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Abstract: Over the past few decades, honey bees have been facing an increasing number of stressors.
Beyond individual stress factors, the synergies between them have been identified as a key factor in
the observed increase in colony mortality. However, these interactions are numerous and complex
and call for further research. Here, in line with our need for a systemic understanding of the threats
that they pose to bee health, we review the interactions between honey bee viruses. As viruses are
obligate parasites, the interactions between them not only depend on the viruses themselves but
also on the immune responses of honey bees. Thus, we first summarise our current knowledge of
the antiviral immunity of honey bees. We then review the interactions between specific pathogenic
viruses and their interactions with their host. Finally, we draw hypotheses from the current literature
and suggest directions for future research.

Keywords: virus; interaction; synergism; immune system; co-infection; honey bee; Apis mellifera;
Apis cerana

1. Introduction

The sustainability of our agriculture greatly relies on the pollination services provided
by bees [1,2]. The decreasing population of wild bees and the increasing overwintering
mortality of honey bees are caused by multiple interacting stressors [3]. Thus, it is vital to
better understand bee physiology and behaviour as a whole. Fortunately, over the past
decade, great research efforts have gone into the study of the interactions between categories
of stressors, namely pesticides, urbanisation of natural spaces, intensive agriculture and
monoculture, climate change, parasites, and pathogens [4–14], and honey bee immune
dynamics when facing them [15]. However, honey bee diseases, and some viral diseases, in
particular, remain understudied.

Around 72 viruses have been detected in honey bees [16]. Most are considered
commensal, but some can be qualified as pathogens. Briefly, pathogenicity occurs when the
interactions between a biological entity and its host lead to detrimental effects (virulence) in
the host [17]. As defined by the damage-response framework [18], pathogenicity can either
occur directly through the action of the pathogen or through the host immune response [19].
Long-term evolutionary promiscuity between an organism and its host can also lead to
mutualistic interactions, as seen in gut microbiota [20], and in viruses [21]. However, no
microbe is a pathogen or a symbiont by essence. Pathogenicity and symbiosis are emergent
and dynamical properties driven by an ecological context [17,22–24]. Indeed, in many
cases, viruses appear to be commensal (covert infection) until a variation in key biotic
or abiotic factors turns the virus into a pathogen, mainly by dramatically increasing its
replication and triggering clinical signs in its host [25–28]. These overt infections, defined
as a disequilibrium in host-microbial interactions, are commonly called ‘diseases’.

A wide diversity of viruses can be detected in honey bees; here, our review focuses
specifically on the viruses related to five major honey bee viral species triggering overt
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infections and known as critical for honey bee health: Sacbrood virus (SBV) can disrupt the
development of honey bee larvae [29,30]; Black queen cell virus (BQCV) can cause early death
in queen pupae [31,32]; the deformed wing viruses (DWV, including the most frequently
reported variant genotypes DWV-A and DWV-B) can alter wing development during the
pupal stage, leading to lifespan reduction in adults and their inability to fly [26,33]; Chronic
bee paralysis virus (CBPV) can cause whole-body trembling, complete body melanisation
and paralysis in adult bees [34,35]; and lastly, Acute bee paralysis virus (ABPV and the related
viruses, Israeli acute paralysis virus (IAPV) and Kashmir bee virus (KBV) together considered
as the AKI-complex) can lead to paralysis in artificial infections and abrupt death in natural
conditions [36,37].

To study and understand diseases, considering honey bees as holobionts is of particu-
lar interest [38] because the internal ecology of an organism performs a crucial part in the
microbes therein becoming pathogenic. Holobiont entities are defined as the whole net-
work of interactions within the microbial community of a host and between the microbial
community and the host itself [39,40]. The hologenome theory suggests that an organism’s
fitness is intricately linked not only to its own genome but also to all hosted genomes,
from the mutualistic microbiota to the more or less integrated pathosphere [41]. This
approach requires understanding the complex cooperative and competitive interactions
between all genomes taking part in the holobiont. However, when choosing between a
reductionist approach and a holistic view of biological systems, researchers are bound to be
torn between experimental controllability and accurate representations of complexity [42].
Although both approaches have their limitations, both are necessary for an integrated view
of living processes [43]. Nevertheless, most experimental studies on honey bee viruses
only considered single-virus infections, and most studies quantifying multiple viruses
have only been descriptive. Thus, in this review, we strive to identify key interactions
between selected threatening, disease-causing honey bee viruses and between these viruses
and their host to foster further research on viral interactions towards an integrated view
of honey bee health. For this purpose, we will first focus on the host response to viral
infections as a whole before going in-depth into specific virus-virus interactions.

