

#### The impact of overexploitation of groundwater resources on the resilience of agricultural farms in a semi-arid zone

Nour Nsiri, Abderraouf Zaatra, Sophie Drogué, Hatem Belhouchette, Georgios Kleftodimos

#### ▶ To cite this version:

Nour Nsiri, Abderraouf Zaatra, Sophie Drogué, Hatem Belhouchette, Georgios Kleftodimos. The impact of overexploitation of groundwater resources on the resilience of agricultural farms in a semi-arid zone. XVII EAAE Congress: Agri-food systems in a changing world: connecting science and society, Aug 2023, Rennes, France. , pp.1, 2023. hal-04213830

HAL Id: hal-04213830 https://hal.inrae.fr/hal-04213830

Submitted on 21 Nov 2023

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



L'INSTITUT

agro Montpellier

# The impact of overexploitation of groundwater resources on the resilience of agricultural farms in semi-arid zones





Nsiri N<sup>1,2,3</sup> Zaatra R<sup>1</sup>, Kleftodimos G<sup>1</sup>, Belhouchette H<sup>1</sup>, Drogué S<sup>2,3</sup>



<sup>1</sup>CIHEAM-IAMM Mediterranean Agronomic Institute of Montpellier, 34093 Montpellier, France

<sup>2</sup>Montpellier Institut Agro, <sup>3</sup>UMR MoISA

# **Topic of research**

• Water resources in Morocco are rather well known, but limited, irregular, and fragile.

- The expansion of irrigated agricultural land has increased the groundwater resulting the overexploitation local aquifers.
- Water scarcity is expected to have a negative impact food production and threaten the resilience of the local agricultural system

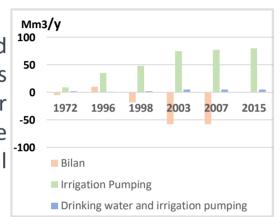
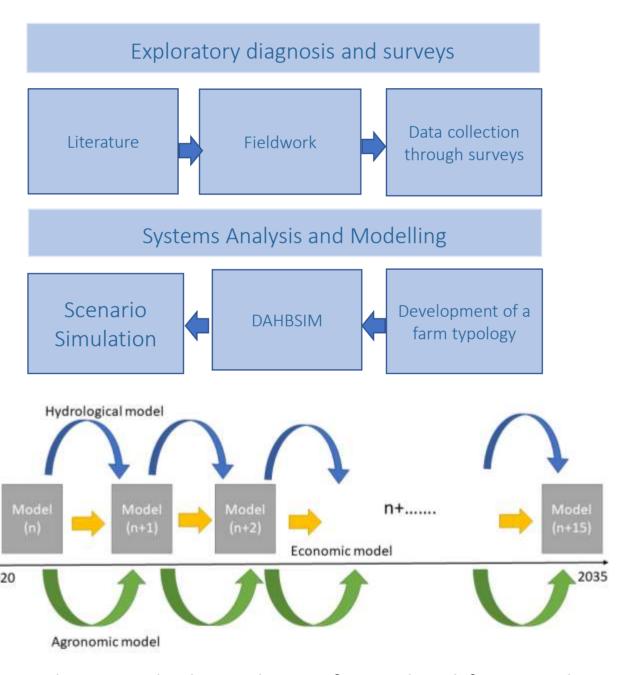



Figure 1: Evolution of groundwater withdrawal and water balance

## **Objective**

The main objective of the research is to evaluate the impact of groundwater overexploitation on the resilience of agricultural households in Morocco.


#### Case study:

- South of the Atlas mountains
- Semi-arid to arid climate
- Average rainfall of 200 to 250 mm/y
- Quasi-absence of surface water
- Importance of groundwater resources
- Water consuming activities



# Methodology

Our approach, to analyze the resilience of farmers, focuses on the household level where the main decision-making is taking place.



In order to study the resilence of agricultural farms in the Souss Massa region (Morroco), we used DAHBSIM bio-economic model (Komarek et al. 2017). It is based on mathematical programming methods and maximizes the expected utility of household income.

### **Results**

We identified 3 farm-types in the area; intensive production system based mainly on vegetables, semi-intensive cereal monoculture households and one perennial crops.

**Table 1**: Farm income and pumping costs

|                            | Indicator    | Scenario<br>of<br>reference<br>(Sc_REF)<br>2020 | Business As<br>Usual (BAU)<br>(2035) | Average<br>annual cost of<br>degradation | Cost of degradation Sc_REF - BAU |
|----------------------------|--------------|-------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------|
| Water<br>cost(dh/<br>m3)   | 26.57        | 61.93                                           | 40.85                                | 43.7                                     | 6,536,000,000                    |
| Pumping<br>costs<br>(dh/m) | 1827.53      | 2268.65                                         | 388.01                               | 441.12                                   | -                                |
| Farm<br>incom<br>(dh/farm) | 34243.8<br>7 | 26871.14                                        | 3686.36                              | 7372.73                                  | 112,433,980                      |

**Table 1**: Income variation with precipitation after simulation

| Intensification level  | Crop               | Income (Dicrease or stable Dh/ha) |
|------------------------|--------------------|-----------------------------------|
| Intensive (Type 1)     | Vegetables         | - 2777,95                         |
| Semi-intensive(Type 2) | Cereal monoculture | - 980                             |
| Extensive (Type 3)     | Perennial          | +2050                             |

References: Bouchaou et al., 2011/ Hssaisoune et al., 2020/ Komarek et al., 2017 / El Ansari et al., 2020 / Malki et al., 2017