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a b s t r a c t

Resilience, when defined as the capacity of an animal to respond to short-term environmental challenges
and to return to the prechallenge status, is a dynamic and complex trait. Resilient animals can reinforce
the capacity of the herd to cope with often fluctuating and unpredictable environmental conditions. The
ability of modern technologies to simultaneously record multiple performance measures of individual
animals over time is a huge step forward to evaluate the resilience of farm animals. However, resilience
is not directly measurable and requires mathematical models with biologically meaningful parameters to
obtain quantitative resilience indicators. Furthermore, interpretive models may also be needed to deter-
mine the periods of perturbation as perceived by the animal. These applications do not require explicit
knowledge of the origin of the perturbations and are developed based on real-time information obtained
in the data during and outside the perturbation period. The main objective of this paper was to review
and illustrate with examples, different modelling approaches applied to this new generation of data
(i.e., with high-frequency recording) to detect and quantify animal responses to perturbations. Case stud-
ies were developed to illustrate alternative approaches to real-time and post-treatment of data. In addi-
tion, perspectives on the use of hybrid models for better understanding and predicting animal resilience
are presented. Quantification of resilience at the individual level makes possible the inclusion of this trait
into future breeding programmes. This would allow improvement of the capacity of animals to adapt to a
changing environment, and therefore potentially reduce the impact of disease and other environmental
stressors on animal welfare. Moreover, such quantification allows the farmer to tailor the management
strategy to help individual animals to cope with the perturbation, hence reducing the use of pharmaceu-
ticals, and decreasing the level of pain of the animal.
� 2023 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

Quantification of individuals’ resilience is useful for the opti-
misation of future breeding programmes to improve the capacity
of animals to cope with or adapt to a changing environment. Resi-
lience is a complex and dynamic trait that is not directly measur-
able. New monitoring technologies from Precision Livestock
Farming drastically increase the number of data collected in farms.
In this study, we present two alternative modelling approaches to
analyse these data and evaluate resilience capacity at individual
animal level. These models also enable the detection of environ-
mental perturbations as perceived by the animal, which is useful
for farmers to adopt an adequate management strategy to help
the animal cope with the perturbation, and decrease the level of
pain of the animal.
Introduction

During the last decades, there has been an explosion in the
number of sensors in the context of precision livestock farming.
Sensors such as cameras, microphones and accelerometers made
it possible to monitor animals automatically and individually in
real time (Halachmi et al., 2019; Caja et al., 2020; Gómez et al.,
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2021) and with a lower cost (Wolfert et al., 2017). These new mon-
itoring technologies have exponentially increased the number of
data collected and therefore our capacity to observe animals. The
data obtained from these devices can be of great interest to farmers
and the livestock sector to adapt future selection strategies and
farm management, in order to improve production, animal health
and welfare (Friggens et al., 2008; Højsgaard and Friggens, 2010).
Extracting relevant information from this increasing quantity of
heterogeneous data generated by sensors is a major challenge
(Morota et al., 2018; González et al., 2018; Tedeschi, 2019; Ellis
et al., 2020). It requires new skills and methods for data processing,
analysis and predictive modelling. Combination of records of such
sensors with adequate data analysis algorithms and models
enables the monitoring of welfare and prediction of productivity
of animals (Werkheiser, 2018; Benjamin and Yik, 2019).

The capacity of modern technologies to monitor automatically,
and simultaneously, multiple traits from sensors with high fre-
quency at the individual level also provides huge opportunities
to study the resilience of individual animals. Improving individual
animals’ resilience is of great interest for livestock farming sys-
tems, as resilient animals contribute to the capacity of the herd
to cope with fluctuating and unpredictable environmental condi-
tions (Dumont et al., 2014). Furthermore, these technologies may
facilitate early prediction of an animal’s capacity for resilience,
e.g. through the application of artificial intelligence methods to
analyse multiple non-invasive indicators of animal responses to
environmental and physiological challenges. Such an algorithm
could help the farmer to adopt a timely and adequate strategy to
help animals cope with different types of perturbations (for exam-
ple by using preventative measures such as vaccines).

The literature contains many definitions of resilience and
related concepts (e.g. plasticity, robustness, genotype by environ-
ment interactions). In this paper, we adopt the definition of resili-
ence as a dynamic trait that refers to an animal’s capacity to
rapidly respond to short-term environmental (temperature, sani-
tary stress, etc.) challenges and to be able to return rapidly to the
prechallenge status (Colditz and Hine, 2016). In general, the
dynamic response of the animal to a perturbation can be decom-
posed into a first period that captures the response of the animal
to the perturbation and a second period corresponding to the
recovery phase of an animal postperturbation (Doeschl-Wilson,
2011; Mulder and Rashidi, 2017; Scheffer et al., 2018; Knap and
Doeschl-Wilson, 2020). It should be noted that there could also
be a latency period, at the beginning of an infection, for example,
during which the perturbing factor is present but has not yet
caused an impact on animal performance (Sandberg et al., 2006;
Sauvant and Martin, 2010).