2. Honey Bee Antiviral Immunity

Viruses are obligate parasites; their replication thus depends on host metabolism, and
they confront host defences. Most honey bee viruses and their hosts share a long evolution-
ary history that has led both sides to develop mechanisms to maintain their integrity and
ensure their reproduction in a continuous arms race. Faced with viral infections, honey
bees mobilise resources for physiological [44–46] and behavioural [47] immune responses.
Therefore, viral interactions cannot be separated from host–parasite interactions and should
be considered as a whole, intricate system [48]. Regarding physiological immune responses
in insects, extensive work has been complete in drosophila [49] and mosquito [50] models,
facilitating more recent inquiries into honey bee immunity. In this section, we first cover
honey bee immune responses and the effectors involved in honey bee antiviral immunity.
Figure 1 summarises the interactions between the main biological systems involved in
honey bee virus dynamics.
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Figure 1. Schematic representation of the interactions between the main biological systems involved 
in honey bee virus dynamics. Unilateral arrows represent the influence of a system upon another 
system. Bidirectional arrows represent reciprocal influence between systems. Rectangles contain 
molecular organisms; rounded rectangles contain cellular organisms; circles contain physiological 
processes. Red shapes are considered pathogenic; green shapes are considered symbiotic or com-
mensal; blue shapes are host-dependant systems. References : (1): [51,52]; (2): [51–61]; (3): [62–67]; 
(4): [68]; (5): [69–71]; (6): [72]; (7): [73–75]; (8): [76–86]; (9): [79]; (10): [7,87–97]; (11): [98]; (12): [99–
102]; (13): [71,94,99,103–109]; (14): [110–113]. 

2.1. Vitellogenin 
Vitellogenin is a highly conserved egg yolk precursor protein [114]. Despite its func-

tional origin being linked to queen fecundity [115], it performs a crucial role in the unfer-
tilised honey bee workers as well [116]. As we demonstrate below, vitellogenin acts as an 
immune elicitor and regulates social task allocation and longevity in worker honey bees. 

Vitellogenin and juvenile hormone act as mutual repressors. Together, they control 
age-related behaviour and task allocation [117]. Nurse bees display high vitellogenin 
stores and low juvenile hormone titres, whereas foragers display low vitellogenin stores 
and high juvenile hormone titres. In nurse bees, vitellogenin is metabolised in the hypo-
pharyngeal glands for royal jelly production [116,118], used in turn for feeding worker 
and queen larvae. Later in life, increased expression of juvenile hormones leads to the 
degeneration of the fat body and the hypopharyngeal glands [119,120]. As these tissues 
serve as honey bees’ main vitellogenin production and storage sites [118,121], their degen-
eration leads to a depletion of vitellogenin stores [117]. This depletion in foragers leads to 
decreased longevity [122], increased gustatory responses [123], haemocyte apoptosis 
[124], and reduced resistance to oxidative stress [125]. This depletion has also been de-
scribed following an artificial immune challenge, but heat challenges lead to increased 
vitellogenin expression [126]. This increased vitellogenin expression has been linked to 
decreased viral replication for DWV [127] and may explain the lower viral titres found in 
heat-challenged honey bees [128]. However, given the plurality of the physiological pro-
cesses in which vitellogenin is involved, its expression cannot be considered a direct rep-
resentation of honey bee immune activity. For instance, one study has shown that despite 
their low vitellogenin titres, foragers show increased anti-microbial peptide (AMP) pro-
duction (see Section 2.3) compared with nurse bees [129], leading to a higher susceptibility 
to viral infection in nurses [130]. A similar pattern has been found in wintering bees, for 

Figure 1. Schematic representation of the interactions between the main biological systems involved
in honey bee virus dynamics. Unilateral arrows represent the influence of a system upon another
system. Bidirectional arrows represent reciprocal influence between systems. Rectangles contain
molecular organisms; rounded rectangles contain cellular organisms; circles contain physiological
processes. Red shapes are considered pathogenic; green shapes are considered symbiotic or com-
mensal; blue shapes are host-dependant systems. References: (1): [51,52]; (2): [51–61]; (3): [62–67];
(4): [68]; (5): [69–71]; (6): [72]; (7): [73–75]; (8): [76–86]; (9): [79]; (10): [7,87–97]; (11): [98]; (12): [99–102];
(13): [71,94,99,103–109]; (14): [110–113].

2.1. Vitellogenin

Vitellogenin is a highly conserved egg yolk precursor protein [114]. Despite its func-
tional origin being linked to queen fecundity [115], it performs a crucial role in the unfer-
tilised honey bee workers as well [116]. As we demonstrate below, vitellogenin acts as an
immune elicitor and regulates social task allocation and longevity in worker honey bees.

