 
microscopy analysis of double labelling of RACK1 protein 
(green fluorescence) and MITF (red fluorescence). (A, B) 
Melanoma metastasis in lymph node. (C, D) Melanoma 
metastasis in liver. High levels of RACK1 are seen in the 
cytoplasm of all metastatic human melanocytes. Sections are 
from 4 different patients. Nuclear counterstaining is shown in 
blue in D. Bar = 10 µm.
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deriving the corresponding melanoma cell lines. Hence, it
is plausible that RACK1 upregulation in melanomas, once
established, does not depend on environmental signals
provided by stromal cells but is stably inherited from cell
to cell.

This study shows that RACK1 mRNA and its correspond-
ing protein are systematically overexpressed in tumoral
cells of cutaneous and metastatic melanomas. This holds
true for all pig and human samples examined to date,
whether pigmented or not. Instead, we detected a conspic-
uously lower expression in nevi. GNB2L1 encodes RACK1,
an adaptor protein that modulates signaling from PKC,
Src, and β-integrin in various systems [29-31]. Evidence
for a role of RACK1 in the pathogenesis of melanoma
comes from the recent discovery of the capacity of RACK1
to increase survival of MeWo human melanoma cells fol-
lowing UV induced-apoptosis [32]. Moreover, inhibition
of RACK1 expression using siRNA was shown to reduce
the tumorigenicity of MeWo in a xenograft tumor model

[32]. These authors further proposed a role for RACK1,
specific to melanoma, involving a crosstalk between ERK
and JNK signaling [26]. In this model, RACK1 was shown
to induce JNK activation by binding activated PKC, but
the PKC isoforms involved were not identified.

PKC is a family of lipid-regulated serine/threonine kinase
isozymes which differ in their activation and are differen-
tially expressed in tissues and cell types [33]. Upon activa-
tion, PKC translocates subcellularly by specific binding to
anchoring proteins like RACK1 [29]. PKC, the main target
of TPA, has important roles in cell-cycle regulation, cell
survival, malignant transformation and apoptosis [34].
PKC in melanocytic lineage has been widely studied
because TPA is essential for in vitro growth of normal
melanocytes [35,25] and because it was shown to affect
the metastatic potential of these cells [36]. Again, studies
on cultured melanocytes and melanoma cell lines do not
always reflect the actual situation in the whole organism.
Hence, the contribution of PKC in melanoma is still con-
troversial. WNT5A, identified as a robust marker of highly
invasive human melanoma cells [21] was shown to medi-
ate motility through activated classical PKCs [37]. An
additional effect of PKC on melanoma was recently
underlined by a study of the aberrant expression of clau-
din-1 in melanoma [38]. Conversely, PKCβ expression
was reported lost in 90% of melanoma cell lines [39-41].
Recently, the expression of PKCα and δ isoforms, in con-
trast to PKCβ, was reported in skin and lung melanoma
sections, but it was not specified whether the antibodies
recognized the activated isoforms or not [41]. Based on
these observations, we analysed phospho-PKCαβ expres-
sion in human melanomas. The activated PKCαβ signal
was stronger in malignant samples, but only partially
colocalised with RACK1. RACK1 is known to bind acti-
vated PKCβ II [42] and to a lesser extent activated PKCα
[43]. Nuclear signal of phospho-PKCαβ could be ascribed
mainly to PKCα [44] although nuclear PKCβ II has also
been reported [45]. Altogether, our results on the partial
colocalisation of RACK1 and phospho-PKCαβ signal sug-
gest that RACK1 binds more likely to activated PKCβ II
than to PKCα in melanoma cells. The remaining RACK1
interacts probably with other PKC isoforms like PKCδ
[41,37] or other proteins.

