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Abstract: Variable Angle Tow (VAT) laminates offer a promising alternative to classical straight-
fiber composites in terms of design and performance. However, analyzing these structures can
be more complex due to the introduction of new design variables. Carrera’s unified formulation
(CUF) has been successful in previous works for buckling, vibrational, and stress analysis of VAT
plates. Typically, one-dimensional (1D) and two-dimensional (2D) CUF models are used, with a linear
law describing the fiber orientation variation in the main plane of the structure. The objective of
this article is to expand the CUF 2D plate finite elements family to perform free vibration analysis
of composite laminated plate structures with curvilinear fibers. The primary contribution is the
application of Reissner’s mixed variational theorem (RMVT) to a CUF finite element model. The
principle of virtual displacements (PVD) and RMVT are both used as variational statements for
the study of monolayer and multilayer VAT plate dynamic behavior. The proposed approach is
compared to Abaqus three-dimensional (3D) reference solutions, classical theories and literature
results to investigate the effectiveness of the developed models. The results demonstrate that mixed
theories provide the best approximation of the reference solution in all cases.

Keywords: free vibration analysis; finite element method; variable angle tow plates; Carrera’s
unified formulation; Reissner’s mixed variational theorem

1. Introduction

Over the last decades, composite structures have gained significant attention across
diverse application fields, including aerospace, automotive and construction, due to their
unique properties. Due to their high stiffness-to-weight ratio, composites help to build
light structures with interesting mechanical properties. Despite this, a common thought is
that the potential of fiber-reinforced structures could be better exploited by improving the
directional properties through the variation of the fiber angle along the in-plane directions.
The choice to keep the fiber orientation constant in each layer is particularly restrictive
for geometries that present geometrical discontinuities such as cut-outs. VAT plates are
characterized by an in-plane variation of fiber angle, helping to expand the design space
of a specific structure. This is particularly useful for optimization problems, where a
wider design space can positively affect the search of an optimal solution. For example,
in the context of vibrational analyses, the maximization of fundamental frequencies can be
improved by using curvilinear fibers. VATs were originally obtained through automated
tape placement (ATP) and automated fiber placement (AFP). ATP helps the automated
placement of composite material tapes with a specific angle in order to reproduce a de-
sired path. AFP is similar to ATP, since the main difference is related to the width of
the material that is laid down: while ATP handles a tape with a width between 75 and
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300 mm, AFP involves the placement of the material with a typical width between 3.1
and 12.7 mm. By consequence, AFP allows for better control of fiber angles, achieving
a wider design flexibility; see Dirk et al. [1]. However, automated processes show some
limitations related to manufacturing defects, such as gaps and overlaps, or constraints
such as the minimum steering radius. These aspects can be partially overcome due to
new technologies such as additive manufacturing (AM), also known as 3D printing. AM
involves the layer-by-layer deposition of materials to create a three-dimensional object. In
the case of variable angle tow composites, AM techniques are used to deposit and cure
layers of composite materials with varying fiber orientations; see Zhuo et al. [2]. VAT
composites have diverse applications ranging from aerospace engineering and wind energy
to automotive and construction contexts, offering enhanced structural performance, weight
reduction, and tailored properties for improved efficiency and functionality in a wide range
of industries. For example, these materials can be employed in the optimization of aircraft
wings to enhance structural weight and fuel consumption, as presented in Brooks et al. [3].
In the space context, VATs can be used for the design of liquid oxygen in order to reduce the
mass and increase the payload of space launchers, as discussed by Gren et al. [4]. Despite
the significant advantages associated with curvilinear fiber composites, these materials
have limitations from both manufacturing and design perspectives. The production of
VAT composites can be more complex in comparison with traditional laminates, since the
material behavior is strongly affected by process-induced defects. Moreover, not all fiber
patterns can be realized, because of the technological limitations that characterize their
production. The complexity of analysis is one of the main disadvantages of VATs, because a
greater number of unknowns must be taken into account and unfeasible fiber patterns
could be obtained during the optimization process.

