Supplementary figures and tables for manuscript "Orbivirus NS4 Proteins Play Multiple Roles to Dampen Cellular Responses" Mohd Jaafar et al.

Figure S1. Sequence of genome segment 9 of St Croix River virus showing the ORF of NS4 (highlighted in yellow) interrupted by a TGA stop codon (in red at position 215-217). The eight possible codons which restore the ORF are shown, encoding six possible amino acids.

Figure S2. Ct values for viral RNAemia determined by RT-PCR and virus titres expressed in $\mathrm{pfu} / \mathrm{ml}$ determined by plaque assay in mice inoculated with BTV-1RGc7 or BTV-1

Figure S3. Pulse / chase metabolic labelling of BSR cells infected with BTV-1RGc7 or BTV-1ANS4. This figure is identical to figure 3 in the main text, however with a longer exposure of the blot upon chemiluminescent detection. It depicts pulse / chase metabolic labelling of BSR cells infected with BTV$1 \mathrm{RGc}_{7}$ or BTV-1 NNS 4 at 5 h and 9 h p.i. using L-azidohomoalanine (a methionine analogue) as label. MI: mock-infected.

Figure S4. Purified dsRNA of Great Island virus, analysed by polyacrylamide gel electrophoresis using a 7.5% acrylamide gel.

Figure S5. Comparison of expression of innate immune genes in HeLa cells induced by purified dsRNA from GIV-infected BSR cells (dsRNA) in the absence or presence of BTV-1 NS2 protein. GAPDH was included as a control gene (not involved in innate immunity). These experiments were conducted as three separate biological replicates. $n s=$ not significant $(p>0.5)$.

Figure S6. BSR cells transfected with plasmid pCIBTV1NS4 (at 24 h post-transfection). A: Nuclei stained with DAPI (blue), B: NS4 expression in the nucleus and cytoplasm detected by anti-NS4 antibodies and Alexa Fluor 568-conjugated IgG (red) and C: merged A and B. The scale bar represents $5 \mu \mathrm{~m}$.

Figure S7. BSR cells transfected with plasmid pCIBTV1NS4 and assessed by FAM-FLICA at 24 h posttransfection. A: Nuclei stained with DAPI (blue), B: FAM-FLICA staining (green) of cells expressing NS4 indicating activation of caspases in transfected cells, C: NS4 expression detected by anti-NS4 antibodies and Alexa Fluor 568-conjugated IgG (red), D: merged A, B and C showing that NS4 localises with caspases in the nucleus (see Movie 1 for the z-stack, showing a wider field) and E: mock-transfected cells. The scale bar represents 5μ m.

Figure S8. Expression of CIRV P19 in BSR cells transfected with plasmid pCIP19-6xHis. A: SDS-PAGE and Coomassie blue staining of pCIP19-6xHis protein purified using nickel-coated magnetic beads. B: confocal immunofluorescence using mouse anti-pentahis antibodies followed by anti-mouse Alexa Fluor 488-conjugated IgG. Nuclei are stained blue with DAPI.


```
                        BTV NS4 RGRNRRAARRKRAAKRLKMQMWIDAYILQWDLDQAQKDLENARTRMLTEEMERLEEEVEM
                GCN4 RARNTEAARRSRARKLQRMKQ..........
```



```
A
```



```
                            BTV NS4 LMRELELLERM
                            GCN4 LENEVARLKKL
        GCN4 known secondary structure NONONOMNON
        GCN4 predicted secondary structure $0, %ownomend
```



```
                BTV NS4 RGRNRRAARRKRAAKRLKMOMWI DAYILOWDLDOAOKDLENARTRMLTEEMERLEEEVEM
```



```
                    278. 280.
                                    300
B
```



```
                            BTV NS4 LMRELELLERM
                            CEBPB LSRELSTLRNL
    CEBPB known secondary structure RONANMONAST
    CEBPB predicted secondary structure ROMNMNOMNMD
                        320 . . . . . . . . . }3
```



```
            BTV NS4 RGRNRRAARRKRAAKRLKMQMWI DAYILQWDLDQAQKDLENARTRMLTEEM
                bzlf1 RYKNRVAARKSRAKFKQLLQHYREV.......AAAKSSENDRLRLLLKQM
    bzlf1 known secondary structure
```



```
                            mever-munververus
```

```
    179180
                            210.
```

Figure S9. Secondary structure predictions for the amino acid sequence of BTV NS4 using Phyre2. The templates identified by Phyre2 are transcriptional regulators which include the general control of amino-acid synthesis like protein 4 or GCN4 (A), the transcription factor c/ebp beta or CEBPB (B) and the Epstein-Barr bzlf1 trans-activator protein (C).