Few studies have detected up-regulation of RACK1 in
human cancer specimens [13,46]. RACK1 mRNA was
found to be strongly expressed in five non-small cell lung
carcinomas, mainly in the endothelium of large vessels
[13]. RACK1 mRNA was also highly expressed in 11 cases
of colorectal cancer, with a stronger expression in carci-
noma cells than in the stroma [46]. Recently, RACK1
upregulation was found to be part of the gene signature
associated with shorter metastasis-free survival in breast
cancer patients [47]. RACK1 contains seven internal

Cellular distribution of activated PKC in human nevi and melanomaFigure 7
Cellular distribution of activated PKC in human nevi 
and melanoma. (A, B) Confocal microscopy analysis of 
double labelling of phospho-PKCαβ protein (green fluores-
cence, biotin amplified signal) and MITF (red fluorescence). 
(C, D) Confocal microscopy analysis of double labelling of 
RACK1 protein (green fluorescence, biotin amplified signal), 
with phospho-PKCαβ (red fluorescence). (A, C) Nevi. (B, D) 
Melanoma metastasis in lymph node. High levels of activated 
PKC are seen on MITF-positive melanoma cells in metastasis 
compared to MITF-positive melanocytes in nevus (arrow-
heads in B and A, respectively). Dermal melanocytes in nevus 
display low cytoplasmic RACK1 and nuclear phospho-PKC 
signals (arrow in C). Abundant signals for RACK1 and acti-
vated PKCαβ partially colocalise (arrow in D). Nuclear coun-
terstaining is shown in blue. Dotted line indicates epidermis-
dermis boundary. e, epidermis; d, dermis. Bar = 10 µm.
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WD40 repeats which confer either stable or reversible
binding capability to other proteins. Almost 60 proteins
interacting with RACK1 have been described to date.
RACK1 could affect cell transformation at multiple levels,
increasing proliferation rate, migratory capacity, anchor-
age independent growth, or resistance to apoptosis [48].

Histopathological features of early stages of melanoma
are still ill defined. Clearcut prognostic markers for
melanoma which could be used to stratify patients for
adjuvant treatments are lacking. Although this study is
fairly descriptive, it provides a thorough analysis of
RACK1 immunohistochemical detection in human
melanoma samples at different stages. The number of
samples in our study was limited and should be further
increased, but the clear difference in the level and in the
homogeneity of RACK1 expression between melanocytic
cells in nevi and in cutaneous or metastatic melanoma
suggests that RACK1 antigen could be used as a marker of
malignancy in human melanocytic proliferation.

Conclusion
We found that RACK1 overexpression characterized cuta-
neous melanoma in the MeLiM swine model as well as in
human patients. We propose that RACK1 immunolabel-
ling could be used as a potential marker of malignancy in
melanocytic proliferation. Our work supports the view
that the MeLiM strain provides a relevant model to study
the complex mechanisms involved in melanocytic malig-
nant transformation in humans. The additional data
issued from our SAGE analysis will probably help in dis-
covering other proteins not yet identified as involved in
melanoma pathophysiology and diagnosis of melanoma.

Methods
Pig (Sus scrofa domestica) tissues
Affected MeLiM males were mated with healthy Duroc or
MeLiM sows at the National Institute for Agricultural
Research (INRA, Jouy-en-Josas, France) [1,4]. Animal care
and use in this study were approved by the INRA ethics
committee, in accordance with European Union stand-
ards. Biopsies from 3 month-old or younger MeLiM, bred
either in France (n= 13) or in the Czech Republic (n = 3),
were used. They included cutaneous melanoma consisting
of superficial spreading melanoma (n = 2) and nodular
melanoma (n = 7) and metastases in lymph nodes (n =
13), lung (n = 10), liver (n = 1), heart (n = 2) and spleen
(n = 3), as well as healthy skin (n = 10). Samples of dorsal
cervical skin of a healthy pigmented Meishan pig were
used as controls. Collected tissues were fixed in 4% buff-
ered paraformaldehyde (PFA) and embedded in paraffin.

Isolation of metastatic melanoma cells and culture of 
control melanocytes
Tumor biopsies of lung from a young MeLiM were used to
isolate melanoma cells. Conditions for primary cultures
of pig melanocytic cells were as described [7]. TPA was
added on the second day of culture. After 48 hours cells
were rinsed, lysed in Dynabead mRNA direct kit binding
buffer (Dynal, Invitrogen, Cergy Pontoise, France) and
frozen in liquid nitrogen. Control melanocytes were the
non transformed PigMel cells at passage 37 [7].