Several methods for the study of VAT mechanical responses are available in the
literature. In the following text, a brief review of these approaches is presented, with a
particular focus on free vibration analyses. To the best of the authors’ knowledge, the first
works that have been presented on the topic are based on the assumption of a constant
fiber angle within each element in a finite element method (FEM) solution. Therefore,
the continuous variation of fiber direction was approximated in a step-wise discrete way.
This approach can be used in commercial FEM software tools that, at the moment, cannot
handle continuous fiber variation. Hyer and Charette [5] and Hyer and Lee [6] used this
method to improve the VAT tensile strength and buckling response, respectively. One of the
main disadvantages of this step-wise approach is that, as the true variation is continuous,
the discrete representation of fiber angle variation imposes a further approximation. A
p-version FEM based on the third-order shear deformation theory (TSDT) was applied by
Akhavan and Ribeiro [7] to preform vibrational analyses. The results showed that fiber
variation helps to increase (or decrease) natural frequencies and that thin plates are more
affected by this phenomenon if compared with thick ones. Ribeiro and Akhavan [8] used
the p-version FEM approach with elements based on the first-order shear deformation
theory (FSDT) to perform non-linear vibration analyses. The advantage of the p-version
of the FEM is that the accuracy of the approximation is improved by increasing the order
of shape functions over the elements. Vibration analyses were performed on VAT plates
with a central circular cut-out considering parabolic fibers by Hachemi et al. [9]. Zhao and
Kapania [10] investigated the free vibration of prestressed VAT stiffened plates, where plates
and stiffeners were modeled separately through Mindlin plate theory and Timoshenko
beam theory, respectively. The compatibility conditions at the interface between the plate
and stiffeners were satisfied by using a transformation matrix. Honda and Narita [11] used
the classical plate theory within the Ritz method in order to evaluate the natural frequencies
and vibrational modes. An experimental approach was used in Rodrigues et al. [12] for
the free vibration analysis of a plate with free boundary conditions that was subjected to
random excitation via an electromagnetic shaker. Subsequently, the results were compared
to the ones obtained through FEM, where a four-node isoparametric element based on
the Reissner–Mindlin theory was used. Stodieck et al. [13] showed that curvilinear fibers
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can be useful for improving the aeroelastic response of composite wings. The Rayleigh–
Ritz method and classical lamination theory were used to develop a 1D beam model,
considering the assumption of null chamber deformation of the wing chord-wise section.
The aeroelastic response was computed by introducing quasi-static aerodynamic forces in
a model developed for the plate structural analysis. A parametric study showed that by
using VATs, it is possible to influence wing response both positively and negatively.

Curvilinear fibers can improve the modal response, as shown in several works. Ab-
dalla et al. [14] used the classical lamination theory in combination with a successive
approximation method in order to solve an optimization problem. The results showed that
curvilinear fibers increased the optimal fundamental frequency in comparison with straight
ones. A similar approach was presented in Blom et al. [15], where the maximization of
the first natural frequency considering manufacturing constraints was obtained for VAT
conical shells. In Carvalho et al. [16], a genetic algorithm and shell elements based on
FSDT were used for maximization of the fundamental frequency. The multi-scale two-level
(MS2L) approach helps to split the optimization problem in two parts. The composite is
modeled as an equivalent homogeneous anisotropic plate in the first step, which aims to
find the ideal distribution of the polar parameters that represent the mechanical design
variables. The main goal of a second step is to establish the best stacking sequence in
relation to the mechanical property distribution that has been obtained in the first step.
The MS2L method was applied by Montemurro and Catapano [17] to VAT plates in order
to optimize the buckling response. In order to evaluate the polar parameters, B-spline
surfaces were introduced, while manufacturing constraints were considered during the
second step. More details about the MS2L approach can be found in Catapano et al. [18],
Montemurro and Catapano [19] and Fiordilino et al. [20], where both stiffness and buckling
optimization problems were solved.

