

The role of mandatory and voluntary joint bidding in promoting efficiency in conservation auction

Anne Stenger, Jens Abildtrup, Géraldine Bocquého, Kene Boun My, Tuyen

Tong Tiet

▶ To cite this version:

Anne Stenger, Jens Abildtrup, Géraldine Bocquého, Kene Boun My, Tuyen Tong Tiet. The role of mandatory and voluntary joint bidding in promoting efficiency in conservation auction. AFES- 2023 Africa Meeting of the Econometric Society, Nairobi, Kenya 2023 June 1-3,, The African Economic Research Consortium (AERC), Jun 2023, Nairobi (KY), Kenya. hal-04208245

HAL Id: hal-04208245 https://hal.inrae.fr/hal-04208245v1

Submitted on 15 Sep 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

The role of mandatory and voluntary joint bidding in promoting efficiency in conservation auction

Jens Abildtrup^a Géraldine Bocqueho^a Kene Boun My^b Anne Stenger^b Tuyen Tiet^{b,c*}

^aBETA, CNRS, INRAE, AgroParisTech & University of Lorraine ^bBETA, CNRS, INRAE, AgroParisTech & University of Strasbourg ^cUMT Business School, University of Management and Technology

AFES - Nairobi- June 2023

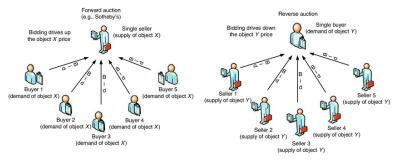
Provision of Ecosystem services: Some Challenges

- To produce monetary values for Environment: Payment for Environmental Services (PES).
- To obtain efficiency in biodiversity conservation.
- To integrate and to promote interactions between actors.

Provision of Ecosystem services: Some Challenges

Target conservation areas and conservation measures

- ► A joint question/work with ecologists (Calel, 2012).
- Identification of producers' land use.
- Joint participation: Spatial coordination of groups of producers.
 - Communication: Effective & clear information plus a good understanding of conservation measures to build trust and develop acceptance.
 - Cooperation ("International cooperation to promote green growth", OECD)


Provision of Ecosystem services: Some Challenges

Designing Incentive Policies:

- Payment for Ecosystem Services (e.g. Biodiversity Conservation).
 - A key policy instrument.
 - Farmers, forest owners, producers, suppliers... are more willing to participate if they are more informed.
- Agglomeration bonus.
- Spatially-connected auctions.
- Following Efficiency or Equity.
 - Efficiency vs equity: a real dilemma?

Introduction

Conservation auction

- Conservation auction is a reverse auction.
 - Auctioneer: policymakers (e.g., GOs, international GOs or NGOs).
 - Bidders: agricultural producers (e.g., forest owners).

¹Figure obtained from Chen, C. M., & Bailey, M. D□(2018). (=> (=> = ∽ ...)

Introduction

Joint bidding auction

- Single bidding: each bidder submits single bid.
- Joint bidding: two or more bidders submit a single bid.
- Existing literature on the role of joint bidding in conservation auction.
 - A simulation study: joint bidding could be preferable since it helps reduce payment for taking conservation measures if the environmental externalities are positive (Calel, 2012).
 - Decontextualized lab experiment: joint bidding could improve environmental outcomes but it can be less cost-effective (Banerjee et al., 2021).
- Our study: role of joint bidding, voluntary vs. involuntary, communication and bonus payment incentives.

Model and hypotheses

Single bidding conservation auction

- An agricultural producer *i* (or a forest owner) has an environmental good (e.g., a parcel of forest land) with an environmental value v_i.
- Decision: to consume her good (e.g., cut down trees) or to sell it to a policymaker as an ecosystem service (ES). Opportunity cost is denoted as c_i.
- Participating into an auction: each bidder submits a single bid b_i based on his or her private information and the buyer (i.e. the auctioneer) select items (ES) that maximize his or her payoff.

Model and hypotheses

Joint bidding conservation auction

- Two land managers (e.g., forest owners) locate in a relatively cohesive geographical area.
- Environmental externalities η: one's effort has external effects on his or her neighbors (i.e., spatial issue).
- If conservation efforts (e.g., biodiversity conservation) generate **positive externalities** η > 0, encouraging coordination or collaboration is important (i.e., spatial coordination).
- How to promote spatial coordination?
 - Agglomeration bonus: one could earn an amount of payment if his or her neighbors put efforts in ES conservation.
 - Joint participation/joint bidding: two or more ES producers collaborate together to achieve the conservation target.

