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ABSTRACT

Drought indices are often used for monitoring interannual variability in macroscale hydrology. However,

the diversity of drought indices raises several issues: 1) which indices perform best and where; 2) does the

incorporation of potential evapotranspiration (PET) in indices strengthen relationships, and how sensitive is

the choice of PETmethods to such results; 3) what additional value is added by using higher-spatial-resolution

gridded climate layers; and 4) how have observed relationships changed through time. Standardized pre-

cipitation index, standardized precipitation evapotranspiration index (SPEI), Palmer drought severity index,

and water balance runoff (WBR) model output were correlated to water-year runoff for 21 unregulated

drainage basins in the Pacific Northwest of the United States. SPEI andWBR with time scales encompassing

the primary precipitation season maximized the explained variance in water-year runoff in most basins.

Slightly stronger correlations were found using PET estimates from the Penman–Monteith method over the

Thornthwaite method, particularly for time periods that incorporated the spring and summer months in

basins that receive appreciable precipitation during the growing season. Indices computed using high-

resolution climate surfaces explained over 10% more variability than metrics derived from coarser-

resolution datasets. Increased correlation in the latter half of the study period was partially attributable to

increased streamflow variability in recent decades as well as to improved climate data quality across the

interior mountain watersheds.

1. Introduction

Water resources of the western United States depend

upon winter snowpack as a natural reservoir and are

sensitive to an array of atmospheric drivers (McCabe and

Dettinger 2002; Clark 2010). Large interannual variability

in winter precipitation across the western United States,

where the majority of precipitation falls during the

winter months, coupled with increasing water demand

make the region susceptible to water scarcity (Wilhite

et al. 2007). Widespread observations across the north-

western United States over the past 60 years find de-

clines in annual streamflow of the bottom quartile of

years (Luce and Holden 2009) and an advancement in

the timing of snowmelt-dominated streamflow (e.g.,

Clark 2010; Stewart et al. 2005). These changes may be

partially attributable to changes in precipitation (e.g.,

Luce et al. 2013); however, the influence of other climate

factors, most notably temperature, has likely played a role

in changes in volumetric runoff (e.g., Vano et al. 2012)

and, in particular, runoff timing (Hidalgo et al. 2009).

Consequentially, stationarity from the perspective of the

influence of climatological drivers of streamflow as well as

the management of water resources may be questioned in

particularly sensitive natural or managed systems (e.g.,

Milly et al. 2008).

A variety of ways exist to better understand the re-

sponse of a hydrologic system to climate forcings. Phys-

ically based hydrologic models provide a preferred tool

for exploration; however, they contain their own lim-

its in both computation ability and model assumptions.

Drought indices provide an alternative means to integrate

landscape-scale climatic forcing to the relativized difference
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between water supply and demand across a variety of

scales (Redmond 2002; Keyantash and Dracup 2002;

Mishra and Singh 2010) and are used operationally to

monitor and forecast drought and water resources. The

primary climate variables used to compute drought in-

dices and surface water supply are precipitation, po-

tential evapotranspiration (PET), and temperature,

with each drought index providing different weighting

across these variables in addition to the sequence and

duration associated with them (e.g., Heim 2002). Pre-

vious studies have evaluated the utility of drought indices

to track measured hydrological, agricultural, and eco-

logical indicators (e.g., Ellis et al. 2010; van der Schrier

et al. 2011; McEvoy et al. 2012; Vicente-Serrano et al.

2012a). However, the utility of drought indices has not

been fully vetted in regions of complex terrain or at

spatial scales of individual watersheds. Redmond (2002)

noted the need to better evaluate drought indices at

smaller scales (e.g., individual watershed) where impacts

are manifested and, in particular, across the western

United States, which is characterized by complex energy

and moisture gradients.

The scientific community faces a significant challenge

to produce timely and more comprehensive assessments

of the utility of drought indices given increasing vul-

nerability of water resources associated with multiple

stressors (Wilhite et al. 2007). Changes in climate may

alter the ability of various drought indices to track

meaningful hydrologic metrics, particularly in regions

that observe a significant shift in the phase of precipitation

or change in the influence of PET on the surface water

budget (Berghuijs et al. 2014). This is particularly true as

many drought indices are calibrated to their historical

record and often use overly simple PET approximations,

although more complex PET methods have resulted in

similar Palmer drought severity index (PDSI) values (Dai

2010, 2011). Likewise, Oudin et al. (2005) found that

complex methods for estimating PET may not yield ad-

ditional skill in rainfall–runoff modeling. Large differ-

ences in PET calculated using the Thornthwaite and

Penman–Monteith methods have been noted across the

western United States (e.g., van der Schrier et al. 2011)

with repercussions for estimating climatic water balance

(Crimmins et al. 2011). Likewise, drought indices that

incorporate PET may yield divergent trajectories in a

warming climate between temperature- and energy-

based estimates of PET (Donohue et al. 2010; Sheffield

et al. 2012), further emphasizing the need to quantify the

effectiveness of different flavors of a single drought index.