VAT structures have also been studied by using Carrera’s unified formulation. CUF is
a mathematical framework that helps the derivation of different theories, such as classical
lamination plate theory, higher-order shear deformation theories, or LW approaches, within
a unique formulation; see Carrera [21,22]. The a priori approximation over the thickness
(typical of plates’ structural modeling) can also be freely assumed as a generic combination
of functions whose number is a free parameter of the formulation. When polynomial
functions are used, as in this article, the expansion order along the thickness of the plate is
arbitrary in the formulation, and it can be set when performing a specific analysis. This
flexibility is beneficial because it helps to tailor the accuracy and computational efficiency
of the analysis to the specific requirements of the problem at hand. Carrera et al. [23] used
CUF in order to develop a Navier closed-form solution for the static analysis of isotropic
plates under several loading conditions. The same approach was used in Carrera and
Giunta [24] in order to perform failure analyses on isotropic plates. A further extension
of this method was shown in Giunta et al. [25], where a indentation failure analysis of
composite sandwich plates was performed. Giunta et al. [26] performed free vibration
analyses of composite beams. In Viglietti et al. [27] and Fallahi et al. [28], free vibration and
buckling analyses of VATs were performed through the use of a 1D CUF model. Within
this framework, shell models were developed as well for VAT cases in order to perform
stress analyses; see Sánchez-Majano et al. [29]. In Pagani and Sánchez-Majano [30,31]
and Sánchez-Majano et al. [32], manufacturing defects were taken into account by using
stochastic techniques. Vescovini and Dozio [33] used the Ritz method within CUF for
vibrational and buckling analyses. A generalization of CUF was developed in order to
allow for the use of different expansions for every component of the displacement vector.
Demasi et al. [34] applied this approach to the study of VAT plates with an ESL model. A
further advantage of CUF is that it can be used in combination with different variational
statements. An alternative to the classic PVD is represented by the RMVT, where both
displacements and transverse out-of-plane stresses are considered as primary variables.
RMVT has been widely used within CUF for the study of straight-fiber composite structures.
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For example, Carrera and Demasi [35,36] developed RMVT-based CUF models to perform
the static analysis of straight fiber plates.

The free vibration analysis is an important problem in engineering (see Babaei et al. [37]),
and within this context, CUF has been applied to the study of VATs considering PVD as
the main variational statement. For this reason, this work aims to extend this framework
with the RMVT formulation in order to develop a family of hierarchical plate finite elements.
This will help to better predict the natural frequencies of composite plates characterized by
curvilinear fibers. Section 2 shows the theoretical derivation for free vibration problems.
Section 3 presents the numerical results where three cases are investigated. Analyses are
performed that consider a varying side-to-thickness ratio in order to investigate thin and thick
plates, and the differences between models are discussed regarding PVD or RMVT statements.
The results are compared to reference solutions for validation. Concluding observations and
remarks are presented in Section 4.

2. Carrera’s Unified Formulation

A plate is a flat body whose material points lie in the Cartesian closed-point subset

P = Ω×H (1)

of the three-dimensional space R3 where:

Ω =
{
(x, y) :

x
a

,
y
b
∈ [0, 1]

}
⊂ R2,

H =

{
z :

2z
h
∈ [−1, 1]

}
,

(2)

where a and b are the dimensions along the two in-plane axes, and h measures its thickness
along the z-axis, where z� a and b. The global reference system and plate geometry are
presented in Figure 1.

Figure 1. Plate geometry and reference system.

The displacement field is expressed as:

u =


ux
uy
uz

. (3)

The strain tensor components can be written in vector form. Two vectors are obtained,
representing the in-plane and out-of-plane components:

εp =


εxx
εyy
εxy

, εn =


γxz
γyz
γzz

. (4)
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The hypothesis of small displacements helps to use a linear strain–displacement relation:

εp = Dpu ,
εn = (DnΩ + Dnz)u ,

(5)

where Dp, DnΩ and Dnz are the following differential operators:

Dp =



∂

∂x
0 0

0
∂

∂y
0

∂

∂y
∂

∂x
0

, DnΩ =


0 0

∂

∂x

0 0
∂

∂y
0 0 0

, Dnz =


∂

∂z
0 0

0
∂

∂z
0

0 0
∂

∂z

. (6)

The stress vector is expressed in a similar manner:

σp =


σxx
σyy
σxy

, σn =


σxz
σyz
σzz

. (7)

Hooke’s law reads:
σp = C̃ppεp + C̃pnεn ,
σn = C̃npεp + C̃nnεn ,

(8)

where the terms C̃pp, C̃pn, C̃np and C̃nn are subcomponents of a material stiffness matrix C̃
according to the stress and strain ordering in Equations (4) and (7), where the fibers lay
in Ω and where they are not, in general, aligned with the x-axis. C stands for the stiffness
matrix in the global reference system, and its components can be written in terms of the
Young’s moduli EL and ET , shear moduli GLT and GTT and Poisson’s ratios νLT and νTT ,
where subscripts L and T stand for the directions parallel and perpendicular to the fibers,
respectively. For further details, see Reddy [38].

2.1. Variable Stiffness Composite Plates

Laminated VAT structures are considered in this work. For this reason, the material
stiffness coefficients can change layer-wise along the thickness and pointwise along the
in-plane directions. The mapping of C into C̃ reads:

C̃ = TCTT . (9)

Superscript T stands for the transpose operator. The matrix T represents a rotation matrix
that depends on an in-plane rotation angle θ. For the sake of brevity, the components
of C̃ and T are not reported here; they can be found in Reddy [38]. In a laminated VAT,
the rotation angle θ is a bi-dimensional field in Ω. In this work, two different variation
laws are considered for θ, a linear variation law and a parabolic one. The linear law can be
expressed according to the following formula:

θ(α) = Φ + T0 +
T1 − T0

d
|α| . (10)

The angle Φ describes the original direction along which θ varies, and α is a generic spatial
variable defined as:

α = x′ cos(Φ) + y′ sin(Φ) . (11)

x′ and y′ denote a generic in-plane reference system used for describing a fiber path, where
θ is measured. The introduction of a new reference system is useful in order to represent
the local fiber orientation independently from the global reference system identified by
axes x and y. T0 and T1 are the angles between the α-axis and the tangent to a fiber for α
equal to zero and d, respectively; see Figure 2.
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Figure 2. Example of in-plane fiber orientation.

As shown in the Figure 2, the fiber angle is always measured with respect to the
x′-axis, and it can change along a generic direction α, defined as a combination of x′

and y′ depending on the angle Φ. Further details about the fiber linear variation law
can be found in Gürdal et al. [39]. The parabolic law can be expressed according to the
following equation:

θ(α) = Φ + T0 + tan−1
(

γ
α

d

)
. (12)

The parameter γ is used to control the shape of the parabola, and it is related to the final
fiber angle T1 as T1 = tan−1(±γ). More details about the parabolic fiber path can be found
in Hachemi et al. [9] and Honda et al. [40]. The following notation, based upon the above
introduced parameters, is used in order to describe the in-plane linear and parabolic fiber
behavior: Φ < T0, T1 >.

2.2. Variational Statements

PVD and RMVT variational statements are considered to derive the governing equa-
tions for the free vibration problem for a laminated VAT plate. The fundamental distinction
is that the RMVT considers the vector of the out-of-plane stresses σn as a primary unknown,
whereas the PVD considers only displacements as primary variables. For the PVD case,
the following variational statement applies:∫

Ω

∫
H

(
δεT

pG σpH + δεT
nG σnH

)
dz dΩ + δLin = 0 , (13)

where the subscript G refers to the components obtained from the geometrical relations
in Equation (5), and subscript H refers to the components obtained from Hooke’s law
in Equation (8). Lin is the virtual work of the inertial forces, and δ stands for a virtual
variation. For the RMVT case, the variational statement is:∫

Ω

∫
H

[
δεT

pG σpH + δεT
nG σnM + δσT

nM(εnG − εnH)
]

dz dΩ + δLin = 0 . (14)