The response of the animal to a perturbing factor is a function of
both the adaptive capacity of the animal and the type and magni-
tude of the perturbing factor. Time-series data of performance
traits measured by sensors represent animal responses to different
types of disturbing factors (with known or unknown origins). To
quantify the resilience of the animal, the first step is to define a
metric that is representative of the animal response and trans-
forms the concept of resilience into a quantitative variable
(Todman et al., 2016; Ingrisch and Bahn, 2018). In the definition
of this metric, factors such as the nature and the number of indica-
tors of performance, and the research question should be consid-
ered (Fig. 1). Table 1 lists some of these metrics and their use in
the context of animal adaptive response. Mathematical models
are powerful tools to put together theoretical frameworks, existing
knowledge and available data to provide new insights on unknown
phenomena. In the context of this study, an adequate mathemati-
cal model could help in developing a metric for animal resilience.

With respect to data frequency and existing knowledge on
underlying mechanisms, there are two main categories of models
2

to characterise animal’s adaptive response. The first category is
concept-driven or mechanistic models considering the systemic
aspect of an animal response, and the second category is models
based on data and thus called data-driven models. Both categories
have been often used to understand the animal adaptive response,
in particular when faced with nutritional challenges (Tedeschi,
2019). Ellis et al. (2020) suggested that, in future, modern animal
production systems will take advantage of hybrid models including
both data-driven and concept-driven approaches.

Since resilience is a dynamic trait, a dynamic mathematical
model is expected to describe it best. Inputs, parameters and out-
puts are the main components of dynamic models (Fig. 2). The
main role of a modeller is to specify the structure of the models
and to determine the parameters that describe the characteristics
of the system under study (animal). In what are called ’forward
problems’, given a model structure, inputs and parameter values,
the model predicts outputs. In contrast to the ’forward problem’,
the ’inverse problem’ is a mathematical framework that allows
information to be obtained on model parameters, given the model
structure and the available data from observations or measure-
ments of animal response. The inverse problem needs to address
both theoretical and practical challenges for identifying accurately
the model parameters (Muñoz-Tamayo et al., 2018; Vargas-
Villamil et al., 2020). This approach has been used in the literature
to quantify individual resilience defined as a parameter in pertur-
bation models (Nguyen-Ba et al., 2020; Ben Abdelkrim et al.,
2021a). Using mechanistic models for animal growth, Doeschl-
Wilson et al. (2007) demonstrated that the parameter estimates
obtained from such model inversion techniques could be used as
new phenotypes for genetic selection.

The main objective of this paper was to illustrate how mathe-
matical modelling can adapt to this new generation of data (i.e.,
with high-frequency recording) to quantify animal responses to
perturbations, and in this way contribute to a better understanding
of animal resilience capacity. In addition, perspectives on the use of
hybrid models for better understanding and predicting animal resi-
lience are presented. Our discussions are supported by case stud-
ies. Models were implemented in the free software R (version
3.4.2, https://www.r-project.org/). To promote open science prac-
tices (Muñoz-Tamayo et al., 2022) and facilitate the understanding
of the modelling approaches, the R codes of the examples are avail-
able at https://quantanimal.github.io/.
Perturbations and the theoretical trajectory of performance

When developing a model to describe an animal response to
short-term perturbations, the first step is to determine what is
called a perturbation. A perturbation in the context of this study
consists of all short-term changes in the farm environment, such
as temperature, feed compositions, presence of a pathogen, that
have an impact on animal performance. The second step is to con-
sider the available indicators of performance impacted by these
perturbations, and to determine the theoretical trajectory associ-
ated with these indicators. The theoretical trajectory is defined as
the performance of the animal in the absence of all perturbations
in the environment (Nguyen-Ba et al., 2020). For farm animals,
the theoretical performance trajectory of an animal depends on
multiple factors, such as the animal genetic make-up, its long-
term environment and the feeding strategy. Finally, deviations
(positive or negative) from this trajectory can then be quantified
as the impact of perturbation (having ensured that the detected
deviations are not part of inherent variations in the animal beha-
viour). Depending on the available data, one or several indicators
of performance could be used to quantify the animal adaptive
response (Table 1).

https://www.r-project.org/
https://quantanimal.github.io/


Fig. 1. The hypothetical response of three animals to a given perturbation. The observable response started at T1. The recovery started at T2. Animal a has a largest decrease
in performance but recovers faster, while animals b and c have the smallest decrease in performance but they recover later. Moreover, animal c seems to compensate for the
loss of performance. It is therefore necessary to define metrics for animal adaptive response based on the same criteria. This example is generic and independent of the animal
species.