This study examines water-year streamflow from 21

unregulated long-term stream gauges from 1948 to 2012

across the Pacific Northwest (PNW) of theUnited States

given the importance of hydrologic drought on surface

water availability in the region. These gauges are con-

sidered given their high-quality observations of natural

flow and their distribution across heterogeneous water-

sheds with respect to climate and watershed hypsometry.

Likewise, the PNW has observed significant changes in

climate over the study period, including increases in

temperature, growing season PET, and the portion of

precipitation falling as rain (e.g.,Mote 2003; Abatzoglou

2011; Abatzoglou et al. 2014). These changes have been

further manifested through observed decreases in 1 April

snow water equivalent (SWE; Mote et al. 2005), earlier

snowmelt runoff (Stewart et al. 2005), and decreases in

mean and the lower quartile of water-year streamflow

(Luce and Holden 2009; Clark 2010).

Using a suite of drought indices and water-year

streamflow at these 21 sites, we aim to understand:

1) how relationships between streamflow and different

drought indices vary across watersheds; 2) whether there

are differences in correlations between streamflow and

drought indices that use only precipitation and those that

incorporate estimates of PET, as well the degree to which

PET estimated using the Thornthwaite and Penman–

Monteith methods influences results; 3) what value is

added by incorporating high-resolution climate surfaces;

and 4) whether relationships have changed over the pe-

riod of record.

2. Data and methodology

Daily streamflow records from 21 unregulated stream

gauges across the PNW with high-quality records both

in duration and completeness were acquired from the

U.S. Geological Survey (USGS; Fig. 1 and Table 1).

Gauges were chosen from reference gauges according to

the Geospatial Attributes of Gauges for Evaluating

Streamflow, version II (GAGES II; Falcone 2014)

dataset, had complete data for 64 water years (1948/49–

2011/12), and were used by Luce and Holden (2009) to

examine long-term variability in streamflow records of

the PNW. Watersheds within the PNW include snow-

dominated, rain-dominated, and transient watersheds

(Clark 2010) spanning various elevations, total annual

precipitation, and precipitation seasonality. Water-year

streamflow was defined by the summation of observed

daily streamflow from 1 October to 30 September. A

standardized runoff index (SRI; Shukla and Wood 2008;

Elsner 2010) that represents a z score for cumulative

water-year runoff was calculated for each stream

gauge through a normal inverse cumulative distribu-

tion that applies the nonparametric kernel density

bandwidth estimator of Botev et al. (2010). This non-

parametric transformation overcomes some of the docu-

mented limitations of using a single prescribed probability
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distribution for hydrologic indices (e.g., Vicente-Serrano

et al. 2012b).

A set of four established drought indices were selected:

1) PDSI (Palmer 1965), 2) standardized precipitation

index (SPI; McKee et al. 1993), 3) standardized pre-

cipitation evapotranspiration index (SPEI; Vicente-Serrano

et al. 2010), and 4) a normalized modified Thornthwaite

water balance runoff (WBR) model (Willmott et al. 1985;

FIG. 1. Locations of the 21 watersheds and elevation (m). Numbers refer to the watershed

ranking shown in Table 1. The inset shows the location of the study area.

TABLE 1. List of stations ranked according to the ratio of 1 April SWE to October–March precipitation (SWE:P). Also shown are the

annual-average precipitation and the percent of annual precipitation occurring in the months of April–June (AMJ). The last two columns

indicate the metric that had the highest correlation with SRI.