Single- and joint-bidding conservation auction

$$E[\pi_i^S(p_i)] = (p_i - c_i)Pr[x_i = 1].$$
(1)

expected payoff in a single bidding and winning case

$$E[\pi_{i,d}^{J}(p_{i,d})] = \frac{1}{2} \left(p_d - \sum_{i \in d} c_i \right) \Pr[x_d = 1].$$
(2)

 expected payoff in a mandatory joint bidding and winning case of the team d Single- and joint-bidding conservation auction

$$\max_{s} V(x_{s}) = \sum_{s} \frac{v_{s} + b_{s}}{p_{s}} x_{s}, \qquad (3)$$

s.t., $\sum_{s} p_{s} x_{s} \le W, \qquad (4)$

the regulator's program - CES (Cost-Effectiveness Score)

$$E[\pi_{i,d}^J(p_{i,d})] \ge E[\pi_i^S(p_i)].$$
(5)

preferences for joint bidding

$$E[\pi_{i,d}^{J}(p_{i,d}^{J})] = \frac{1}{2} \left(p_{d}^{J} + \sum_{i \in d} (b_{i}\delta - c_{i}) \right) Pr[x_{d} = 1].$$
(6)

expected payoff in case of bonus payment in a team d

Model and hypotheses

Hypotheses

- Hypothesis 1: Joint bidding could be more efficient than single bidding in promoting auction efficiency.
- Hypothesis 2: Bidders with lower values and higher costs are more likely to join a team than other counterparts.
- Hypothesis 3a: A bonus payment could incentivize joint bidding participation.
- Hypothesis 3b: A bonus payment could encourage higher auction efficiency.
- Hypothesis 4: Communication during the experiment could positively impact joint bidding auction efficiency.

Treatments

	Single bid	Join	t bid
	(baseline)	Involuntary	Voluntary
		No communication (T1)	Communication (T3)
Treatment	atment No treatment (TO)	Communication (T2)	Communication and Bonus payment incentive (T4)

Figure: Four treatments and one control treatment (baseline).

- Contextualized: each subject has a parcel of forest land to harvest or conserve for biodiversity.
- 10 subjects per treatment and control.
- Each subject participates in an 8-periods auction game.
- Subjects will receive a different and symmetric set of items and be assigned to different teams with different partners across periods ("perfect strangers").
- A total of 300 students at the University of Strasbourg were recruited for the experiment from February to March 2022 (60 subjects per treatment).

- Part 1: Risk elicitation task (Eckel and Grossman, 2008).
- Part 2: Ultimatum game to capture the level of fairness (i.e., degree to which players care about inequality) or other-regarding preference (Blanco et al., 2011).
- Part 3: Auction game.
- Part 4: Survey questionnaires.

Auction game

- Single bidding auction: 10 bidders bid individually.
- Joint bidding auction:
 - Subjects are randomly assigned into team of two.
 - They receive their private information and their partners' ones (i.e., cost, value and bonus).
 - **Voluntary**: Decide to joint a team.
 - Communication: Each member in a team has two minutes to discuss with his or her partner via a chatbox.
 - Subjects will be invited to give a bidding price for their team.
 - The average/mean price will be the joint bidding price.
- ► How are winners selected? Discriminatory pricing rule.
- selection of the 4 highest CES in every auction round

Results 1

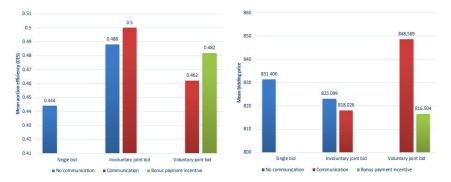


Figure: Histogram of mean auction efficiency (CES) and bidding price.

More efficient bids in joint bidding than in the baseline (single-bidding auctions).

