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Abstract - Biological pollution is one major cause of the degradation of indoor air quality. It was shown that microbial communities 
from outdoor might impact significantly the communities detected indoor. In addition, microbial contamination of the surfaces of building 
materials and their release into the indoor air also significantly affect indoor air quality. Preventing the growth or at least reducing the 
amounts of microorganisms growing on indoor building materials is essential for reducing health risks for building occupiers. Photoactive 
TiO2 has been widely studied as a photocatalyst that enable the inactivation of various bacterial strains. In this paper, we compare the 
antifungal activity of nanoparticles of TiO2 on Aspergillus niger spores and its antibacterial activity on Escherichia coli under low light 
irradiation, near to common indoor values. The antimicrobial activity of TiO2, expressed as log reduction, was assessed under UV 
irradiation in a sludge mixture of sterile water, suspension and nanoparticles of TiO2. The results showed a strong bactericidal activity of 
TiO2 on E. coli and a weak fungicidal activity against A. niger. Different parameters including concentration of TiO2, intensity of light, 
and duration of contact between TiO2 and microbial cells and spores, were investigated and significantly affected the antibacterial activity 
of TiO2 while poorly affected its antifungal activity. Results of this study confirmed previous investigations on antibacterial activity of 
TiO2 on E. coli and bring new insight on antifungal activity on the spores of A. niger. The effectiveness of the antimicrobial activity is 
enhanced by the duration of contact between suspension and TiO2 nanoparticles through the stirring experiments for 2H, 4H and 24H. 
Keywords: Bactericidal activity, Fungicidal activity, Indoor air, Aerosolization, Photocatalysis, TiO2 

 
1. Introduction 

Indoor air pollution is an important cause of serious heallth problems for occupants including respiratory diseases, 
allergic symptoms, cancers and cardiovascular problems[1–9]. For several years now, there is an increased awareness to the 
effect of indoor air quality on human health and wellbeing[1,10]. Actually, people spend 80%-90% of their times 
indoors[11,12] so it’s important to understand the main causes of indoor air pollution and find suitable solutions to ameliorate 
indoor air quality. The world health organization (WHO) reported in 2009 that biological pollution is one major cause for 
the degradation of indoor quality[13,14]. Indoor investigations have highlighted that microbial contamination of surfaces of 
building materials may have a significant impact on the microbial communities present indoors. However, quantitative 
evaluation of such impact is only little studied. When promoting conditions (humidity and nutrient content) are available, 
building materials are exposed to microbial growth[1,15]. Upon their growth on surfaces, microorganisms produce aerial 
particles such as spores, toxins, volatile organic compounds and other metabolites that can be inhaled by occupants[16–20]. 
To prevent or to reduce microbial contamination on surfaces, the antimicrobial activity of several chemical products has 
already been studied. They include semi-conductors products such as titanium dioxide (TiO2), zinc oxide (ZnO), gallium 
arsenide, tungsten (VI) oxide (WO3), gallium phosphide, and cadmium but also alternative products such as fatty acid and  
glycerol esters[21–23]. Titanium dioxide (TiO2) is widely recognized as one of the most efficient photocatalysts used for air 
purification[21,22]. It has excellent optical and electronic properties, high photocatalytic activity, high chemical stability, 
non-toxicity, low cost, availability, and abundance[22]. Under “high” intensities of light, over >10 W/m², the photocatalysis 
of TiO2 nanoparticles showed strong antimicrobial activity against a wide variety of microorganisms, including algae, 
viruses, bacteria and fungi [24–27]. Nevertheless, few studies have been carried out in the last five years investigating the 
effect of TiO2 on various microorganisms at lower levels of intensity (≤5W/m2), closed to real-world conditions (30W/m² in 
sunny days and 5-10W/m² in cloudy days outdoors and 4-5 W/m² indoors)[21,28–30]. 

The objective of this study was to investigate the effeciency of TiO2 nanoparticles on Escherichia coli and Aspergillus 
niger through direct contact between microbial suspension and photocatalyst TiO2 under different experimental conditions 
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(concentration of TiO2 nanoparticles, light intensity and duration of contact). Experiments were carried in dark, and under 
light real-life irradiation using 8W black-light bulbs at 5W/m². 

2. Materials And Methods 
2.1 Microbial cultivation and preparation of suspensions  

Most frequently detected microorganisms in the indoor environment (on surfaces of building materials and airborne) are 
(i) Gram negative bacteria and mycobacteria[15,31], (ii) fungal genera such as Aspergillus, Penicillium, Cladosporium and 
Stachybotrys[31–34]. In this study, Escherichia coli and Aspergillus niger were chosen to evaluate TiO2 nanoparticles 
antimicrobial activity. 