Station rank Station ID SWE:P ratio Annual-avg P (mm) PAMJ (%) Best metric r2

1 12010000 0 3315 15 WBR-10, Jul 0.92

2 12020000 0 2077 16 WBR-6, Mar 0.88

3 12035000 0 3050 14 WBR-11, Jun 0.94

4 14222500 0.01 3551 16 Thorn-SPEI-11, Jun 0.95

5 14185000 0.01 2191 19 SPI-10, May 0.94

6 12054000 0.14 2369 14 SPI-8, Apr 0.84

7 14137000 0.14 2340 19 PM-SPEI-10, May 0.89

8 14020000 0.18 1004 23 WBR-8, May 0.88

9 12186000 0.30 3138 17 PM-SPEI-7, Apr 0.88

10 12048000 0.31 1817 14 WBR-7, Apr 0.84

11 12189500 0.34 2747 16 WBR-9, Apr 0.92

12 10396000 0.39 661 27 PM-SPEI-9, Apr 0.79

13 12413000 0.43 1204 23 SPI-8, Apr 0.88

14 13185000 0.53 903 21 WBR-7, Apr 0.91

15 12488500 0.53 1665 15 PM-SPEI-7, Mar 0.88

16 13337000 0.60 1303 24 PM-SPEI-9, May 0.88

17 12451000 0.63 1726 13 WBR-8, Apr 0.89

18 12332000 0.65 702 36 PM-SPEI-6, Mar 0.56

19 13235000 0.67 991 21 PM-SPEI-7, Apr 0.91

20 13313000 0.75 1042 21 PM-SPEI-7, Apr 0.81

21 12358500 0.80 1285 25 Thorn-SPEI-11, Jun 0.87

Pacific Northwest scale WBR-12, Sep 0.86
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Dobrowski et al. 2013). PDSI is based on soil water

balance equations by considering the magnitude and

sequence of precipitation and PET in addition to soil

available water holding capacity (AWC). However,

PDSI’s well-documented limitations include its calibra-

tion parameters, which can be adjusted for through the

use of the self-calibrated PDSI (SC-PDSI; Wells et al.

2004), and its failure to discriminate precipitation phase,

which potentially limits its applicability in snow-dominated

and transient watersheds that define the hydrology of the

western United States (e.g., Alley 1984; Vicente-Serrano

et al. 2010). The use of SC-PDSI over PDSI failed to

reflect significant differences, and hence, we constrained

our focus to the more widely used PDSI. Both the SPI

and SPEI are temporally flexible and applicable to dif-

ferent types of drought. The SPI assumes that pre-

cipitation variability is much greater than PET variability

and only accounts for precipitation, whereas SPEI ac-

counts for a simplified moisture balance by using pre-

cipitation minus PET. Similar to PDSI, neither account

for snow dynamics as it pertains to moisture timing. Both

the SPI and SPEIwere calculatedmonthly by considering

the cumulative precipitation or cumulative precipitation

minus cumulative PET, respectively, over the past num-

ber of months (1–12 months were considered here)

relative to historical conditions, which was then trans-

formed into a near-Gaussian distribution using the non-

parametric approached described previously for SRI. A

modified Thornthwaite water balance model [Willmott

et al. (1985); McCabe and Wolock (2011a); updated by

Dobrowski et al. (2013)] that incorporates monthly

temperature, precipitation, and PET was run at monthly

time steps with AWC to model monthly runoff, defined

as the excess precipitation or snowmelt not used by

PET or to recharge soils. For compatibility with other

drought indices, cumulative runoff from the WBR

model of the previous 1–12 months was transformed to

a near-Gaussian distribution using the aforementioned

nonparametric method. While SPI and SPEI have pre-

scribed time scales and do not incorporate information

antecedent to the time period of interest, PDSI andWBR

can entrainmemory of conditions prior to the time period

of interest.

Two of the drought indices and the WBR model con-

sider evaporative demand; however, PETcanbe estimated

several ways using climatological data, including a sim-

ple temperature-based approach via the Thornthwaite

method (hereafter Thorn-PET; Thornthwaite 1948) and

an energy-balance approach via the Penman–Monteith

method (hereafter PM-PET; Allen et al. 1998). Thorn-

PET is a widely used empirical transformation that only

requires monthly-mean temperature and latitude. This

contrasts with PM-PET, which is an energy-balance

approach requiring temperature, latitude, elevation,

wind speed, radiation, albedo, and vapor pressure

deficit. We modified PM-PET to account for unrealistic

variations in the surface energy budget when snow cover

exists or prior to the onset of the growing season,

when temperature is a limiting factor (Jarvis 1976). This

was done using an empirical hyperbolic tangent function

of Dai (2008) that accounts for precipitation phase

where PET is set to zero for monthly-mean tempera-

tures below 238C and unmodified for temperatures

exceeding 58C.
Data required to calculate drought indices were derived

from three primary sources. First, monthly precipitation

and maximum, minimum, and dewpoint temperature

are acquired from the Parameter–Elevation Regressions

on Independent Slopes Model (PRISM) at 800-m reso-

lution and aggregated to 4-km resolution (Daly et al.