- $\Rightarrow \mathsf{higher}\;\mathsf{CES}$
- $\Rightarrow \text{lower bidding prices}$
- ► Mandatory bidding performs better than voluntary ones ⇒ improved efficiency (T2 vs T3)
- Communication improves efficiency (T2 vs T1)
- Bonus partially improves efficiency in voluntary bidding with communication (T3 vs T4) : bidding prices but not CES

Results- Level of bids

		Mand			intary
	Full sample	No communi-	Communication	Communicati	on Communicatio
		cation			& Bonus
Variables	(1)	(2)	(3)	(4)	(5)
Value	0.087***	0.101***	0.029***	0.101***	0.101***
	(0.016)	(0.016)	(0.008)	(0.016)	(0.016)
Cost	-13.388***	-11.803***	-11.104***	-12.609***	-11.611***
	(3.014)	(3.069)	(1.536)	(3.045)	(3.066)
Cost ²	1.039***	0.921***	0.876***	0.982***	0.907***
	(0.226)	(0.230)	(0.115)	(0.228)	(0.230)
Bonus value	0.001***	0.0004***	0.0005***	0.0004***	0.0004***
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Treatments	. ,	· · · ·	()	,	,
Mandatory	-0.066***	-0.011**	-	-	-
(Treatment T1)					
. ,	(0.015)	(0.005)			
Mandatory & Com (Treatment T2)	-0.080***		-0.015***	-	-
,	(0.015)		(0.005)		
Voluntary & Com (Treatment T3)	-0.015	-	-	0.035***	-
,	(0.012)			(0.007)	
Voluntary & Com & Bonus (Treatment	-0.062* ^{**} *	-	-	-	-0.015**
T4)	(0.012)				(0.007)
	(0.013)	40.000***	A1 330***	AC === ***	(0.007)
Intercept	49.289***	43.890***	41.770***	46.551***	43.223***
	(10.031)	(10.212)	(5.118)	(10.134)	(10.204)

* p < 0.10; ** p < 0.05; *** p < 0.01.

18 / 38

Results

	Joint d	ecisions	Winnings	
Variables	(6)	(7)	(8)	(9)
High value	-1.523***	-1.094***	2.093***	1.042***
	(0.257)	(0.350)	(0.235)	(0.305)
Low cost	-1.543* ^{**}	-1.122* ^{**}	2.220****	1.248***
	(0.259)	(0.348)	(0.208)	(0.268)
High value*Low cost	-	-Ò.921*´*	-	1.945***
		(0.429)		(0.412)
Bonus value	5.164	5.163	4.324***	4.650***
	(164.942)	(163.067)	(0.740)	(0.746)
Team	-	-	16.076* ^{**}	17.080**
			(3.030)	(3.041)
Voluntary & Com & Bonus	0.184	0.219		-
(Treatment T4)				
	(0.272)	(0.274)		
Intercept	2.426	2.720	-2.152	-1.467
	(3.167)	(3.186)	(2.160)	(2.210)

Table: Estimation results of joint decisions and probability of winning.

p < 0.10; ** p < 0.05; *** p < 0.01.

Results

			Bidding item's	value and cost	
		High	value	Low	value
Mean probability (SD)	N	Low cost	High cost	Low cost	High cos
Treatment T3	489	0.575	0.800	0.853	0.916
		(0.496)	(0.401)	(0.350)	(0.277)
Difference-in-mean			0.225	0.278	0.341
P-value			<0.001	<0.001	< 0.001
Treatment T4	489	0.694	0.924	0.858	0.900
		(0.462)	(0.265)	(0.351)	(0.301)
Difference-in-mean			0.230	0.164	0.206
P-value			< 0.001	0.002	< 0.001

Discussions and conclusions

 Joint bidding auction is more efficient than single bidding auction. Hypothesis 1 is satisfied.

 \Rightarrow Promote joint participation in conservation auction.

 A strategic situation: high-cost and low-value participants always have a lower probability of winning when they play as a single bidder than joining a team with their partner.
 Hypothesis 2 is satisfied.

 \Rightarrow Heterogeneities in subjects' profile matter!

Discussions and conclusions

Bonus payment seems to be effective in encouraging subjects to submit more efficient bids. Hypothesis 3a is not satisfied, but Hypothesis 3b is satisfied.

 \Rightarrow Adverse effects of bonus payment on auction outcomes leading to higher PES should be carefully considered!

 Communication helps facilitate coordination and improving overall auction efficiency. Hypothesis 4 is satisfied.
 A well-designed joint bidding auction with communication is important!

Discussions and conclusions

- Voluntary joint bidding auction is less effective than the involuntary joint bidding auction in promoting auction efficiency.
- Subjects receiving a high-value and low-cost item (i.e., the best situation) are making rational bidding decisions by being more likely to play solo.
- The number of bidders participating in a voluntary joint bidding design is significantly lower compared to the mandatory design.

 \Rightarrow The reduction in the number of joint bidding teams makes the auction efficiency ambiguous.

Going further...