The M subscript refers to the transverse stress components considered as primary un-
knowns in the mixed formulation. For the RMVT formulation, Hooke’s law is rewritten
as follows:

σpH = ĈppεpG + ĈpnσnM ,
εnH = ĈnpεpG + ĈnnσnM ,

(15)

where Ĉpp, Ĉpn, Ĉnp and Ĉnn are (see Carrera and Demasi [35]):

Ĉpp = C̃pp − C̃pnC̃−1
nn C̃np ,

Ĉpn = C̃pnC̃−1
nn ,

Ĉnp = −C̃−1
nn C̃np ,

Ĉnn = C̃−1
nn .

(16)
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The superscript “−1” indicates the inverse of a matrix. The inertial work can be expressed as:

δLin =
∫

Ω

∫
H

δuTρ ü dΩ dz , (17)

where ρ is the plate material density, and ü represents the acceleration vector.

2.3. Kinematic Assumptions

CUF uses an axiomatic approach along the through-the-thickness direction to represent
the primary unknowns; see Carrera [22]. The generic unknown component f = f (x, y, z) is
approximated as:

f (x, y, z) = Fτ(z)gτ(x, y) , τ = 0, 1, . . . , N , (18)

where f is a displacement component in a formulation derived from the PVD, but it can
also be an out-of-plane stress component when a RMVT formulation is considered. Fτ

is an approximation function in H, and gτ is an unknown two-dimensional function in
Ω. According to Einstein’s notation, a twice-repeated index implies a sum over the index
range. Finally, N is the approximation order. Both N and Fτ are a priori defined. This
feature of CUF helps to obtain multiple theories in the same formulation. Within CUF,
ESL or LW models can also be obtained depending on the support of Fτ . In an ESL model

Fτ : H 7→ R, whereas for a LW model Fτ : Hk 7→ R where Hk =

{
zk :

2zk

hk ∈ [−1, 1]

}

such that H =
Nl⋃

k=1
Hk and Hk ∩ Hk′ = ∅ for k 6= k′ with k, k′ = 1, 2, . . . , Nl , where

Nl is the total number of laminae, and hk is the thickness of a generic k lamina such that

k =
Nl
∑

k=1
hk. The number of unknowns in the ESL case is independent of the number of layers

in the lamination since the approximation is imposed globally overH. The total stiffness
contributions can be seen as a weighted average of each layer stiffness along the thickness.
Maclaurin’s series approximation is considered for the ESL models as a linear combination
of the power functions:

Fτ(z) = zτ , τ = 0, 1, . . . , N , (19)

where N is the expansion order. The computational cost of ESL models depends on N
only, and for a given N, it is lower than a LW model since this latter model depends on
the total number of layers in the lamination. ESL models are suitable for relatively thick
laminates. However, they are unable to accurately predict the behavior of thick plates
with a high degree of anisotropy. ESL models have C∞-continuity overH because of the
used approximation functions, whereas laminated composites present a C0-continuity since
the interface between the two consecutive layers of the different materials introduces a
change in the slope of the displacements (also known as zig-zag displacement through-the-
thickness variation). This behavior can be accommodated within an ESL theory by means
of Murakami’s function. This approach is not considered here; for more details, refer to
Carrera [41]. In an LW model, the kinematics of each layer are formulated independently:

f k(x, y, z) = Fb(z)gk
b(x, y) + Fr(z)gk

r (x, y) + Ft(z)gk
t (x, y) , r = 2, . . . , N , (20)

where subscripts b and t stand for the bottom and top layers, respectively. Congruence at
the interface is retrieved via a through-the-thickness assembly procedure similar to that
used in the finite element method. For this reason, Lagrange polynomials (which ensure
partition of unity), or the following linear combination of Legendre polynomials, which are
represented as:

Ft

(
z(ξk)

)
=

P0 + P1

2
, Fb

(
z(ξk)

)
=

P0 − P1

2
, Fr

(
z(ξk)