2008) from 1895 to 2010.As the 800-mPRISM time series

datasetwas available through 2010, data for 2011–12were

estimated by applyingmonthly anomalies fromphase 2 of

the North American Land Data Assimilation System

(NLDAS-2; Mitchell et al. 2004) to monthly averages

from PRISM over a common time period (1981–2010).

Because of the lack of long-term observations of down-

ward solar radiation and 10-m wind speed, we used cli-

matologically aided interpolation (e.g., Willmott and

Robeson 1995), using monthly anomalies of wind speed

and downward shortwave radiation from the National

Centers for Environmental Prediction–National Center

TABLE 2. List of acronyms for indices and associated time scales used in this study. Asterisks denote a single time scale.

Acronyms Meaning Timescales used

SPI Standardized precipitation index 1–12 months

CDD-SPI Climate division data standardized precipitation index 1–12 months

PM-SPEI Penman–Monteith standardized precipitation evapotranspiration index 1–12 months

Thorn-SPEI Thornthwaite standardized precipitation evapotranspiration index 1–12 months

SRI Standardized runoff index Water year

Thorn-PDSI Thornthwaite Palmer drought severity index *

PM-PDSI Penman–Monteith Palmer drought severity index *

CDD-PDSI Climate division data Palmer drought severity index *

WBR Water balance runoff 1–12 months
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for Atmospheric Research (NCEP–NCAR) reanalysis

(1948–2012) superimposed with climatological monthly

downward surface shortwave radiation and 10-m wind

speed from NLDAS-2. The resultant monthly fields were

bilinearly interpolated to the 4-km PRISM grid. Spatial

AWCdata for the top 250 cmof soil was retrieved from the

State Soil Geographic (STATSGO; www.soilinfo.psu.edu/

index.cgi) database and aggregated to match the 4-km

scale of the climate data. Pixels fully contained within the

contributing upstream drainage basin for each stream

gauge site were aggregated to form a single time series for

each basin.We compared correlations calculated using the

aforementioned datasets to the coarser, but more readily

available, PDSI and monthly precipitation data from the

U.S. climate division data (CDD) from the National Cli-

matic Data Center (NCDC). Monthly SPI was calculated

identical as performed for higher-resolution data. We ex-

tracted SPI and PDSI data from the nearest climate di-

vision to each watershed.

Three static attributes were characterized for each

basin: 1) the fraction of accumulated precipitation

P remaining as SWE on 1 April, hereafter referred to as

SWE:P ratio; 2) the ratio of water-year P during spring

(April–June, using 1948–2012 climatology), hereafter

referred to as PAMJ; and 3) total water-year P (1948–

2012 climatology; Table 1). The SWE:P ratio was com-

puted as the ratio of 1 April SWE to October–March P

using SWE and P from the Variable Infiltration Capacity

(VIC) model (Liang et al. 1996) at 1/88 spatial resolution
from 1981 to 2010. Following Elsner et al. (2010), we

classified basins as rain-dominated basins having SWE:P

less than 0.3, transient basins as 0.3–0.6, and snow-

dominated basins exceeding 0.6. These characteristics

exhibit relationships with one another arising from cli-

matological factors, with the wettest watersheds located

in the lower elevations west of the Cascades having the

lowest PAMJ and lowest SWE:P.

Pearson’s correlation coefficients were calculated be-

tween water-year SRI at each stream gauge site and

1) 1–12-month SPI ending January–September, 2) 1–12-

month SPEI ending January–September using both

Thorn-PET and PM-PET, 3) January–September PDSI

using both Thorn-PET and PM-PET, and 4) normalized

cumulative 1–12-monthWBR ending January–September

from PRISM data using the period of record 1948–2012

(Table 2). Correlations were also calculated for SPI and

PDSI from climate division data over the same period.

We also calculated Nash–Sutcliffe efficiency coefficients

for the same relationships, but hereafter we show only

correlation coefficients, as Nash–Sutcliffe statistics did

not provide additional information beyond that obtained

with correlation analysis given the normal distribution of

the data. We further evaluated relationships within the

period of record using a moving 31-yr correlation win-

dow. A stationary linear relationship assumes no signifi-

cant change in the relationship through time. It is

plausible that changes in correlations through time are

strictly a function of changes in streamflow variability

through time, but otherwise they have a stationary re-

lationship. We evaluated the null model of stationary re-

lationships between drought indices and streamflow by

creating 10 000 time series y that were a linear function of

SRI, plus randomnoise « following the simplemodel (e.g.,

Neter et al. 1996):

y5 SRI1 «

«5N(0,s) .