 E. coli CIP 53126 was obtained from the collection of the Pasteur Institute (CIP), Paris, France. Strains were stored at 
−80 °C in his Eugon medium (Biomérieux, Craponne, France) supplemented with 10% glycerol. Bacterial cells were pre-
cultured on trypticase soy agar (TSA) before each experiment (incubation 36 °C ± 1 °C for 16-24 h). A new subculture was 
performed (36 °C ± 1 °C for 16-20 hours) prior to testing. For testing, bacterial cells were dispersed in 1/500 broth 
(NB)[21,31,35] and the bacterial cell content of the inoculum suspension was determined using a spectrophotometer (640 
nm) at approximately 108 cells/mL. The cell suspension was then diluted 10-fold and 1 mL of each dilution was plated 
incorporated in TSA to determine the number of CFU/mL.  

For fungal suspension, A. niger strain CBS 733.88 was cultured in a flask, on Sabouraud agar medium (SAB) 
(Biomérieux) at 22.5 °C for 10 to 14 days to prepare the spore suspension[36]. Ten mL of sterilized distilled water + tween 
80 with sterile glass balls were inserted into the flask of strain and the flask was shaken gently for at least 2 minutes. The 
suspension was then collected and filtered through sterile frit 080557-2 (40-100 µm) into a sterile pot containing sterile glass 
beads to prevent clustering of spores. The concentration of suspension was obtained by counting spores on Malassez cell 
through optical microscope. One mL of suspension adjusted to 1*107 cfu/mL was inoculated into SAB Petri dishes and then 
incubated at 22°C for 48 h before CFU counts. 

 
2.2 Stirring experiment: Evaluation of antimicrobial activity of TiO2 

During each experiment, 1mL was taken from each beaker at t0=0 min and every 30 minutes for 2 or 4 hours and ten-
fold diluted in sterile distilled water for CFU numerations (as for the suspensions). Petri dishes from E. coli experiments and 
A. niger experiments were incubated at 36°C ±1°C for 48 hours and at 30°C ±1°C for 48 hours respectively. The antimicrobial 
activity (log reduction) was then calculated using Equation 1.  
 

 
Figure 1: A schema illustrating the stirring experiment: Magnetic stirrer at 300 rpm; Beaker containing suspension: (E. coli or A. 

niger), TiO2 in test tubes or distilled water in control tubes; Light irradiation of 5 W/m2 in light conditions; Pyrex lid. 

𝑅𝑅 = 𝐿𝐿𝐿𝐿𝐿𝐿(Csusp)− 𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝐿𝐿𝐿𝐿𝐿𝐿(
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

) Equation 1 
 

Where R: Log10 Reduction of TiO2 (referred as antimicrobial activity in the text), Csusp: Average concentration of 
suspension in control tube without TiO2, Ctest: Average concentration of suspension in test tube with TiO2 in CFU/mL. 
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Each experiment was repeated at least twice and results present the average obtained from each series of experiments 
with corresponding standard deviations (SD). 

3. Results And Discussion 
3.1 Effect of TiO2 in the dark 

In the dark, after two hours of contact between 10g/L TiO2 and cell/spore suspension, the average log10 reduction was 
0.04±0.01 for A. niger suspension and 2.27± 0.08 for E. coli (Figure 2). These results are in agreement with previous findings 
regarding TiO2 efficacy[37]. The strong antibacterial activity may be explained by the ability of well-dispersed nano-particles 
of TiO2 to interact with bacterial cells absorbing them to their surfaces and leading to a remarkable decrease in their 
concentration[38]. Regarding antifungal activity, the resistance of fungal spores to TiO2[37,39] implies no interaction 
between nanoparticles of TiO2 and fungal spores of A. niger and thus a negligible fungicidal activity was observed after 2 
hours of contact in the dark. 

 
Figure 2: Average ±SD of log reduction of 10g/L TiO2 in dark conditions on A. niger suspension (a) vs on E. coli (b). 

 
3.2 Effect of TiO2 under light 

Under a light intensity of 5W/m2, both antifungal and antibacterial activity of 10g/L TiO2 were evaluated. After 2 hours 
of contact between suspension and TiO2, the average log10 reduction ‘R’ was 0.85±0.03 for A. niger spore suspension and 
2.58±0.08 for E. coli. TiO2 shows a weaker activity on A. niger spores compared to its activity on E. coli cells (Figure 3). 
Previous findings showed a higher antifungal activity of TiO2 mixed with Ag nanoparticles on Aspergillus niger but these 
results were obtained using a very high light intensity of 40W/m2[40] or by continuous UV irradiation for 20 days[39]. The 
ability of TiO2 to damage the cell membrane of E. coli explains its high antibacterial activity[22,41]. The  differences between 
fungal cell membranes and bacterial ones may also contribute to  the difference of TiO2 effects observed in our study[42,43]. 