Table 1
List of potential variables to describe and quantify animal resilience. These variables can be adapted for any species.

Item Definition Examples

Magnitude of
perturbation

Maximum of the difference between the theoretical trajectory of performance and the
actual perturbed performance

(Codrea et al., 2011)
Dairy cows

Time of recovery The time between the minimum value of performance reached and the time of complete
recovery (return to the theoretical trajectory).

(Sadoul et al., 2015)
Rainbow trout

Surface The area between the theoretical trajectory and the actual performance during the
perturbation interval

(Revilla et al., 2019)
Piglet

Intensity � Speed of the decrease during the collapse phase
� speed of the increase during the recovery phase

(Friggens et al., 2016; Macé et al., 2020; Ben
Abdelkrim et al., 2021a)
Meat sheep, dairy goats, dairy cows

Other dynamic indicators
of resilience

� Negative residuals based on the estimation of an expected curve of performance
� Number of days with negative residuals
� Variance/natural logarithm transformed variance
� Temporal auto-correlation/lag-1 auto-correlation
� Skewness
� Cross-correlation (between elements of the system)

(Adriaens et al., 2020)
(Scheffer et al., 2018) (animals and humans)
(Poppe et al., 2020) dairy cows
(Berghof et al., 2019b) laying hens

Fig. 2. Difference in the concepts of forward and inverse problems. a. ‘‘Forward
problem” is the use of mechanistic models to predict the response of the animal
(outputs) to stimuli (inputs), given the animal characteristics (parameters) and a
model structure (representation of underlying mechanisms or input–output
behaviour). b. In the case of the ‘‘inverse problem”, the dynamic data of model
outputs can be measured. Then given these data, and model structure, the user can
estimate the characteristic of the animal (model parameters), using an adequate
optimisation procedure. This scheme is generic and independent of the animal
species.

M. Taghipoor, M. Pastell, O. Martin et al. Animal 17 (2023) 100925
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From classical models to a new generation of models

Since the 1970s, mechanistic models have been developed to
study the effect of feed composition and feed availability on animal
performance (Whittemore and Fawcett, 1976; Whittemore, 1986;
van Milgen et al., 2008; Martin and Sauvant, 2010; Puillet et al.,
2016). These models are typically based on concepts of a perfor-
mance potential, nutrient partitioning and efficiency of nutrient
utilisation (i.e., input–output relationships). There are also a few
models considering the influence of infection or other environmen-
tal challenges on animal performance (Wellock et al., 2003;
Sandberg et al., 2006; Doeschl-Wilson et al., 2009). The small num-
ber of such models is likely due to difficulties in characterising the
environment and the multiple traits with which the animal
responds to environmental changes. These models are so-called
‘forward models’, which, given a model structure, specified values
for the environmental descriptors (e.g. feed composition, feeding
frequency) and animal-specific parameters (genetic potential for
growth rate, feed efficiency) and predict animal performance as
an output (BW, number of offspring). The common denominator
of these models is that they require an understanding of the under-
lying biological mechanisms that relate the model input parameter
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values to the outputs (Fig. 2). The availability of dynamic data, such
as Indicators of animal performance, enables the identification of
the mechanistic model parameters at individual scale, that more
closely represent the individuals’ intrinsic, or genetic response
capacity, such as an animal’s target growth trajectory in the
absence of environmental challenges (Doeschl-Wilson et al.,
2007; Yu et al., 2021).

When data are available, but knowledge on the underlying
mechanisms responsible for the loss in performance is missing or
not needed, statistical methods can be used. These approaches
involve the development of models based on data recorded
dynamically (in the case of adaptive response), and the effort of
the modeller is to determine the function that mimics the evolu-
tion of a trait over time. Such approaches have been used, in pigs
for example, to describe growth with a Gompertz function
(Schulin-Zeuthen et al., 2008; Lewis and Emmans, 2020), or cumu-
lative feed intake with a Gamma function (van Milgen et al., 2008),
or infection profiles (Islam et al., 2013). During recent years, the
application of such classical approaches has evolved in line with
the new generation of data from precision livestock farming (Yu
et al., 2021).

Evolution in data-driven approaches to quantify animal resili-
ence is mostly driven by the availability of performance data at
high frequency and for a large number of animals. This new gener-
ation of data opens new horizons for real-time precision manage-
ment targeted at individual animals, thus offering huge scope for
improvement of the welfare of individual animals as performance
measures are adjusted to the individual (Sun et al., 2010;
Kamphuis et al., 2010). In this respect, such modelling approaches
are often used for the detection of perturbations in real time, which
provide support for targeted and timely management strategies or
medical treatments. To go further towards application, such mod-
els are often implemented in decision-support systems to aide
farm management, and suggest the best treatment in relation with
a detected perturbation (Rutter, 2014; Van Nuffel et al., 2015;
Gómez et al., 2021).