Improve the possibilities to:

- communicate
- collaborate
- take into account the behavioral disparities between agents
- Continue to develop experiments investigating the performance of spatial conservation auctions
 ⇒ Necessary to understand the distribution of agents and the way they interact and exchange according to environmental issues.

Provision of Ecosystem services: Some other Challenges

- Social acceptance of conservation measures; Adherence to common objectives and compliance: the drivers of motivations to participate to a program (Mitani. Y & Lindhjem. H, 2015).
- Obtaining a permanent change in consumers' behavior: new ways to behave.
- Designing Public Policies and adapt them to spatial and temporal variations.

Thank you for your attention!

Econometric specifications

$$Bid_{i} = \beta_{0} + \beta_{k} \sum_{k=1}^{K} Treatment_{k} + \eta_{l} \sum_{l=1}^{L} Item_{l} + \lambda_{m} \sum_{m=1}^{M} Control_{m} + \epsilon_{i},$$
(7)

 $Pr(Join_{i} = 1 | Treatment_T4, Control_{i}) = F(\alpha_{H}High_value \qquad (8)$ $+ \alpha_{L}Low_value + \alpha_{HL}High_value * Low_value + \alpha_{T4}Treatment_T4$ $+ \gamma_{m} \sum_{m=1}^{M} Control_{m}).$

$$Pr(Win_{i} = 1 | Team, Control_{i}) = F(\alpha'_{H}High_value$$

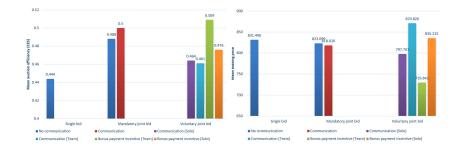
$$+ \alpha'_{L}Low_value + \alpha'_{HL}High_value * Low_value + \alpha'_{team}Team$$

$$+ \gamma'_{m} \sum_{m=1}^{M} Control_{m}).$$

27 / 38

Descriptive statistics

	Definitions	Mean	Std.Dev	Min
Dependent variables				
Bidding decision	Log of subjects' bidding price.	6.770	0.155	6.404
Joint decisions	=1 if a subject assigned to a Voluntary joint bidding auction decides to join a team with her partner.	0.815	0.387	0
Winnings	=1 if a subject wins the auction.	0.415	0.492	0
Explanatory variables				
Mandatory	=1 if a subject is assigned to a Mandatory bidding auction (Treatment T1).	0.20	0.40	0
Mandatory & Com	=1 if a subject is assigned to a Mandatory joint bidding auction with communication (Treatment T2).	0.20	0.40	0
Voluntary & Com	=1 if a subject is assigned to a Voluntary joint bidding auction with communication (Treatment T3).	0.20	0.40	0
Voluntary & Com &	=1 if a subject is assigned to a Voluntary joint	0.20	0.40	0
Bonus	bidding auction with communication and bonus payment incentives (Treatment T4).			
Team	=1 if a subject is in a joint bidding team.	0.258	0.437	0
Bonus payment	Log of bonus payment.	0.623	1.552	0
Value	Log of environmental value.	5.668	0.249	5.303
Cost	Log of cost.	6.662	0.196	5.881
Bonus value	Log of bonus value.	2.680	1.937	0


Descriptive statistics

	Definitions	Mean	Std.Dev	Min	Max
Control variables					
Period	Experimental period.	4.50	2.29	1	8
Socio-demographic var	riables				
Female	=1 if an individual is female.	0.570	0.495	0	1
Age (in log)	Log of individual age.	3.084	0.139	2.890	3.689
Age (in years)	Individual age.	22.070	3.427	18	40
Psychological variables	5				
Environmental	Aggregate score of 15 Environmental	44.390	4.786	31	57
attitude	Attitude questions with Cronbach $alpha = 0.6684$.				
Risk	Respondents' switching point in the risk elicitation task.	3.097	1.433	1	5
Altruism	=1 if respondents decided to give at least or more than one half of their initiate endowment to their partner.	0.453	0.497	0	1
Descriptive norm	=1 if respondents believed that most of their friends is taking actions to protect the environment.	0.780	0.414	0	1
Injunctive norm	=1 if respondents believed that the actions to protect the environment will be approval by most of their friends.	0.833	0.372	0	1

Other results

	Mean (SD)				
	Т0	Τ1	T2	Т3	Τ4
Environmental value	360.182 (40.336)	398.762 (71.697)	404.056 (68.061)	388.135 (63.884)	389.342 (71.296)
Efficiency (CES)	0.444 (0.084)	0.488 (0.072)	0.500 (0.079)	0.462 (0.073)	0.482 (0.074)
Bidding price	831.406 (142.984)	823.099 (97.274)	818.026 (116.317)	848.589 (118.005)	816.504 (115.608)

Other results

<ロト < 回 > < 直 > < 直 > < 直 > < 亘 > < 三 > 三 の Q (~ 31/38

Lottery	State A (50%)	State B (50%)
1	5€	5€
2	7€	4€
3	9€	3€
4	11€	2€
5	13€	1€

Your decision :

Lotterie 3 v

Please choose your lottery number and validate your choice by clicking on the 'Validate' button.