The error term is a random number from a normal dis-

tribution with mean 0 and standard deviation s. For SPI,

SPEI, and WBR, we vary s to obtain correlations be-

tween drought indices and streamflow approximate to

those derived in the observational record from 1948 to

2012. Moving correlation windows of 31-yr lengths were

calculated from these synthetic datasets with the central

95% of values from these 10 000 simulations used to

construct an envelope of potential values under the null

model. Linear least squares trends of the observed 31-yr

moving correlations and those resulting from the boot-

strapped data were computed.

3. Results

Mean squared correlation coefficients r2 between

SRI and drought indices of SPI, SPEI, PDSI, andWBR

for the months of January–September averaged across

all 21 basins are shown in Fig. 2. The results illustrate

that r2 from SPI and SPEI were largely comparable

with the strongest correlations obtained using 6–10-

month time scales ending in April–June encompassing

the vast majority of water-year P and explaining over

80% of the variance in SRI. A slight degradation of r2

for longer time scales of SPI and SPEI extending into

July–September suggests that summer P and PET had

negligible relationships to SRI across the study area,

consistent with the nominal summer P in the region

being lost either to evapotranspiration (ET) or soil

moisture recharge. The PDSI r2 peaked in April

(Figs. 2d,g) but explained only 60% of the variance in

SRI. Normalized 9–12-month WBR ending in June–

September exhibited the strongest r2 to streamflow at

the regional scale, explaining 86% of the variance in

SRI (Fig. 2c).

Correlations between drought indices and streamflow

varied by watershed, with r2. 0.9 in some basins (Table

1). In general, correlations were higher in the wettest
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basins that received more of their precipitation during

the winter months, particularly the wettest rain-

dominated basins. While total precipitation amount,

P seasonality, and SWE:P ratios are inherently coupled

across the basins of interest, partial correlation analyses

show that only PAMJ was statistically significant. The

maximum variance explained using SPI, SPEI, and

WBR all were strongly negatively correlated to PAMJ

(r from20.75 to20.7, p, 0.01; Fig. 3a), indicating that

some of the heterogeneity in correlations across the 21

basins is due to the seasonality of precipitation. Conversely,

the maximum explained variance for Penman–Monteith

PDSI (PM-PDSI) and Thornthwaite PDSI (Thorn-

PDSI) was strongly negatively correlated with total

precipitation (r 5 20.62, p , 0.01; Fig. 3b), with PDSI

having less utility in the wettest basins. Results from

Table 1 suggest that 12-month WBR ending in

September was the most highly correlated metric at the

regional scale and at the watershed-type scale. At the

individual station level, SPEI explained the most vari-

ance in 10 of 21 stations (8 of the 10 using PM method),

withWBR and SPI explaining themost variance at 8 and

3 stations, respectively.

Comparable calculations of r2 using SPI and PDSI

using data from NCDC climate divisions are shown in

Figs. 2f and 2h. The relationships obtained using climate

division data were qualitatively similar to those obtained

using the higher-resolution PRISM climate surfaces.

Generally, SPI calculated from PRISM explained 10%–

15% more variance in streamflow than SPI calculated

from climate division data, although the differences

varied widely across the study area (Fig. 4a). Correla-

tions between SRI and PDSI were also stronger using

PRISM data compared to divisional data (Fig. 4b).

FIG. 2. Values of r2 averaged over the 21 stations between water-year standardized runoff and values of metric duration for (a) Thorn-

SPEI, (b) SPI from PRISM data, (c) WBR, (d) Thorn-PDSI, (e) PM-SPEI, (f) SPI from CDD, (g) PM-PDSI, and (h) Thorn-PDSI from

CDD. In (a),(b),(c),(e), and (f) squared correlation coefficients are shown in a matrix where the ending month is on the y axis (January–

September) and the number of months is on the x axis. Black dots indicate that all watersheds display significant correlations at the two-

sided 95% level according to a Monte Carlo random phase test.
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Subtle differences between Penman–Monteith SPEI

(PM-SPEI) and SPI (r2PM-SPEI 2 r2SPI) were identified for

time scales that explained the maximum amount of in-

terannual variability in streamflow (Fig. 5a). The SPEI

provided slightly more explanatory power over the SPI

fromMarch to September for time scales of 9months and

less. The additional explained variance (r2PM-SPEI 2 r2SPI) for

6–9-month time scales ending in May–September was

strongly correlated to PAMJ (r5 0.8, p, 0.01) and total

precipitation (r 5 20.78, p , 0.01). The maximum ex-

plained variance for PM-SPEI was on average 1.5%

more than themaximum explained variance by SPI (Fig.