In what follows, examples of models are described that detect
and quantify the animal capacity of response to perturbations.
These models are separated into two categories: models for post-
treatment of data, and models for real-time treatment of data.
Although the examples presented are not an exhaustive list, and
other approaches exist, they reflect the way that the classical mod-
elling approaches evolved to integrate the high-frequency records
of performance data. Moreover, we discuss the interest of coupling
both approaches and moving towards hybrid models and pro-
cesses, to predict the resilience capacity of animals.
Post-treatment of longitudinal data

Defining or finding a function that fits the perturbed data with a
good accuracy is the main difficulty when studying performance
trajectories during perturbation periods. Some popular functions
such as the Gompertz function (Schulin-Zeuthen et al., 2008) to
describe the theoretical growth of farm animals and the Wood
function (Wood, 1967) for milk yield of dairy cows in non-
limiting environments are widely used by animal scientists and
modellers. Despite the usefulness of these functions to represent
the time-trends of these traits, they cannot fit the evolution of data
during periods of perturbation. Some of these functions were mod-
ified to account for the potential periods of perturbation. For exam-
ple, the modified Gompertz function (Golubev, 2009) considers the
possibility of deviations from the classical Gompertz function to
describe the influence of a perturbation on performance. It was
used successfully to quantify piglet robustness at weaning
(Revilla et al., 2019). A modified Wood function was used to simu-
4

late milk yield in the presence of environmental and nutritional
perturbations (Ben Abdelkrim et al., 2021a). Some authors sug-
gested the use of the well-known physical ’spring and damper sys-
tem’ to mimic animal adaptive response (Sadoul et al., 2015;
Todman et al., 2016; Taghipoor et al., 2017). In this approach,
inputs and outputs are recorded and the objective is the estimation
of model parameters (inverse problem, Fig. 2). In such models, the
first step is the development of a module that estimates the theo-
retical performance trajectory in a long-term stable environment,
and subsequently adding the perturbation module to characterise
the animal response to the perturbation. This approach was used
to describe deviations from the expected trajectory of feed intake
in growing pigs (Nguyen-Ba et al., 2020).

Although the modelling approaches described above have pro-
ven successful in some examples, it is not obvious how they can
respond if the time-trend of the response cannot be described by
the already defined, or known, functions or systems of equations
that represent the underlying biological mechanisms. This is espe-
cially pertinent when the shape of the theoretical trajectory is
unknown. If available data are recorded at high frequency, a purely
data-driven model could be used to describe an animal’s capacity
of response. One of these methods is differential smoothing of
time-series measurements, hereafter termed functional data anal-
ysis (Ramsay and Silverman, 2002; Codrea et al., 2011; Ben
Abdelkrim et al., 2021b). The combination of this approach with
other regression methods such as quantile regression makes it pos-
sible to estimate the expected trajectory of the performance and
detect the perturbation periods (Scheffer et al., 2018; Berghof
et al., 2019b; 2019a; Poppe et al., 2020; Nguyen-Ba et al., 2020;
Adriaens et al., 2020).

In the subsequent sections, two case studies have been devel-
oped to illustrate different approaches for post-treatment of longi-
tudinal performance data. Although, in these examples, the
theoretical trajectory of performance is considered as known, the
methods described in the previous paragraph could be adopted
to estimate it from perturbed performance data, in the case that
it was unknown.

Case study 1. Dynamic model with biologically meaningful parameters

Let’s assume an animal experiences a perturbation j, which
started at tbj and was over at tsj , and during this period, the animal
decreased its performance y tð Þ. To describe the intensity of animal
response to perturbations, let’s further assume that Eq. (1)
describes the variation of the intensity of the perturbation

daj
dt ¼ k1j �aj

� � � 1j tð Þ þ k2j 1� aj
� �

1� 1j tð Þ� �
aj tb
� � ¼ 1

1j tð Þ ¼ 1; fortbj � t � tej

8>><>>: ð1Þ

where k1j and k2j are model parameters and characterise the ani-
mals response to perturbation j in term of loss of the performance
and recovery capacity, respectively. 1j tð Þ is the identity function
which is one during the perturbation interval and 0, elsewhere.
The value aj tb

� �
stands for the initial value of the function aj. There-

fore, the function aj is one in non-perturbed conditions and less
than one during the perturbation periods. Then, the trajectory of
animal performance y tð Þ during n perturbations can be described
as Eq. (2).

y tð Þ ¼ 1
nR

n
j¼1aj tð Þ � f P; tð Þ;

y t0ð Þ ¼ f P; t0ð Þ ¼ y0;

(
ð2Þ

where the function f P; tð Þ describes the theoretical expected trajec-
tory of animal performance, P is the set of model parameters
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describing the characteristics of the theoretical trajectory, t is time.
The set of parameters that characterise the animal response to these
two perturbations are k1j; k2j

� �
and the time interval of perturbation

j (Dtj ¼ tsj � tbj Þ. In the case where the periods of perturbations are
not reported, the perturbation time parameter values can be esti-
mated. Fig. 3 shows the estimated theoretical performance trajec-
tory, the perturbation intervals and their dynamics using this
model.