Vitellogenin and juvenile hormone act as mutual repressors. Together, they control
age-related behaviour and task allocation [117]. Nurse bees display high vitellogenin stores
and low juvenile hormone titres, whereas foragers display low vitellogenin stores and high
juvenile hormone titres. In nurse bees, vitellogenin is metabolised in the hypopharyngeal
glands for royal jelly production [116,118], used in turn for feeding worker and queen larvae.
Later in life, increased expression of juvenile hormones leads to the degeneration of the fat
body and the hypopharyngeal glands [119,120]. As these tissues serve as honey bees’ main
vitellogenin production and storage sites [118,121], their degeneration leads to a depletion
of vitellogenin stores [117]. This depletion in foragers leads to decreased longevity [122],
increased gustatory responses [123], haemocyte apoptosis [124], and reduced resistance to
oxidative stress [125]. This depletion has also been described following an artificial immune
challenge, but heat challenges lead to increased vitellogenin expression [126]. This increased
vitellogenin expression has been linked to decreased viral replication for DWV [127] and
may explain the lower viral titres found in heat-challenged honey bees [128]. However,
given the plurality of the physiological processes in which vitellogenin is involved, its
expression cannot be considered a direct representation of honey bee immune activity. For
instance, one study has shown that despite their low vitellogenin titres, foragers show
increased anti-microbial peptide (AMP) production (see Section 2.3) compared with nurse
bees [129], leading to a higher susceptibility to viral infection in nurses [130]. A similar
pattern has been found in wintering bees, for which vitellogenin stores are preserved at
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the expense of a reduced immune response [131]. Vitellogenin is also involved in immune
priming, as discussed in Section 2.6.

2.2. RNA Interference

The RNA interference (RNAi) pathway is the primary host defence against viruses
in honey bees [46]. The first step of this immune pathway relies on Dicer proteins, a
set of ribonucleases that recognise and cleave the intermediate double-stranded RNA
(dsRNA) generated during the replication of RNA viruses. Dicer products are 21 to
23 nt RNA fragments called small interfering RNA (siRNA). The RNA-induced silencing
complex (RISC) is able to detect these siRNAs and separate both RNA strands. The strand
complementary to the targeted viral RNA is used as a probe by the RISC, specifically
hybridising, then cleaving viral single-stranded RNA (ssRNA). Cleavage of viral ssRNA
relies greatly on the activity of the Argonaute-2 protein (Ago-2), the catalytic component of
RISC. In particular, the reduction in the dicer gene expression by gene knock-down leads to
elevated replication of a model virus (Sindbis virus expressing the green fluorescent protein
(GFP)) in honey bees [132].

Such RNAi mechanisms are known to be ancient. Indeed, not only has this mechanism
been conserved across phyla [133,134], but the last eukaryotic common ancestor (LECA)
likely already possessed this mechanism [135]. A recent study hypothesised that it actually
appeared in the LECA as a dispensable regulatory system and not as a primary defence sys-
tem [136]. The regulatory function of this system may still persist in contemporary insects.
Although the core RNAi mechanism (i.e., RISC) relies on target-specific siRNAs [137,138],
Dicer-2 activity may also trigger a non-specific dsRNA-mediated immune pathway [132].
Although the underlying mechanisms of this pathway are not known, in drosophila, Dicer-2
activates expression of the vago gene, which in turn produces a secreted protein activating
the Jak-STAT pathway [139,140], a pathway involved in the regulation of other humoral
immunity pathways through the expression of thioester-containing proteins (TEPs) [141]
(see Section 2.3). This type of regulatory cascade may exist in honey bees, because DWV
infection triggers vago expression [87] and the activation of the Jak-STAT pathway [103].
Alternatively, Dicer-2 products may also be involved in honey bee immune priming (see
Section 2.6).

2.3. Humoral Immunity

Humoral immunity in insects comprises multiple pathways coordinating the produc-
tion of AMPs [142]. Compared with RNAi, these pathways constitute a slower and less
specific immune response [47]. The production of AMPs is mainly driven by the Toll and
Immune-deficiency (Imd) pathways, both relying on an NF-κB transcription factor (Dorsal
and Relish, respectively), whose continuous inhibition by IF-κB can be lifted to produce
specific AMPs. The Imd pathway mainly controls the production of hymenoptaecins
and apidaecins [143], and the Toll pathway mainly controls the production of defensins
and abaecins [144], although these pathways crosstalk [145] and may both be involved
in abaecin and defensin production [146,147]. The exact mechanisms of AMP effectors
on viruses are currently not known, but it has been hypothesised that some AMPs can
stabilise viral capsids, thus inhibiting viral RNA release and replication [148]. Feng et al.
also suggested that the mechanisms of AMP action may cover the majority of the virus
life cycle [149]. In contrast to the core RNAi mechanism, which is driven by specific virus
targeting, the humoral immune pathways may be effective against all major honey bee
viruses. Moreover, experiments on larvae and pupae suggest that each humoral pathway
activation depends on the developmental stage in which the bee is infected and on the
virus itself [99].