Figure S10. HEK293T cells transduced with TAT-tagged proteins. Cells were transduced with TAT-NS4BTV1-6xHis (A), TAT-HA-VP3BTV1-6xHis (B) or TAT-HA-NS4SCRV-6xHis (C) tested with antiNS4 (A) or anti-HA tag antibodies (B and C). The results show that cells were efficiently transduced with the TAT-tagged proteins.

Table S1. Primer sequences used for cloning into mammalian and bacterial expression plasmids.

Primer	Sequence (${ }^{\prime} \rightarrow 3^{\prime}$)	RE	Plasmid	Target
NS4BTV1for	tacgGAATTCACCATGGTGAGGGGACGCAATCG	EcoRI	pCI-neo	Seg-9 BTV-1
NS4BTV1rev	tgagGCGGCCGCTCACTACCCATCTTCCTCCATTCGCTC	NotI	pCI-neo	Seg-9 BTV-1
NS4BTV1-6xHisrev	tgagGCGGCCGCTCACTAGTGATGGTGATGGTGATGCCCATCTTCCTCCATTCGCTC	NotI	$\begin{gathered} \text { pCI-neo/pGEXT- } \\ 4 \mathrm{~T}-2 \end{gathered}$	Seg-9 BTV-1
NS4GIVfor	CTATCGGAATTCACCATGAGTTACCGGCAGGAGCA	EcoRI	pCI-neo	Seg-9 GIV
NS4GIVrev	tgatGCGGCCGCTCACTATTGCTGAACGCACCTTGTCC	NotI	pCI-neo	Seg-9 GIV
TAT-NS4BTV1for	tacgGAATTCCC TACGGCCGCAAGAAACGCCGCCAGCGCCGCCGCATGGTGAGGGGACGCAATCG	EcoRI	pGEXT-4T-2	Seg-9 BTV-1
TAT-HA-VP3for	tacgGAATTCCC TACGGCCGCAAGAAACGCCGCCAGCGCCGCCGCTATCCGTATGATGTTCCGGAT TATGCAATGGCTGCTCAGAATGAGCAACG	EcoRI	pGEXT-4T-2	Seg-3 BTV-1
VP3-6xHisrev	tgagGCGGCCGCTCACTAGTGATGGTGATGGTGATGCACAGTTGGCGCAGCCAGCTTGGTGC	NotI	pGEXT-4T-2	Seg-3 BTV-1
TAT-HA-NS4SCRV (R) for	tacgGAATTCCC TACGGCCGCAAGAAACGCCGCCAGCGCCGCCGCTATCCGTATGATGTTCCGGAT TATGCAATGTGTTACAACAGGATGGCGAG	EcoRI	pGEXT-4T-2	Seg-9 SCRV
NS4SCRV (R) - 6xHisrev	tgagGCGGCCGCTCACTAGTGATGGTGATGGTGATGAAGCCTTCTCATAGGTAGAACGAAC	NotI	pGEXT-4T-2	Seg-9 SCRV
NS2BTV1For	tcagCCCGGGGTCATGGAGCAAAAGCAACGTAGA	XmaI	pCI-neo	Seg-8 BTV-1
NS2BTV1rev	tgagGCGGCCGCCTAAACGCCGACCGGCAATATGA	NotI	pCI-neo	Seg-8 BTV-1
P19-For	agctgGGATCCACCATGGAACGAGCTATACAAGGAAAC	BamHI	pCI-neo	P19 TBSV
P19-6xHisrev	tgagGCGGCCGCTCATTAGTGATGGTGATGGTGATGCTCGCTTTCTTTCTTGAAGGTTTC	NotI	pCI-neo	P19 TBSV
Sigma3MRV3for	tacgGAATTCGCAATGGAGGTGTGCTTGC	EcoRI	pCI-neo	Seg-S4 MRV3
Sigma3MRV3Rev	tgagGCGGCCGCTCATTAGCCAAGAATCATCGGATCGC	NotI	pCI-neo	Seg-S4 MRV3
IFN β-PromKpnIfor	tacgGGTACCTTCTCAGGTCGTTTGCTTTCC	KpnI	pGL3	Human interferon promoter
IFNß-PromXhoIrev	tacgCTCGAGGTTGACAACACGAACAGTGTC	XhoI	pGL3	Human interferon promoter

Underlined sequences are specific to the amplified sequence; Sequences in bold italics characters represent the 6xHis tag; Sequences in italics (non-bold) represent the TAT tag; Sequences in blue characters are restriction enzyme (RE) sites.; Sequences in lower case characters are non-specific nucleotides added for an efficient restriction enzyme digestion; Sequences in red in the reverse primers represent stop codons.
The GIV NS4 ORF (accession number HM543473) contains a naturally occurring NotI site 'GCGGCCGC', which we mutated to GCGACCGC to avoid truncation of the ORF during cloning; the mutation does not modify the amino acid sequence).