Given the fact that the development of the model is based on
knowledge on the shape of the response, i.e. decrease followed
by an increase, we can consider the model as based on existing
knowledge. However, the use of this model requires the availabil-
ity of longitudinal data with high frequency, and in this respect, it
is useful only if such data are available.
Case study 2. Differential smoothing model

This example shows the use of a purely data-driven approach
for the post-treatment of performance data under perturbations.
Fig. 4 shows a hypothetical example, in which the theoretical per-
formance is equal to 1, and the deviations from this value could be
considered as perturbations. Data were smoothed using B-Spline

bases of order 5 with the roughness penalty k ¼ 104
� �

to estimate

animal performance (https://quantanimal.github.io/). Three fea-
tures are used to characterise the animal response to the perturba-
tion i: the area between the theoretical trajectory and the
perturbed curve (Ai), the maximum amplitude of deviation from
the theoretical performance (hi), and the duration of perturbation
(DTi). These criteria allowed comparison of the animal responses
to each of the perturbations, and also, in the case of a larger num-
ber of animals, to rank animals for their adaptive capacity. Other
features such as the maximum decrease and increase rates (zeros
of the second derivative) could also be extracted using function
derivatives. Table 2 shows values of different defined features for
the hypothetical example shown in Fig. 4, which shows two devi-
ations from the theoretical trajectory of performance. Since a devi-
ation could be part of the inherent behaviour of the animal, one
needs to determine the criteria that are used to classify a deviation
as perturbation, such as the length and the magnitude of a devia-
tion (Nguyen-Ba et al., 2020). Another criterion is the determina-
tion of common periods of deviations among all animals in a pen
Fig. 3. Hypothetic example of animal responses to two different perturbations. Two
consecutive perturbations occurred at tb1 ¼ 10 and tb2 ¼ 75, and were over at te1 ¼ 25
and te2 ¼ 85 days of age. Parameters k1i; k2ið Þ are 0:05;0:15ð Þ for the first perturba-
tion and 0:1;0:05ð Þ for the second. Compared to the second perturbation (10 days),
the animal took more time to start the recovery period in the first perturbation
(15 days). This example is generic and independent of the animal species.

5

that suggests that the origin of the perturbations is in the farm
environment (Ben Abdelkrim et al., 2021a).

This approach with the use of functional derivatives is particu-
larly useful in the case of studying a large number of animals, to
automatise the individual analyses of performance data and the
detection and quantification of perturbations. For example, in the
case of Fig. 4, the beginning of a perturbation is when the per-
turbed curve of the performance deviates negatively from the the-
oretical performance, usually after a local maximum, which can be
easily detected by calculating the derivative of the perturbed
curve. The end of a perturbation is a local minimum of the per-
turbed curve (when the recovery starts) and is associated to the
zeros of the derivative, where it changes from negative to positive
values.
Real-time treatment of data

In this section, we discuss the mathematical and statistical
methods for real-time detection of perturbations, in which the
models use real-time data for detecting and quantifying perturba-
tions. Real-time detection is commonly used in early warning sys-
tems where the aim is to detect, for example, sick animals as early
as possible (Dominiak and Kristensen, 2017). In addition to detect-
ing the occurrence of a perturbation, it can be useful to quantify
the magnitude of the animal response and thereby to plan the cor-
rect veterinary treatment or management action, such as adjust-
ment of feeding.

Using state-space models and observers to detect perturbations

In the state-space modelling approach to time series, it is
assumed that the development of a system is associated with
latent states described by a series of state vectors ht which are
associated with observations yt and control inputs ut . The relation-
ship between ht and yt is specified by a state-space model such that
the system state at time t contains all the information necessary to
predict future values of yt . As an example, animal activity level for
the next hours or days can be forecasted using estimated mean,
slope and periodic components based on activity measurements.

A system can be represented in state-space model form using
the differential equation (or equivalent difference equation):

dh
dt

¼ f h;u; Pð Þ; y ¼ h h;u; Pð Þ; ð3Þ

where P is the parameter vector, the function f determines the rate
of change of the state vector as a function of state h and control, and
the function h gives the measured values as functions of state and
control (Astrom and Murray, 2008).