2.4. Melanisation

Viral infections can also trigger a melanisation response in honey bees. For instance, a
melanisation response has been observed in DWV infections [99,104,150], although a study
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has found a negative correlation between DWV loads and melanisation response [105]. In
this process, melanin acts as a physical barrier against pathogens. As such, honey bees
naturally melanise their cuticle during development through phenoloxidase (PO) activ-
ity [151]. When uninfected larvae show little to no PO activity [152], this later increases
in pupae [153] and adult honey bees [154] as they get older. In cases of infection, haemo-
cytes are recruited to surround the recognised pathogens or infected cells [155]. Through
PO activity, melanin is produced within haemocytes, which finally undergo apoptosis,
thereby releasing melanin and encapsulating their target [156]. PO activity continues
throughout the entire bee lifespan [157], maintaining melanisation of the cuticle. However,
haemocyte counts significantly decrease when honey bees undergo their nurse-to-forager
transition [157,158], although foragers’ encapsulation response remains unchanged [159].
For a more detailed review of cellular immune responses in honey bees, see [48].

2.5. Social Immunity

Within a honey bee colony, the high density of the honey bee population, coupled with
the high genetic similarity between individuals, makes them particularly susceptible to par-
asites and pathogens [160], including viruses [161]. To further prevent pathogen outbreaks,
social insects have developed alternative defence mechanisms known as social immu-
nity [49,162]. Some studies have suggested that the development of social immunity in euso-
cial hymenopterans has led to decreased investment in individual immunity [144,163,164],
although another study has not found evidence for a genetic trade-off between hygiene
behaviour and individual immunity [165].

Most social immunity mechanisms are behavioural in nature. For example, honey bees
can detect and dispose of sick or dead brood, whether it is infected by SBV [53], DWV [51,54],
KBV [52], or infested by an ectoparasitic mite [51,52]. Interestingly, it has been suggested
that the accumulation of DWV in the antennae [55] decreases this behaviour [51]. This
hygiene behaviour towards brood is the target of selective breeding [166–168], and Apis
cerana is known to exhibit quicker hygiene behaviour than Apis mellifera [56]. Honey bees
can also detect virus-infected adult nestmates and exhibit either agonistic (biting, dragging
out of the hive) or non-agonistic (allogrooming, antennation) behaviour towards infected
individuals [57–59]. Additionally, infected, and immune-challenged honey bees reduce
their trophallaxis behaviour towards nestmates [60], and queens may interact less with
IAPV-infected workers [61].

As a more systemic mechanism, honey bees from different castes spatially distance
themselves from each other when the colony is threatened by parasites, with foragers
appearing less frequently on brood frames [169]. This type of distancing strategy can
even lead infected individuals to banish themselves from the colony [170]. Honey bees
are also known to increase in-hive temperatures following fungal infection by Ascophaera
apis [171], although the effectiveness of this behaviour in preventing infection has been
debated [172]. High temperatures can be detrimental to honey bee survival but can decrease
DWV loads [128], although they do not seem to trigger individual immune responses [173].
However, it is currently unknown whether honey bees trigger a colony fever following
viral infection.

In addition to the regulation of social interactions, social immunity includes the use
of antiseptic substances as well. For instance, honey bees use Defensin-2 as a personal
immune effector but secrete Defensin-1 in hive products, such as honey and royal jelly [174],
and secrete more of it after being exposed to a pathogen [175]. Honey bees also coat the
inside of the hive with propolis, an antiseptic substance made from resins [176,177], which
they forage more actively following chalkbrood infestation [178]. The antiviral effects of
propolis have been found against human viruses (reviewed in [179]); however, its effect
on honey bee viruses is less clear. Some authors report no differences in DWV, BQCV, and
IAPV loads between propolis-rich and propolis-poor colonies [176], but others indicate a
higher increase in DWV loads in propolis-deprived colonies under varroa pressure [177].
Owing that propolis is made from various resins, these discrepancies may be due to



Viruses 2023, 15, 1217 6 of 20

substantial variations in propolis composition and require more investigation to identify
candidate molecules with antiviral properties, whether they act directly or indirectly
through microbiota enhancement [68] (see Section 2.7).

2.6. Immune Priming

Until recently, it was believed that insects rely solely on their innate immunity and
lack acquired immunity mechanisms. While it is true that they mostly rely on innate
immunity, evidence shows that many insects [180], including honey bees [62], are able to
transfer pathogen fragments within and across generations, becoming agents for immune
priming. Immune priming occurs horizontally when honey bee workers feed larvae with
royal jelly [175]. To produce royal jelly, nurse bees mobilise vitellogenin, which acts as
a transporter of immune primers, such as E. coli fragments [181] or viral dsRNAs [63],
sending them to their hypopharyngeal glands, where vitellogenin is digested for jelly
production [116]. The viral dsRNAs may originate from the RNAi pathway activity, given
that Dicer activity produces dsRNAs (see Section 2.2). These immune primers are then
transmitted to larvae when honey bee nurses feed them. In addition to this horizontal im-
mune priming, the pathogen exposure history of queens also affects their offspring through
a transgenerational immune-priming mechanism. Offspring of honey bee queens [64] or
bumblebee queens [182] previously challenged with a bacterial infection show greater
immune responses and survival when challenged with the same pathogen than offspring
of unchallenged queens. The ‘suppressed in ovo viral infection’ (SOV) trait described by De
Graaf et al. [65] may result from transgenerational immune priming against DWV and may
prevent its vertical transmission. However, the effects of queens’ DWV infection history
on transgenerational immune priming still seems limited [66] and depended on multiple
factors, including viral infection routes [67].