4c). By contrast, 9–12-month SPI ending in late winter

and early spring exhibited a stronger correlation to SRI

than SPEI.

Differences in correlations to SRI using PM-SPEI and

Thornthwaite SPEI (Thorn-SPEI) (r2PM-SPEI2 r2Thorn-SPEI)

shown in Fig. 5b were relatively small, largely confirming

the results of Dai (2011). Our results suggest that PM-

SPEI outperformed Thorn-SPEI for shorter time scales

(1–6 months) encompassing March–September in basins

withPAMJ. 20%. The difference inmaximum explained

variance between PM-SPEI and Thorn-SPEI was rather

small for most basins and qualitatively similar to differ-

ences between PM-SPEI and SPI (Fig. 4d). PM-SPEI

explained 4%–5% more variance than Thorn-SPEI for

the two driest watersheds; otherwise, no relationships

were seen to basin characteristics examined. Similar re-

sults were found between PM-PDSI and Thorn-PDSI

(not shown).

Time-varying r2 between SRI and 9-month SPI

(SPI-9), SPEI (SPEI-9), and WBR (WBR-9), as well as

PDSI, are shown in Fig. 6. Our results suggest correla-

tions increased over time. Averaged across all stations,

a linear trend exceeding 8% explained variance over the

three decades was observed for 9-month SPI and SPEI,

with 6% and 12% increases observed for May 9-month

WBR and PDSI, respectively. Changes were also present

in time-varying r2 using climate division data, although

again with lesser correlations compared to those using

PRISM data.

Simulated changes in r2 using the null model depict

a similar increase over the period of record, although

peaking around a 31-yr period centered during the late

1980s and returning to correlations seen earlier in the

record for more recent time periods. Figure 7a shows

r2SPI-9,null and the 95% confidence interval of the 21-station

mean along with the observed r2SPI-9 estimated from

PRISM. Increases in r2
SPI-9

using a moving 31-yr period

from the mid-1960s to mid-1980s are generally consis-

tent with the null model, indicating that such changes

may occur with an otherwise stationary relationship

and more variable streamflow record. However, a sig-

nificant divergence for SPI following the late 1980s is

inconsistent with stationary relationships. These dis-

crepancies were also observed for SPEI and WBR when

compared to the null model but were not apparent for

PDSI. Conversely, r2 computed with climate division data

appears to be fully explained by changes in streamflow

variability and within the 95% confidence bounds of the

null model (Fig. 7b).

On an individual station basis, the discrepancy be-

tween observed moving 31-yr r2SPI-9 and r2SPI-9,null using

PRISM data for the last 10 years of record was most

pronounced over the interior PNW,whereasmany of the

watersheds in westernWashington exhibited insignificant

differences (Fig. 7c). Statistically significant differences

for the last decade of observed moving 31-yr correlations

FIG. 3. Relationships between maximum squared correlation at each of the 21 watersheds for (a) PM-SPEI and

(b) PM-PDSI for the three basin characteristics examined, including total annual precipitation (x axis), fraction of

precipitation that falls inApril–June (y axis), and the SWE:P ratio (colors). Red, black, and blue indicate rain, transient,

and snow basins, respectively, using the criteria of Elsner et al. (2010). The sizes of the circles correspond to r 2.
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versus the null model (estimated from the resampled

null model data) were observed for seven of the nine

basins east of the Cascades, with some basins having an

addition 5% of explained variance relative to the null

model. Conversely, observed changes in r2SPI-9 computed

using climate division data were consistent with the null

model, with only one station having statistically signifi-

cant differences (Fig. 7d). A possible cause of strength-

ened correlations in recent decades is the assimilation of

climate data from high-elevation observations such as

Snowpack Telemetry (SNOTEL) in PRISM, particu-

larly in data-sparse regions with complex P patterns.