In contrast to the models for post-treatment of data, one of the
challenges in real-time approaches is related to knowledge on the
individual theoretical trajectory of performance. In such cases,
hypotheses for the theoretical trajectory are tested, and often-
known functions such as polynomials are used. In the following
sections, two case studies based on the use of state-space model-
ling are presented, depending on whether the theoretical trajectory
is known or unknown.

Case study 3. Known theoretical trajectory

In this example, we show the use of state observers to quantify
dynamic perturbations. An observer is an object that combines a
mathematical model and on-line data to estimate unmeasured
variables (Dochain, 2003). For our case study, we aim to use real-
time records of BW to extract information on the perturbation that
an animal is facing. For that, we assume that the theoretical trajec-

https://quantanimal.github.io/


Fig. 4. Estimation of animal performance using differential smoothing. The upper graph shows the estimated function against (black curve) observation (dot). The lower
graph shows the derivative of the estimated function. Zeros of derivatives are associated with maximums and minimums of the function. The blue line on the upper graph
shows the expected performance of the animal, which for simplicity is assumed to be 1. Ai; hi and DTi are the area under the perturbed curve, the maximum effect of the
perturbation and the time length of the perturbation, respectively. This example is generic and independent of the animal species.

Table 2
Quantification of the animal’s response to two perturbations of the case study 2,
regardless to the species.

Item A (kg) h (kg) DT (day)

Perturbation 1 5.56 0.29 26
Perturbation 2 3.32 0.11 19

A;h and DT are the area under the perturbed curve, the maximum effect of the
perturbation and the time duration of the perturbation, respectively.
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tory of growth follows a Gompertz function. This example is devel-
oped from the work of Revilla et al. (2019).

The following equation describes the dynamic changes in BW
(y) in the presence of perturbations

dy tð Þ
dt

¼ �u:yþ y:p1:e
�p2 :t ð4Þ

The term u is assumed to be unknown and represents a
dynamic perturbation factor that explains the deviations from
the theoretical trajectory. If u ¼ 0, Eq. (4) is the classical Gompertz
model with parameters p1; p2 (assumed to be known).

We are then interested in estimating the dynamic perturbation
factor u tð Þ. This estimation can be done by the following extended
model:

dby
dt

¼ � bu � yþ y � p1 � e�p2t þx1 y� by� � ð5Þ

d bu
dt

¼ �x2 � y � y� by� �
This extended model is called a state observer or software sen-

sor. Here, by is the estimation of y and bu is the estimation of u. The
dynamics of the estimated variables are driven by the observation
error y� by� �

. The parameters x1;x2 are the design parameters of
6

the observer which are chosen to set desired properties of the error
time-trends. For example, we are interested in setting adequate
values to make sure that the error reaches rapidly the zero value.

To illustrate the observer-based estimator, we generated simu-
lated data for 80 days by setting a piecewise constant function for
the perturbation term, ¼ 0:1; if t 2 210½ �, u ¼ 0:05; if t 2 4045½ �
and u ¼ 0, elsewhere. The model parameters were set to

p1 ¼ 0:05 d�1
; p2 ¼ 0:02 d�1. The tuning parameters were set to

x1 ¼ 4:0; x2 ¼ 0:5.
Fig. 5 shows the comparison between the online data (y) and

the estimated BW (by). The figure also shows the estimated bu. Note
that the observer did not require the information of the time at
which the perturbations occurred. The trajectory of bu can be used
to detect the perturbation times. In addition to providing different
characteristics of the perturbation, bu can be used further to con-
struct a model with an explicit function of the perturbation. This
can be done using either mechanistic, empirical or hybrid models
(Chen et al., 2000). The main limitation of the approach is the need
of establishing known functions of the expected trajectory of per-
formance, which can be a challenging task.
Case study 4. Unknown theoretical trajectory

In the previous example, the theoretical trajectory of animal
performance was assumed to be known. Another approach based
on state-space models is to estimate the expected trajectory and
the impact of perturbation on it in real time using a dynamic linear
model (DLM). A DLM is a linear and discrete Gaussian state-space
model specified by a pair of difference equations (Eq. (5))
(Whittemore, 1986; Petris et al., 2009).

DLMs are often used to detect when the state of the animal is
perturbed in online monitoring applications. The objective of this
method is an online estimate of the theoretical trajectory f P; tð Þ



Fig. 5. A. Comparison of the real online trajectory of BW (y) (�) against the estimated trajectory (by) by the observer model (solid line). B. Estimated trajectory bu by the
observer model (solid line) compared with the real trajectoryu (�). Note that in practice, the real trajectoryu is unknown. In the example, we can plot it because it was set by
construction. This example is generic and independent of the animal species.