2.7. Factors Altering Immune Function

Protein restrictions can impair immune responses [72] and promote viral replica-
tion [183–185]. Compared with colonies supplemented with polyfloral pollen, colonies
supplemented with monofloral pollen show higher Nosema ceranae loads and lower toler-
ance to the microsporidia [186], and lower viral loads [187]. The importance of nutrition
in honey bee health and immunity has rarely been considered in laboratory experiments.
Bees in cage experiments often have access to sucrose solutions alone, but the inclusion
of polyfloral pollen offers the best opportunity to depict natural interactions between the
virobiome and its host.

In addition to hosting pathogens, honey bees host a great variety of non-pathogenic
microbiota, which performs an important role in honey bee defences [76–78]. This microbial
community also host their own virobiome, which would likely be involved in the holobiont
homeostasis [79]. Although honey bee microbial community does not affect DWV loads
after oral inoculation, it contributes to the bee tolerance to DWV infections [80]. Higher
diversity in honey bee microbiome has also been linked to resistance to SBV in Korea [81],
with some bacterial species identified as specific to SBV-resistant bees [82]. Finally, exposure
to antibiotics was found to negatively alter honey bee gut microbiota [78,83], leading to
increased susceptibility to IAPV infection [84]. These contributions of gut microbiota to host
tolerance and resistance have been described as part of a co-immunity mechanism [85,86].
These mechanisms merit further study: a recent study reported suppression of a DWV
infection and a decrease in mite survival after feeding honey bees with a modified gut
bacterium, thereby stimulating the honey bee RNAi pathway [188]. Additionally, the
composition of microbial communities of many bee species relies on their nutrition [73–75],
confirming the key role of nutrition in bee health.

Varroa destructor infestation may also lead to an alteration of the honey bees’ immune
response [104]. However, due to the complex link between varroa mite infestation and
DWV infection (see Section 3.1), determining immune alterations specifically caused by
the mite has been challenging [189]. For this reason, the underlying mechanisms of varroa-



Viruses 2023, 15, 1217 7 of 20

induced immunosuppression are still under debate. Varroa mites feed primarily on bee
haemolymph and fat body tissue [69], which is the main vitellogenin production and
storage site [118]. Multiple studies endeavouring to disentangle the effects of varroa and
DWV on the immune response have not found evidence for an active varroa-mediated
immunosuppressive mechanism [70,143,190]. Therefore, the observed alteration of the
immune response following infestation may be more likely due to varroa feeding on the
honey bee haemolymph and fat body, potentially leading to the depletion of vitellogenin
stores [71] and detrimental effects on metabolism [70], which in turn have negative effects
on immune responses (see Section 2.1).

Finally, honey bee genetics may also perform a key role in resistance to viral infections.
For example, bees expressing the SOV genetic trait have proven to be more resilient to
DWV infections [65]. Additionally, honey bee pupae from different patrilines within the
same colony seem to show different patterns of DWV infection [191], which may indicate
either a differential infection state between drones or a difference in genetic traits related to
virus resistance.

3. Viral Interactions

In the previous section, we reviewed the mechanisms by which honey bees maintain
their microbiome in a non-pathogenic state. In the following section, we will try to identify
potential interactions between the major viruses threatening honey bee health. These
interactions can be either direct or indirect [192]. For instance, direct interactions between
virions can lead to genomic recombination [88,193]. Another type of direct interaction
is superinfection exclusion (SIE), whereby an already established infection by one virus
prevents subsequent infection by another virus [194,195]. Viruses can interact indirectly
through their effects on host physiology, behaviour, or immune responses [196,197]. A
graphical summary of honey bee individual immune pathways and their putative activation
and inhibition by DWV, SBV, and AKI-complex viruses can be found in Figure 2.
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Figure 2. Simplified schematic representation of the hypothetical honey bee immune responses
following single infections by either Deformed wing virus (DWV, blue), Sacbrood virus (SBV, orange), or
Israeli acute paralysis virus and Acute bee paralysis virus (IAPV and ABPV, green). Black lines represent
putative interactions, with black arrows indicating putative activation and blunt ends putative
inhibition. Coloured arrowheads represent segment activation following viral infection, and coloured
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crosses activate segment inhibition following viral infection. References related to IAPV: Putative
evasion of RNA-induced silencing complex (RISC) activity [110], Jak-STAT pathway activation [110],
inhibition of Toll and Immune deficiency (Imd) pathways [110], Dicer activity [111], and melanisation
activity [113]. References related to DWV: Jak-STAT pathway activation [103], Toll pathway inhibi-
tion [71,99], Imd pathway activation [103,107,108], melanisation activity [104], vago expression [87],
putative evasion of RISC activity [94], and Dicer activity [111]. References related to SBV: Jak-STAT
pathway activation [101], Toll and Imd pathway activation [99], melanisation pathway inhibition [99],
and RNAi pathway activation [102]. AMP: Anti-microbial peptide; TEP: Thioester-containing protein.