Prior to the 1980s, the majority of information used in

PRISM came from primarily lower-elevation National

Weather Service Cooperative Observer Program

(COOP) stations. Conversely, climate division data are

solely derived from COOP data and may be less repre-

sentative of interannual P variability in mountainous

regions and in regions with greater spatial heterogeneity

in P variability. The lack of comparable increases in

observed r2SPI-9 relative to the null model over water-

sheds in western Washington and Oregon is hypothe-

sized to be a consequence of stronger spatial coherence

between numerous COOP stations located in the region

and precipitation falling in nearby watersheds (e.g.,

Luce et al. 2013).

4. Discussion and conclusions

Following Redmond (2002), we find that no single

metric was universally optimal for tracking streamflow

at the watershed scale in the PNW, but PM-SPEI and

WBR generally had the highest predictive power while

PDSI had the lowest predictive power. WBR was the

best metric at the regional scale, which might not be

surprising given its intended purpose rather than more

generalized water supply–demand relationships of

SPEI. Correlations of streamflow to SPEI and WBR

FIG. 4. Differences of max variance explained in standardized runoff (%) between (a) SPI from PRISM minus

SPI from CDD, (b) PM-PDSI from PRISMminus PDSI from CDD, (c) PM-SPEI minus SPI (both from PRISM),

and (d) PM-SPEI minus Thorn-SPEI (both from PRISM). The legend at the top refers to (a) and (b), while the

legend at the bottom refers to (c) and (d).
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increased from winter through spring, similar to in-

creasing skill of operational streamflow forecasts that

incorporate late winter precipitation (e.g., Pagano et al.

2009). The generally lower correlations using PDSI are

also similar to those seen in prior drought index com-

parisons (e.g., Vicente-Serrano et al. 2012a) and likely

reflect PDSI’s original design for monitoring soil mois-

ture rather than runoff (Palmer 1965).

Drought indices that included atmospheric demand

performed better than simpler indices, reinforcing re-

sults by McEvoy et al. (2012) and Vicente-Serrano et al.

(2012a). The improved correlations with streamflow for

indices having more sophisticated physical parameteri-

zation schemes that account for atmospheric demand

(SPEI, WBR), while small, nonetheless suggest that such

approaches are advantageous and may become more

important in a changing climate (Barnett et al. 2005).

An average of 1.5% additional variance was explained

using SPEI over SPI, with more significant increases

in drier regions that receive appreciable spring P.

The influence of PET should be most pronounced in

these watersheds given that the growing season

P can be utilized by vegetation through ET and may

contribute less to runoff, thereby contributing to in-

terannual variability. Conversely, asynchronous sea-

sonality ofP and PET across much of the PNW results in

interannual variations in volumetric streamflow being

nearly entirely driven by interannual P variability (e.g.,

McCabe and Wolock 2011b). A broader analysis by

Vicente-Serrano et al. (2012a) found that SPEI provided

more explained variance than SPI in regions that receive

more P during the growing season, thereby making at-

mospheric demand a more important contributor to the

water balance.

Heterogeneous correlations across the region were

partially explained by the set of basin characteristics an-

alyzed, most notably P seasonality. Drought indices were

more strongly correlated in rain-dominated basins west of

theCascadeswhere the vastmajority of precipitation falls

from October to March. However, we note that climate

data might be more representative across these water-

sheds because of the proximity of weather stations and

the broader homogeneity in seasonal P on the windward

side of the Cascades. Other factors that we did not con-

sider, but that may be influential in watershed sensitivity

to climate variability, include upstreamgeology (and base

flow contributions) and vegetation that have been hy-

pothesized to alter interbasin climate–streamflow re-

lationships (e.g., López-Moreno et al. 2013). Confounding
factors of representativeness of climate estimates and

basin characteristics restrict us from fully resolving

interbasin differences.

Minor differences in correlation to streamflow were

found using the Penman–Monteith method compared

to the Thornthwaite approach for estimating PET.

These results appear to be in agreement with Dai

(2011) and van der Schrier et al. (2011). We show that

PM-SPEI explained significantly more streamflow

variance when considering P and PET confined to the

growing season when ET becomes more important to

the water balance (i.e., excluding precipitation oc-

curring prior to March). Furthermore, we found

that PM-SPEI explained 4%–5% more variance than

Thorn-SPEI in the driest two watersheds that received

more than 25% of their annual P from April to June.