M. Taghipoor, M. Pastell, O. Martin et al. Animal 17 (2023) 100925
to forecast future values f P; t þ kð Þ. A common method to detect
perturbation is to inspect the model forecast errors. This approach
involves finding the right DLM for online estimation of the theoret-
ical trajectory f P; tð Þ of the system, forecasting the theoretical tra-
jectory k steps ahead and comparing the forecast error to the
observed value. If the forecast estimates drift away from zero, we
conclude that a perturbation (a change point) has occurred, and
the estimate for the magnitude of perturbation can be obtained
from the residual: This principle was used by Stygar et al. (2018)
for detecting perturbations from pig growth using frequent weight
measurements. Their model also incorporated a diurnal compo-
nent in the system model using trigonometric functions.

The approaches using a single DLM work for detecting changes
from the theoretical trajectory, but offer little with respect to char-
acterising the perturbation. In the presence of perturbations, the
dynamics of the system often change, requiring the use of a differ-
ent model to estimate the perturbed state. Switching DLMs provide
a method for detecting regime shifts in real-time and modelling
systems with several dynamic regimes. These models can also be
called multi-process class I models, switching linear dynamical
systems, or multiple model algorithms (Gustafsson, 2001;
Norberg et al., 2008).

We revisit the problem presented in the differential smoothing
section by estimating the perturbations from the data presented in
Fig. 5 using a switching model. We use one dynamic model for the
unperturbed state and a separate model for the perturbed state,
and a discrete latent variable st 2 unperturbed; perturbed indi-
cates which model is active at each time. By observing the data,
we see that, in the unperturbed state, the series has a constant
mean whereas, in the perturbed state, there is clear change in
the slope. We model the unperturbed state using a local level
model (1st order polynomial) and the perturbed state using a local
linear trend model (2nd order polynomial). Fig. 6 shows the state
7

estimate for both models, the probability of each being active
and the estimated slope for the second-order model. The linear
trend model has a higher posterior probability during the pertur-
bations and thus provides an online estimate of time of onset of
perturbations that can be used to make management decisions.
The online estimate of slope has a similar shape to one provided
by the differential smoothing method in Fig. 5.
Discussion and perspectives

The objective of this work was to show, with examples, how
animal responses to short-term environmental perturbations can
be quantified using a combination of data from new monitoring
technologies and adequate mathematical models.

In this paper, the models were separated into two categories,
concept-driven or mechanistic and data-driven models, and the
usefulness of each of them were described. Data-driven models
have often been assigned the name ‘black box models’ for which
forecasting is possible. In this respect, models considering the
underlying mechanisms of animal responses could be considered
as ‘white-box models’. In the era of big data and powerful comput-
ing machines, it is unrealistic to focus solely on only one of these
approaches. This is particularly true for the study of animal resili-
ence, which is a complex trait. The combination of these two
approaches will lead to so-called ‘grey box’ or hybrid models,
which benefit from the inclusion of some a priori knowledge
(Fig. 7).

One of the main white-box inputs to data-driven models for
real-time detection of perturbations is to provide a function that
allows the determination of the theoretical trajectory of a trait
from data that includes perturbations. Including prior knowledge
on the shape of the expected trajectory (a simple example is the
increasing function for growth, or an increasing plateau for feed



Fig. 6. Example of using a switching model for detecting perturbations in animal response. The series is filtered using two different filters: A 1st order model representing
unperturbed dynamics and a 2nd order model representing perturbed dynamics. The first panel shows the state estimate for both models, second panel shows the posterior
probability for each model being the correct one at time t, and the bottom panel shows the estimated slope based on the second-order model. This example is generic and
independent of the animal species.

Fig. 7. A hybrid modelling approach takes advantage of both data- and concept-driven models to extract the maximum information from existing data. This scheme is generic
and independent of the animal species. FI = Feed Intake.
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intake) will make the estimate more realistic. Indeed, in the case of
long-lasting perturbations, a purely data-driven method will inevi-
tably include some of the perturbation effects in the estimation of
the normal baseline of the animal, and will therefore underesti-
mate its impact. This then leads to the need for a theoretical refer-
ence curve that may be derived from concept-driven models. It is
worth mentioning that the integration of a priori mechanisms
may change based on how much detail is required for the model.
For example, in the case of detection of perturbations, it is suffi-
cient to only have information about the shape of the expected tra-
8

jectory of performance, whereas real-time prediction of animal
resilience capacity would require a more detailed understanding
of the underlying response mechanisms. In the latter case, a mech-
anistic model of animal responses combined with a data-driven
approach for online prediction may help predict the resilience
capacity of an individual.