3.1. DWV-A and DWV-B

DWV is a major threat to honey bee colony health and has been implicated in colony
collapse disorder [198,199]. Although other master variants have been described (DWV-
C [200], DWV-D [201]), their, respectively rare detection and disappearance incited research
efforts to focus on the two most commonly detected master variants: DWV-A and DWV-
B. The evolution and virulence of DWV appear to be closely related to the biology of
the ectoparasite mite V. destructor. The varroa mite has been described as a biological
vector of DWV [89,90], altering the viral process by providing a new route of infection.
In previously spared countries, the introduction of the mite first led to an evolutionary
bottleneck for DWV [91], followed by an increase in viral genomic diversity fostered by the
mite [92–94,136]. As a result, a variant of DWV, originally described as varroa destructor
virus 1 (VDV-1) [95] and later called DWV-B, has rapidly supplanted other variants in
some parts of the world [39]. This variant can replicate within the mite [7,96], can replicate
faster in honey bee pupae [202], and is thought to be more virulent than DWV-A in adult
bees [203–205], although [206] reports similar virulence for both variants in pupae. Given
the recent evolution of the virus and the threat, it represents for honey bees, understanding
how new variants appear, their virulence and how they interact is critical for anticipating
its future evolution and managing it effectively. Recombination events between DWV
variants are indeed common [92] and occur at preferential recombination hotspots [88]
in the genome. The varroa-guided selection seems to favour recombinants carrying non-
structural genomic information from DWV-A and capsid genomic regions of DWV-B [88,97].
It has been suggested that this DWV-B genomic region has been favoured over its DWV-A
counterpart because it may enhance transmission between varroa mites and honey bees.

Results regarding interactions between DWV variants and recombinants are less
clear. Some studies have described an SIE of DWV-A by pre-infecting DWV-B [194],
identifying genetic relatedness as a prominent factor in this interaction [195]. Recombinants
may thus be an essential part of SIE between variants. However, in several studies, co-
inoculation of multiple variants and recombinants did not alter either variant’s reproductive
success [94,195,206]. Conversely, some studies suggest a potential helper effect between co-
infecting variants [207,208], describing a higher DWV-B prevalence when co-infecting DWV-
A is present. As discussed in [92,209], the timing of transmission, the viral background of
infected bees and infection routes are critical in shaping the evolution of this virus.

3.2. DWV and SBV

As the importance of DWV in colony collapse disorder has become clearer, an increas-
ing number of studies on this virus have revealed the potential that DWV has to interact
with other viruses. In particular, interactions between DWV and SBV have been sug-
gested. A study focusing on the transcriptomic profile of eggs laid by different queens [210]
suggested that a synergistic effect between DWV and SBV explains the observed higher
differential expression of genes between uninfected and co-infected eggs than in eggs
infected by only one virus. Another study focusing on the outcomes of DWV inocula-
tions [211] found outstanding SBV replication rates in pupae inoculated with some—but
not all—DWV strains regardless of the inoculated variant (DWV-A or DWV-B), suggesting
a strain-dependent helper effect favouring SBV replication and early pupae death. Similarly,
a study on the change in the composition of DWV strains over the course of multiple serial
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inoculations in pupae [9] reported an increase in basal SBV and BQCV loads following
injection of DWV, a trend that continued in subsequent serial injections to the point that
SBV and BQCV outcompeted DWV, preventing DWV establishment. Finally, one study [99]
directly compared the immune responses of bees inoculated with either SBV or DWV at
either the larval or pupal stage and showed differential patterns of immune activation
and inhibition that would suggest potential interactions between the two viruses. This
latter study is of particular interest because, as we will show, knowledge of interactions
between these viruses and their host may help determine the mechanisms behind DWV
and SBV interactions.