)
= Pr − Pr−2, r = 2, . . . , N (21)
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are typically used as approximation functions overHk. The use of Lagrange or Legendre
polynomials along the thickness changes according to the used model, and this is specified

at the end of the next subsection. In Equation (21), ξk =
2zk

hk ∈ [−1, 1] and Pi = Pi

(
ξk
)

are

an i-order Legendre polynomial. Equation (21) creates a base where Ft and Fb are the two
linear Lagrange polynomials, and Fr is a kind of p-version-enriching function since it does
not contribute to a base linear combination for ξk = ±1, being, by definition, Fr(±1) = 0.
Since LW base functions have local support, inter-layer C0-continuity for layers made of
different materials is ensured, but the computational costs are higher than for ESL models.

2.4. Acronym System

An acronym system is used in order to identify all the derived theories. Figure 3 shows
this system.

Figure 3. Acronym system.

The first letter addresses the approximation level that is applied: ‘E’ denotes the ESL
models, whereas ‘L’ denotes the LW models. The second letter denotes the variational
statement: PVD or RMVT are denoted by ‘D’ or ‘M’, respectively. The last number is the
order of expansion along the plate thickness. A number at the beginning of the acronym,
when present, indicates how many virtual layers have been used to approximate each
physical layer in an LW model to improve the results for a given approximation order. If this
number is not present, only one virtual layer has been used to represent each physical layer.

As an example, in EDN models, the displacement field can be expressed as:

ux = ux0 + ux1z + ux2z2 + · · ·+ uxNzN ,

uy = uy0 + uy1z + uy2z2 + · · ·+ uyNzN ,

uz = uz0 + uz1z + uz2z2 + · · ·+ uzNzN .

(22)

In vector form:

u = F0u0 + F1u1 + · · ·+ FNuN = Fτuτ , τ = 0, 1, . . . , N , (23)

where Fτ = zτ and uτ = uτ(x, y). Additionally, classical theories can be taken into account.
Classical lamination theory (CLT) and first-order shear deformation theory are obtained as
a particular case of a first-order ESL theory. FSDT is obtained through the penalization of
the uz1 term, while for CLT, transverse shear stresses are disregarded by using a fictitiously
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high value of the material shear moduli. The material stiffness matrix needs to be reduced
in a plane-stress sense to overcome thickness locking.

For LDN solutions, only displacements are considered as the primary variables:

uk = F0uk
0 + F1uk

1 + · · ·+ FNuk
N = Fτuk

τ , τ = 0, 1, . . . , N , k = 1, 2, . . . , Nl . (24)

For LMN solutions, transverse stresses are treated as primary variables. The transverse
stress field can be expressed as:

σk
n = F0σk

0 + F1σk
1 + · · ·+ FNσk

N = Fτσk
τ , τ = 0, 1, . . . , N , k = 1, 2, . . . , Nl . (25)

It can be observed that ESL theories can be considered as a particular case for LW theories.
While in the first case the integration along the thickness is performed in order to repre-
sent composite properties through a unitary layer, for the second case, the integration is
computed layer by layer. This helps to represent the kinematics of each layer separately for
LW models. LDN solutions are obtained with Lagrange polynomials with equally spaced
nodes, whereas LMN ones are obtained with Legendre polynomials.

2.5. FE Stiffness Matrices

As far as a FEM solution is concerned, the in-plane domain is discretized into Ne

subdomains such as Ω =
Ne⋃

e=1
Ωe and Ωe ∩Ωe′ = ∅ for e 6= e′ . Shape functions are then

introduced for the approximation of the variation over Ωe. In the case of a bi-dimensional
model, Equation (18) becomes:

f (x, y, z) = Fτ(z)Ni(x, y)gτi , τ = 0, 1, . . . , N , i = 1, . . . , Nn , (26)

where Ni stands for the shape functions, and Nn is the number of nodes in the used finite
element. Classical Lagrange shape functions are used. They are not presented here for the
sake of brevity, but they can be found in Bathe [42]. FE stiffness matrices are obtained by
the weak form of the variational principles. In the PVD case, considering Equation (26), the
displacement field can be written as:

u = Fτ Ni


qxτi
qyτi
qzτi

 = Fτ Niqτi . (27)