Conceptually, the different approaches for estimating

PET would be more important where ET plays

a larger role on the local water balance, as opposed to

FIG. 5. Differences in 21-station r2 between (a) PM-SPEI and SPI and (b) PM-SPEI and Thorn-SPEI.
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watersheds with asymmetric seasonality of P and

PET. Interannual variability in PET estimated using

both approaches were strongly correlated for each

station (r2 50.26–0.77), with the lowest correlations

west of the Cascades. However, the range of in-

terannual PET variability using the Penman–Monteith

method was nearly 3 times that using the Thornthwaite

method. A larger-scale analysis of PM-SPEI and

Thorn-SPEI across watersheds where ET plays

a larger role in the local water balance may further

our cursory analysis. Likewise, limitations in the res-

olution and accuracy of forcing data restrict a de-

finitive analysis of the merits of different means of

approximating PET. Advances in topoclimatic mod-

eling that account for finescale structure in radiation,

wind speed, temperature, and vapor pressure deficit

(e.g., Holden et al. 2011) may help better understand

such relationships.

Increased correlation between streamflow and drought

indices over the period of record was seen across most

sites. Some of this increase is directly attributable

to increased streamflow variability, as documented by

Pagano and Garen (2005) and simulated by our null

model. However, additional increases in correlation un-

explained by changes in streamflow alone reveal non-

stationarity in climate–streamflow relationships for

certain watersheds. The discrepancy between the null

model and observed correlations using the PRISM

dataset were greatest at interior PNW gauges, where

COOP observations are sparse and potentially less

representative of precipitation received in mountain

watersheds. We hypothesize that increasing data quality

FIG. 6. Mean 31-yr moving-average r2 across all stations between SRI and (a) Thorn-SPEI-9, (b) PM-SPEI-9, (c) SPI-9, (d) WBR-9,

(e) Thorn-PDSI, (f) PM-PDSI, (g) SPI-9 fromCDD, and (h) PDSI fromCDD. In (a)–(f), data are from PRISM. Years on the y axis are at

the middle of the 31-yr average. Black dots indicate month of peak correlation for the given year.
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and spatial representation of climate datasets in complex

terrain (e.g., inclusion of SNOTEL observations in

PRISM) likely account for this disparity. Differences in

intraseasonal-to-interannual P variability across complex

terrain (e.g., Dettinger et al. 2004; Siler et al. 2013; Luce

et al. 2013) during the cool season have been partially

explained by variations in midlatitude flow and its in-

fluence on orographic precipitation enhancement. Prior

to the incorporation of SNOTEL observations, P esti-

mates in mountainous watersheds were estimated using

observations from lower elevations that are unable to

account for time-varying orographic enhancement.

Whereas we postulate that improved data quality is as-

sociated with observed increases in correlation between

drought indices and streamflow over the period of record,

other mechanisms may contribute, including: 1) a de-

creasing fraction of P falling as snow, altering snow hy-

drology and increasing the utility of drought indices that

only account for liquid precipitation; 2) changes in the

relative influence of water demand on runoff, particularly

with an earlier onset of spring across much of the region

observed through advances in snowmelt timing and

phenology (e.g., Cayan et al. 2001); 3) changes in P sea-

sonality (e.g., Pagano and Garen 2005); and 4) changes in

vegetative cover and ET of the upstream watershed.

Complex topography and its impacts on patterns of

moisture and energy have emerged as important topics

in mountain hydrology. The ability to monitor hydro-

climatic variables at local and regional scales is urgently

needed by resourcemanagers, land owners, planners, and

others across the western United States where decisions

may often be made based on incomplete or insufficient

data. We demonstrate that higher-spatial-resolution grid-

ded climate surfaces from PRISM provide added value

beyond more commonly used NCDC climate division

data, explaining up to 80%of the interannual variability in

water-year cumulative streamflow in the PNW. The

monthly datasets used in this study are finely resolved rel-

ative to many global and regional datasets, but nonetheless

cannot fully capture finescale characteristics in mountain

FIG. 7. Mean 31-yr moving r2 between SRI and 9-month SPI ending in May (bars) and the mean and 95%

confidence interval of the null model (line and whiskers, respectively) averaged across 21 stations for (a) PRISM

data and (b) CDD.Also shown is the difference of 31-yrmoving r2 for the last 10 years of record (centered on 1990–

99) between observations and (c) the null model for PRISM and (d) CDD, respectively. Filled symbols denote

statistical significance at the 95% confidence level.
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watersheds, partially because of an improved but still in-

sufficient observational network. The divergence in ob-

served correlation from PRISMdata and that simulated by

the null model demonstrates realized gains via assimilating

precipitation data high-elevation observations. However,

these results also suggest that analyses of longer-term

hydroclimate variability and change in mountainous re-

gions across the interior PNW using climate datasets may

be less reliable.
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