DWV infections seem to inhibit the production of hymenoptaecin at larval stages [99]
while triggering its activation in later stages through the Imd pathway [103,106,107]. Con-
versely, DWV does not interact with the Toll pathway in larvae [99], although in later
stages, high DWV loads inhibit the production of defensins [99,104–108] and abaecin [104].
This inhibition is thought to be a consequence of the up-regulation of cactus, producing
an inhibitor of Toll’s NF-κB effector, following a Domeless-dependent Jak-STAT pathway
activation [103]. Varroa infestation triggers the Toll pathway in bees, but the presence of
both varroa and DWV does not trigger this pathway, suggesting that DWV infection may
actively inhibit the Toll pathway [71]. Given that Defensin-1 is used as a general social
immunity effector secreted in hive products, its inhibition by DWV may facilitate replica-
tion in virtually all honey bee pathogens in the colony. Additionally, it has been suggested
that some DWV strains may evade the RISC-mediated RNAi pathway [94]. However, a
simultaneous increase in DWV loads and dicer and ago-2 expression have been described in
varroa-challenged bees [109]. As honey bees respond to SBV infections with the production
of AMPs [99,100], inhibition of some humoral pathways induced by co-infecting DWV may
have a helper effect on SBV replication. Conversely, SBV down-regulates the melanisation
pathway at every stage of honey bee development [99]. Given that DWV infections trig-
ger the melanisation process [104], this inhibition may lead to elevated DWV loads and
virulence. However, because DWV vertical transmission relies on the survival of infected
pupae, SBV down-regulation of the melanisation process may still be detrimental to DWV
transmission. A summary of the various immune pathway activations and inhibitions
caused by these two viruses can be found in Figure 2.

Here, it is important not to confuse synergistic with mutualistic interactions. A
unilateral helper effect can, in the end, see the helped virus outcompete the helper virus
or the development of mechanisms that prevent further replication of the latter. Evidence
points to this type of situation in DWV-SBV interactions. DWV may have a helper effect
on SBV replication, possibly through the inhibition of the Toll pathway. Although SBV
replication may, in turn, help DWV replication through the inhibition of the melanisation
pathway, the consequent increase in virulence may be detrimental to DWV transmission.
Moreover, potential synergies between SBV and BQCV may make SBV a better competitor
than DWV in the long run, as seen in [9].

3.3. SBV and BQCV

As we saw in the previous section, SBV and BQCV loads can increase concomitantly
following DWV infections [9]. Evidence of co-prevalence between the two viruses has also
been found [212]. A pioneering study [213] also found co-prevalence of these viruses, and a
decreased ABPV prevalence when SBV and BQCV are both present, despite the outstanding
competitive success of AKI-complex viruses [214]. Despite a clear lack of studies focusing
on SBV-BQCV interactions, their shared infection patterns and correlated prevalence incite
further research in this direction.

3.4. Viruses from the AKI Complex and Other Viruses

It has been strongly suggested that IAPV can produce a viral suppressor of RNAi
(VSR) and thus evade RNAi immunity [110] (see Section 2.2). Indeed, a genomic sequence
has been found to be conserved between IAPV and cricket paralysis virus (CrPV, also
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related to the Dicistrovirus genus), in which this sequence has been identified as coding
for a VSR. Another study [111], upon finding 22 nt IAPV fragments (siRNA) following
IAPV infection, suggests that this virus does not evade Dicer activity. Given that the action
of the CrPV VSR focuses on the inhibition of RISC binding [215], finding dicer products
following infection is still expected in IAPV infections. More surprising is the finding of an
up-regulation of ago-2 following IAPV infection [112], although this study did not report
up-regulation of other RISC elements. IAPV also triggers the Jak-STAT pathway but not
the Toll and Imd pathways [110]. Similarly, no AMP production could be detected after
ABPV infection [113]. Co-infections between ABPV and E. coli trigger AMP production,
but at a lower level compared with E. coli infections alone, suggesting that AKI infections
actively inhibit the Toll and Imd pathways [113]. The immune pathway activations and
inhibitions caused by AKI infections can be found in Figure 2.

No study has yet investigated the potential interactions between AKI-complex viruses
and CBPV, but many clues suggest they exist. First, although they are not part of the same
viral family, they both induce comparable symptoms when inoculated in adult bees [36].
Second, both viruses invade neural cells [216], even though IAPV seems to preferentially
invade peripheral nerve cells [110], whereas CBPV is mostly found in central brain ar-
eas [217]. To our knowledge, very few studies have investigated the causal mechanisms
of these symptoms for either of these two viruses. One study [110] found IAPV particles
to accumulate mostly in the gut, hypopharyngeal glands and nerve cells. Aggregation
in the hypopharyngeal glands can be strategic for the virus to spread from one host to
another, but aggregation in nerves suggests potential neural alterations causing trembling
and paralysis. In contrast, other authors [218] have found viral particles to accumulate
mostly in the fat body and trachea. Evidence of mitochondrial respiratory disruption in
tracheal cells caused by the viral invasion may be the actual cause of the symptoms and
abrupt death following AKI infection. This hypothesis needs to be further investigated
to determine whether other cell types are affected in this way and whether CBPV inflicts
similar disruption in other types of invaded cells. Such investigations may provide hints as
to potential interactions between these two viruses and whether they are competitive or
synergistic in nature.