Construction of SAGE libraries
Libraries were generated using the SAGE adaptation for
downsized extracts (SADE) method using Sau3A as the
anchoring enzyme, as described in [49] with a centrifuga-
tion of cell lysates to discard melanin. One thousand
clones from each library were sequenced. Sequencing
reactions were performed by MWG (Martinsried, Ger-
many).

Tag identification and cloning of the probes
SAGE tags were extracted from sequence files and proc-
essed to remove duplicate ditags, linker sequences and
repetitive tags using the SAGE 2002 version 4.5 software
[6]. Statistical significance was determined using Monte
Carlo simulation analysis included in the SAGE software.
A P value of less than 0.05 was considered significant. Tags
were identified using the mammalian Genbank database
[50] analysed by the SAGE software, or the [51]. Pig
RACK1 partial cDNA corresponding to the nucleotide
sequence -70 to 900 bp from the ATG start codon was sub-
cloned into pCR4TOPO plasmid (Invitrogen). The result-
ing plasmid was linearized with NotI or PmeI to obtain
sense or antisense RNA probes, respectively. In vitro tran-
scription was performed as described [52].

In situ hybridisation of heavily pigmented samples
In situ hybridisation was performed as described [53] with
modifications to bleach the sections. Briefly, deparaffin-
ized 5 µm sections were treated for 15 minutes with
0.075% KMnO4 and discoloured for 1 minute in 5%
oxalic acid with brief rinses between and after treatments.
Sections were fixed for 20 minutes in 4% PFA, rinsed,
dehydrated and air-dried. Sense or antisense radiolabelled
riboprobes at about 15 × 106 cpm/ml were hybridised as
described [52]. Slides were exposed to Biomax MR films
(Kodak, France) for 3 days, then dipped in Kodak NTB2
emulsion and exposed for 4 weeks.

Human tissues
Human melanoma tissues were obtained at the Curie
Institute (Paris, France) from patients undergoing lym-
phadenectomy (n = 13), hepatectomy (n = 5) or epider-
mal cutaneous resection (n = 19). Cutaneous melanoma
specimens consisted of 2 superficial spreading melanoma
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stages IV (Breslow depth of 2,35 and 2,5 cm) and 3 recur-
rent dermal cutaneous melanoma. Samples from 37
patients, 25 women and 12 men, were examined. Normal
skin from breast plastic surgery was used as control (n= 4).
Tissues were fixed either in 4% PFA (n = 38) or in Bouin
fixative (n = 2) and embedded in paraffin

Antibodies (dilutions for immunolabelling)
Mouse monoclonal antibodies were anti-MITF (1:50)
(Zymed, Clinisciences, Montrouge, France) and anti-
RACK1 (1:150) (Transduction Laboratories, BD Bio-
sciences, Le Pont de Claix, France). Rabbit PEP-8 anti-DCT
(1:1000) was obtained from Dr. Hearing and anti-phos-
pho PKCαβ (1:50) was polyclonal (Cell Signaling,
Ozyme, France). Cross reaction and specificity of the anti-
bodies to pig tissue were checked by Western blot.

Immunostaining and confocal microscopy
Antigen retrieval was performed by microwaving depar-
affinized sections in citrate buffer, pH 6, for pig sections,
or in Tris-EDTA, pH 9, for human sections. For immuno-
histochemistry, primary antibodies were reacted with the
avidin-biotin complex (ABC Elite, Vector, Biovalley,
France). For double immunofluorescence, antibodies
applied overnight at 4°C were revealed with anti-mouse
isotype or anti-rabbit antibodies, one labelled with Alexa
Fluor 555, the other coupled to biotin and revealed with
Alexa Fluor 488-labelled streptavidin (Molecular Probes,
Invitrogen, France). Nuclear counterstaining was achieved
with Topro 3 (Molecular probes). Sections were observed
with a Leica laser TCS SP2 scanning confocal microscope
producing 0.7 µm-thick optical sections. Controls with-
out the first antibodies showed no unspecific labelling.
Confocal images were processed with the computer pro-
gram Leica Lite or Zeiss LSM Image Browser for orthogo-
nal projections. All images shown are individual sections
of z series, plus the orthogonal projections of the stack
when indicated. Final Figures were assembled with Adobe
Photoshop (Adobe Systems, USA).
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