Validate

You	r decision as an A player
Proposal	Earnings for A and B
1	10€ for A and 0€ for B
2	9€ for A and 1€ for B
3	8€ for A and 2€ for B
4	7€ for A and 3€ for B
5	6€ for A and 4€ for B
6	5€ for A and 5€ for B
7	4€ for A and 6€ for B
8	3€ for A and 7€ for B
9	2€ for A and 8€ for B
10	1€ for A and 9€ for B
11	0€ for A and 10€ for B

Your decision :

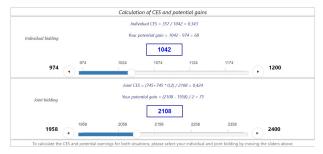
Proposal 6

Please choose your proposal and validate your choice by clicking on the 'Validate' button.

Validate

	Your decision as a B player		
Proposal	Earnings for A and B	Accept	Refuse
1	10€ for A and 0€ for B	0	۲
2	9€ for A and 1€ for B	0	۲
3	8€ for A and 2€ for B		۲
4	7€ for A and 3€ for B		۲
5	6€ for A and 4€ for B	0	۲
6	5€ for A and 5€ for B	۲	
7	4€ for A and 6€ for B	۲	
8	3€ for A and 7€ for B		
9	2€ for A and 8€ for B	۲	
10	1€ for A and 9€ for B	۲	
11	0€ for A and 10€ for B		

votre decision.


Proposal 5 v

Please choose the proposal up to which you will refuse the proposal of player A and then validate your choice by clicking on the button 'Validate'.

Choose 'Accept All' to accept all of Player A's proposals.

Validate

You are the player 1	Perio	d n° : 1 / 8	You are the seller V1	
	Your good	Good of the seller V2	Common good	
Value	357	388	745	
Cost	974	984	1958	

Would you like to team up with the seller V2 to make a joint bidding? Your decision :

Please make your decision by clicking on one of the 2 options.

Chat room	You are the seller V1 Time	left: 98s
		^
Seller V1 > Hello		
4		,
Your message		Send
	Type your message in the white box above and click on 'Send' to send it to your partner	_

Single- and joint-bidding conservation auction

$$E[\pi_i^S(p_i)] = (p_i - c_i)Pr[x_i = 1].$$
(10)

$$E[\pi_{i,d}^{J}(p_{i,d})] = \frac{1}{2} \left(p_d - \sum_{i \in d} c_i \right) Pr[x_d = 1].$$
(11)

$$\max_{s} V(x_{s}) = \sum_{s} \frac{v_{s} + b_{s}}{p_{s}} x_{s}, \qquad (12)$$

$$s.t., \sum_{s} p_{s} x_{s} \le W, \tag{13}$$

$$E[\pi_{i,d}^{J}(p_{i,d})] \ge E[\pi_{i}^{S}(p_{i})].$$
 (14)

$$E[\pi_{i,d}^{J}(p_{i,d}^{J})] = \frac{1}{2} \left(p_{d}^{J} + \sum_{i \in d} (b_{i}\delta - c_{i}) \right) \Pr[x_{d} = 1]. \tag{15}$$

References

- Banerjee, S., T. Cason, F. de Vries, and N. Hanley (2021). Spatial coordination and joint bidding in conservation auctions. *Journal* of the Association of Environmental and Resource Economists 8(5), 1013–1049.
- Blanco, M., D. Engelmann, and H. T. Normann (2011). A within-subject analysis of other-regarding preferences. *Games and Economic Behavior* 72(2), 321–338.
- Calel, R. (2012). Improving cost-efficiency of conservation auctions with joint bidding. *Journal of Environmental Economics and Policy* 1(2), 128–145.
- Eckel, C. and P. Grossman (2008). Men, women and risk aversion:Experimental evidence. In *Handbook of Experimental Economics Results*, Volume 1, pp. 1061–1073. Elsevier.