Table S2. Antibodies used in immunofluorescence and western blot analyses.

Primary antibody	Source	Dilution	Species in which antibodies were raised
Anti-NS4-BTV	Belhouchet et al., 2011	$1 / 500$	Rabbit
Anti-NS4-GIV	Belhouchet et al., 2011	$1 / 500$	Rabbit
Anti-Penta His	Qiagen, 34660	$1 / 500$	Mouse
Anti-Caspase 3	Santa-Cruz sc-7272	$1 / 100$	Mouse
Secondary antibody	Source	Dilution	Species in which antibodies were raised
Alexa Fluor 568 (red) goat anti-mouse	Thermo Fisher A-11031	$1 / 250$	Goat
Alexa Fluor 488 (green) goat anti-mouse	Thermo Fisher A-11001	$1 / 500$	Goat
Alexa Fluor 488 (green) donkey anti-rabbit	Thermo Fisher A-21206	$1 / 500$	Donkey
Alexa Fluor 568 (red)) goat anti-rabbit	Thermo Fisher A-11036	$1 / 250$	Goat
Anti-mouse peroxidase	Beckman IM0817	$1 / 750$	Goat
Anti-rabbit peroxidase	Sigma, A0545	$1 / 500$	Goat

Table S3. Primer sequences used for real time PCRs.

Primer	Sequence ($5^{\prime} \rightarrow 3^{\prime}$)	RE	Target
CulicoDcr-2For	CATCTCCTTGCAACTGAAGACG	NA	Culicoides Dcr-2
CulicoDcr-2Rev	CGTCGAATCAGCTGTTTGGG	NA	Culicoides Dcr-2
Act1CulicoFor	GTTGCACCAGAAGAACATCCAG	NA	Culicoides Actin-1
Act1CulicoRev	CCAGTGGTACGACCTGAAGC	NA	Culicoides Actin-1
EMCVBS 2	CGGCACAACCCCAGTGCCAC	NA	EMCV
EMCVBR2	CCAGATCAGATCCCATACAATG	NA	EMCV
CoxIHamFor	GATTTGGAAACTGACTTGTAC	NA	Hamster CoxI
CoxIHamrev	AGACTGTTCAACCAGTTCCAGC	NA	Hamster CoxI
NS4BTfor	GATCTGGATCAAGCGCAAAA	NA	NS 4 BTV-1
NS4BTrev	ACCTTTCCATCTCCTCTGTCAACA	NA	NS 4 BTV-1
NS4BTProb	[FAM] ACCTGGAGAACGCGCGAACGAGA [TAMRA]	NA	NS 4 BTV-1
NS4GIVfor	ACGAGTCCTCGGGTCTGAAAT	NA	NS4 GIV
NS4GIVrev	TGACCAACTCCGAGCTCCTT	NA	NS 4 GIV
NS 4 GIVProb	[FAM] CCTATTCCGGATAGAGATCGCGTCCTGTT [TAMRA]	NA	NS4 GIV
VACV_forward	CCGTCCAGTCTGAACATCAATC	NA	Vaccinia virus
VACV_reverse	ACAAATAGAAAAGTGTTGTAAACGCAA	NA	Vaccinia virus
VACV_Probe	[FAM] CCAACCTAAATAGAACTTCAT [TAM]	NA	Vaccinia virus
SCRVFor1	CGGGTCGCCACGCTTAT	NA	SCRV
SCRVRev1	ACAGCGGAACGCTCAGAGAA	NA	SCRV
SCRVProbe1	[FAM] CCTCCCACCGTTCCCGCACTG [TAMRA]	NA	SCRV

Table S4. Ct values and virus titres in blood of mice infected with BTV-1RGc7 or BTV-1 1 NS4 at day 4 post-infection (p.i.).

Virus	Ct value Day 4 p.i.	Viraemia (plaque assay)
BTV-1RGc7	$19.6-23.3$ (mean $=21.66)$	$1.2 \times 10^{4}-3.5 \times 10^{4} \mathrm{pfu} / \mathrm{ml}\left(\right.$ mean $\left.=2.1 \times 10^{4}\right)$
BTV-1 $\mathrm{NNS}^{2} 4$	$19.1-23.8($ mean $=22.06)$	$1.4 \times 10^{4}-2.3 \times 10^{4} \mathrm{pfu} / \mathrm{ml}\left(\right.$ mean $\left.=1.76 \times 10^{4}\right)$