The use of hybrid models is a key aspect to tackle the multivari-
ate nature of resilience. Interpreting time-series data in one dimen-
sion of animal performance (for instance milk production, BW) is a
necessary first step. However, to achieve a comprehensive view of



M. Taghipoor, M. Pastell, O. Martin et al. Animal 17 (2023) 100925
animal resilience, the challenge is to merge knowledge and infor-
mation from different dimensions of animal adaptive capacities.
Recent work has shown the potential of combining different met-
rics/indicators of resilience (Llonch et al., 2020). There are several
examples: (a) Adriaens et al. (2020) used various sensor features
related to milk production and activity to compute a resilience
index for individual dairy cows, (b) Ben Abdelkrim et al. (2021b)
used BW and milk yield deviations to reveal three profiles of
responses to perturbations, (c) Højsgaard and Friggens (2010)
showed how multiple time-series indicators could be combined
for improved detection of degree of mastitis, (d) Lough et al.
(2015) used time-series data of infection severity and performance
to derive two-dimensional resilience trajectories of infected ani-
mals that capture the dynamic interplay of host resistance and tol-
erance mechanisms of infected animals. A second aspect in
interpreting multiple time series is the use of a theoretical frame-
work, reflecting assumptions on underlying mechanisms and
potential interactions between biological functions that are behind
the measured traits. This kind of biological background (embedded
in hybrid models) is a key if one needs to account for potential
trade-offs among functions and non-linear genotype by environ-
ment effects. These are important issues in implementing breeding
programmes or management strategies to improve resilience in
farm animals (Puillet et al., 2021).

Another aspect to be considered is the capacity of real-time
models to predict health problems sufficiently early to avoid the
decrease in animal production performance (Friggens et al.,
2007). In other words, the model should be able to detect preclin-
ical signs of the problems. In this respect, (Wagner et al., 2021)
have shown that longitudinal observations of animal behaviour
can be useful for predicting preclinical signs of health problems.
Moreover, their model considered the circadian cycle as an inher-
ent part of cow behaviour, and the combination of this input with
an adequate approach to machine learning improved the early
detection of health problems in the various farms used in their
study. Based on the case studies presented here, solutions are sug-
gested for the determination of the theoretical trajectories in cases
of (i) post-treatment of data, with or without knowledge on under-
lying mechanisms (case studies 1 and 2, respectively), and (ii) in
cases of real-time treatment of data when knowledge is available
(case study 3). The issue is how to handle the need for real-time
treatment of data in the absence of knowledge of the underlying
mechanisms or the shape of the theoretical trajectory (case study
4). In such cases, one approach is to make simple assumptions on
the shape of the expected trajectory. In the case study 4, the
expected curve has been assumed to have a constant value.
Although it may be possible to make assumptions for well-
studied variables, such as BW or milk yield, it is seldom feasible
for other variables such as animal behaviour. In the latter cases,
even though accurate early detection is possible in the absence
of a priori assumptions about the shape of the expected trajectory
(Friggens et al., 2007), approaches based on purely data-driven
methods such as machine learning can be useful. In this regard,
(a) Sun et al. (2010) used the neural network for prediction of mas-
titis risk; (b) Warner et al. (2020) tested the usefulness of a
machine learning approach based on decision tree induction for
the detection of dairy herds at high risk of lameness; (c) Morota
et al (2018) provides a complete overview on the use of machine
learning to analyse big data in precision agriculture. The common
point in such approaches is to provide a training dataset with
enough data to enable robust predictions on the test dataset.

To date, machine learning approaches enable the prediction of
risks at individual scale (detection of perturbations). As the use
of sensors in farms increases, and in the context of studying animal
resilience capacity, we can expect more accurate information on
the potential causes and timing of perturbated performance (eg.
9

mastitis, lameness, etc.) and, most of all, on the resilience capacity
of the animal. Considering Fig. 1, one of the main challenges is to
be able to predict the response of an animal to future perturbations
based on historical data. Such predictions would help the farmer to
decide whether or not pharmaceutical or other interventions are
required for the animal to recover, or if the animal is able to
recover by itself. However, resilience capacity is not a directly mea-
surable feature and, in this paper, examples to quantify this char-
acteristic with mathematical models are being developed (e.g.
case studies 1 and 2). New approaches based on machine learning
are needed that consider indirect measures of resilience to predict
the adaptive capacity of an animal. Ellis et al. (2020) explained that
machine learning approaches will offer greater benefits when they
are used together with concept-based approaches. Tedeschi et al.
(2021) highlighted the value of hybridising artificial intelligence
methods with mechanistic models for the optimisation of informa-
tion extracted from Precision Livestock Farming data, to improve
the sustainability of animal production.

In summary, both data-driven and concept-driven approaches
have been discussed with respect to their ability to detect pertur-
bations in performance trajectories and to quantify the resilience
capacity of individual animals. Although the examples presented
here are not exhaustive, they highlight the usefulness of each of
the approaches. The availability of high-frequency performance
data enables better quantification of animal resilience at individual
scale. The use of hybrid models seems promising for predicting this
trait in real time.
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