4. Perspectives

Immune responses are inherently costly and likely reduce fitness. The immune chal-
lenge following heat-killed bacteria inoculation results in reduced foraging efficiency in
bumblebees [219–221] and reduced lifespan in both bumblebees and honey bees [222]. As
discussed in [164], it is to the advantage of the bee to allocate resources to the most effective
immune pathways considering current threats. This plasticity in immune responses may
reflect the need to minimise the fitness costs of such responses [223].

Here, we described the activation of different immune pathways following DWV
infection depending on the developmental stage of the bee. As the immune response can
change through the lifetime of the bee, the observed immune gene expression following
infection may be representative of this age-related variation in the bee immune response.
However, in these studies, all artificial DWV inoculations at the larval stage have been
conducted through the oral route, but at later developmental stages, the analysed bees are
either naturally infected or inoculated through direct injection. Different administration
routes may trigger different immune and viral dynamics. Indeed, changes in rates of
replication and virulence have been found for BQCV [9,224] and SBV [9] between cases
of oral inoculations and direct injections. In another arthropod (Armadillidium vulgare), a
common endosymbiont (Wolbachia) has been shown to become pathogenic when a shift
from vertical to horizontal transmission occurs [225]. In all these cases, the change in
transmission route made the microbe more virulent and increased its replication. As
discussed in Section 3.1, a similar pattern was observed when DWV became vectored by
varroa, with differential immune gene expression between orally inoculated and varroa-
mediated inoculated bees [87].
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We described two viruses triggering the inhibition of the Toll pathway upon infection
in adult bees: DWV and IAPV (see Figure 2). Some studies in other insects suggest that the
Jak-STAT pathway is activated following Dicer-2 activity through vago expression [139,140].
The Jak-STAT pathway is known to be involved in the regulation of other immune pathways,
such as Toll [226]. As both DWV and IAPV trigger Dicer-2 activity and activation of the
Jak-STAT pathway, the observed Toll pathway inhibition following infection may be an
integral part of the immune strategy of the bee, reallocating resources to RNAi, an immune
response specifically targeting viruses. If honey bees indeed deploy such a cascade of
immune regulations, and these viruses indeed evade RNAi effectors while still triggering
Dicer-2 activity, the RNAi and the humoral pathways together would be mostly ineffective,
leaving the honey bee defenceless against their replication. Additionally, both viruses
may replicate within varroa mites and be transmitted by them [96,98], also favouring
their replication. However, although Jak-STAT’s Domeless receptor is involved in the Toll
pathway inhibition, it has been suggested that the Vago protein does not interact with this
specific receptor, suggesting an alternative Jak-STAT activation. Nonetheless, any putative
crosstalk between different immune pathways must be further investigated to understand
the honey bee immune response as a dynamical, coordinated, and complex system.

Similarly, the RNAi immune pathway of bees infected with a high number of different
viruses can be disrupted, as opposed to honey bees infected with only a few different
viruses [227]. This latter study focuses on the depletion of the immune response. However,
an alternative interpretation is that multiple co-infections induce a shift in bee immune
strategy, not unlike high predatory stress or nutritional stress can induce reconfigurations
in immune responses [228,229]. As opposed to predatory or nutritional stress, a shift in
immune strategy driven by multiple co-infections may not be in favour of reinforcement of
primary defences. In this case, the immune system would more likely reallocate resources
to pathways involved in long-term immune strategies or generalist ones. The production
of AMPs, being known as a more generalist immune response [47], would be in line with
the depletion of the RNAi pathway and the parallel increase in AMPs revealed in this
study [227]. The RNAi core machinery is driven by specific virus targeting, but the humoral
immune pathways may be effective against all major honey bee viruses, perhaps driving a
shift in immune strategy when facing multiple co-infections.

As we saw in Section 3.2, DWV and SBV interactions seem to be the most beneficial
to SBV. Although DWV infections seem to indirectly help SBV replication, the increased
virulence following SBV replication may not be in favour of DWV transmission. Both
viruses can be transmitted vertically [230], but it is the relatively recent change in the
DWV route of transmission via varroa that has notably increased promiscuity—and thus
potential interactions—between these two viruses [231], although the decrease in hygiene
behaviour observed in DWV-infected individuals (see Section 2.5) might decrease co-
infection occurrences. In Asian countries where varroa has been established for longer times,
Chinese SBV (CSBV) has become a major threat to Asian honey bees (A. cerana) [101,102,232].
Therefore, we should carefully monitor the evolution of western strains of SBV because
they may become more prevalent and more virulent through their interactions with DWV.
Fortunately, recent independent efforts have led to the elaboration of infectious viral clones
containing GFP for both DWV [233] and SBV [234]. These advances will surely help future
research in enhancing our understanding of infection and co-infection mechanisms between
these two viruses to help predict their future evolution and manage them effectively.
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