 

 
Figure 3: Average ± SD of log reduction of 10g/L TiO2 in light conditions on A. niger suspension (a) vs on E. coli (b). 
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3.3 Influence of the concentration of TiO2 on its antibacterial activity 

The antibacterial activity of TiO2 was tested at 10g/L where it showed R > 2.00 in dark and light conditions. Another 
series of experiments was carried at 1g/L concentration of TiO2 to investigate its activity on E. coli at a lower concentration 
tested previously by Verdier[21]. In the dark, after 4 hours of contact, 1g/L of TiO2 showed a clearly weaker activity 
compared to that observed after 2 hours of contact to 10g/L TiO2 with only 0.61±0.01 log reduction (Figure 4). By contrast, 
under light, 4 hours of contact to 1g/L TiO2 showed approximately similar antibacterial activity as that of 10g/L TiO2 after 
2 hours of contact. The maximum log reduction was 2.49±0.07 after 4 hours of contact for 1g/L and 2.58±0.08 after 2 hours 
of contact for 10g/L of TiO2 ( Figure 5). As said before, high concentration of TiO2 (10g/L) was capable to inhibit the growth 
and/or kill the cells  of E. coli either by damaging their cell membranes under light[22,41], or by absorbing them onto their 
surfaces in  the dark[38]. At low concentration (1g/L), the number of well dispersed nano-particles of TiO2 might not be 
sufficient to interact directly with bacterial cells and reduce their concentrations in the dark, whereas under the light, the 
antibacterial activity of 1g/L of TiO2 may be explained by its capability to damage cell membrane of E.coli  when 
photocatalyzed (Figure 4). The reduced concentration of TiO2 requires therefore a longer application time to be active. As 
an illustration, concentrations of TiO2 as low as 0.1g/L have shown a strong antibacterial activity but after 24 hours of contact 
using a light intensity range of 14- 55 W/m²[44]. 

 
Figure 4: Variation with time of average concentration of E. coli suspension (log CFU) in the dark in: control tube; test tube containing 

10g/L of TiO2; test tube containing 1g/L of TiO2. 

 
 Figure 5: Variation with time of average concentration of E. coli cell suspension (log CFU) under light conditions in: control 

tube; test tube containing 10g/L of TiO2; test tube containing 1g/L of TiO2. 
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3.4 Resistance of Aspergillus niger to TiO2 photocatalyst 
To investigate the resistance of A. niger, another series of stirring experiments was carried out for 24 hours of contact 

between A. niger and TiO2, in light conditions. After 24 hours of contact, the resistance of A. niger against the photocatalyst 
TiO2 was confirmed as the maximum reduction reached was only 0.86±0.02 (Figure 6). No study has previously highlighted 
the resistance of A. niger to the photocatalyst TiO2 within real-life conditions. One investigation has shown the ability of 
TiO2 to inhibit the growth of A. niger on woods but these results were obtained at very high light intensities[39]. By contrast, 
our results are in agreement with the resistance of A. niger against TiO2 observed after 24 hours of contact in the dark[37]. 

 

 
Figure 6: Variation with time of average concentration of A. niger spore suspension (log CFU) in control tube and in test tube during 

contact with TiO2 nanoparticles for 24 hours in light conditions 

4. Conclusion 
The main objective of this study was to investigate the difference between the antibacterial effect from one side and 

antifungal effect on other side of TiO2 nanoparticles through stirring experiments allowing a direct contact between TiO2 and 
cells at low light intensity close to real-world conditions. The obtained results confirmed previous findings on the 
antibacterial activity of TiO2 on E. coli and highlighted the variation of its efficiency as a function of its concentration, 
duration of contact, light/dark conditions and especially as a function of microorganisms (Spores of A. niger vs E. coli in 
current study). TiO2 is an efficient photocatalyst, non-toxic and a low-cost product that is employed in most air and water 
purification systems using high light intensities[22]. In addition, this substance is already used in coatings, paints, and in 
cementitious materials[31,45]. Indeed, as the antibacterial activity of TiO2 nanoparticles is important, it is also essential to 
highlight the resistance of other microorganisms such as some fungal spores to this product. The inclusion of particles such 
as fungal spores may affect negatively the efficiency of TiO2 on vegetative cells suggesting that the application of TiO2 
nanoparticles in paint[21] is perhaps not the best way to use it. These findings suggest the limitation of photocatalytic 
products interest in the destruction of microorganisms under common indoor light irradiation. On the basis of new research, 
their applications should be aimed toward prevention through growth inhibition. 
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