Through the substitution of Equations (5), (8) and (27) into Equation (13), the weak PVD
form can be obtained:

∫
Ωe

δqT
τi
[
DT

p (NiI)Z̃τs
ppDp

(
NjI
)
+ DT

p (NiI)Z̃τs
pnDnΩ

(
NjI
)
+ DT

p (NiI)Z̃
τs,z
pn
(

NjI
)

+DT
nΩ(NiI)Z̃τs

npDp
(

NjI
)
+ DT

nΩ(NiI)Z̃τs
nnDnΩ

(
NjI
)
+ DT

nΩ(NiI)Z̃
τs,z
nn
(

NjI
)

+(NiI)Z̃
τ,zs
np Dp

(
NjI
)
+ (NiI)Z̃

τ,zs
nn DnΩ

(
NjI
)
+ (NiI)Z̃

τ,zs,z
nn

(
NjI
)]

qsjdΩ = −
∫

Ωe
δqT

τi(NiI)ρEτs
(

NjI
)
q̈sjdΩ ,

(28)

where:(
Z̃τs

wr, Z̃τ,zs
wr , Z̃τs,z

wr , Z̃τ,zs,z
wr

)
=
(

C̃wrEτs, C̃wrEτ,zs, C̃wrEτs,z , C̃wrEτ,zs,z

)
: w, r = p, n , (29)

(
Eτs, Eτ,zs, Eτs,z , Eτ,zs,z

)
=
∫
H

(
Fτ Fs, Fτ,z Fs, Fτ Fs,z , Fτ,z Fs,z

)
dz . (30)

An axis coordinate as comma-preceded subscript stands for a derivative in that coordinate
direction. In compact vector form, Equation (28) reads:

δqT
τiK

τsijqsj = −δqT
τiM

τsijq̈sj , (31)
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where Kτsij and Mτsij ∈ R3×3 are fundamental nuclei (FN) of the stiffness and mass
matrices, respectively. Through the cycles on the indices τ, s, i and j, it is possible to build
the stiffness and mass matrices of a finite element. The components of the stiffness FN for
the PVD case can be written as:

Kτsij
xx =

∫
Ωe

(
Z̃τs

pp11Nj,x Ni,x + Z̃τs
pp16Nj,y Ni,x + Z̃τs

pp16Nj,x Ni,y + Z̃τs
pp66Nj,y Ni,y + Z̃τ,zs,z

nn44 Nj Ni

)
dΩ ,

Kτsij
xy =

∫
Ωe

(
Z̃τs

pp12Nj,y Ni,x + Z̃τs
pp16Nj,x Ni,x + Z̃τs

pp26Nj,y Ni,y + Z̃τs
pp66Nj,x Ni,y + Z̃τ,zs,z

nn45 Nj Ni

)
dΩ ,

Kτsij
xz =

∫
Ωe

(
Z̃τs,z

pn13Nj Ni,x + Z̃τs,z
pn36Nj Ni,y + Z̃τ,zs

nn44Nj,x Ni + Z̃τ,zs
nn45Nj,y Ni

)
dΩ ,

Kτsij
yx =

∫
Ωe

(
Z̃τs

pp12Nj,x Ni,y + Z̃τs
pp26Nj,y Ni,y + Z̃τs

pp16Nj,x Ni,x + Z̃τs
pp66Nj,y Ni,x + Z̃τ,zs,z

nn45 Nj Ni

)
dΩ ,

Kτsij
yy =

∫
Ωe

(
Z̃τs

pp22Nj,y Ni,y + Z̃τs
pp26Nj,x Ni,y + Z̃τs

pp26Nj,y Ni,x + Z̃τs
pp66Nj,x Ni,x + Z̃τ,zs,z

nn55 Nj Ni

)
dΩ ,

Kτsij
yz =

∫
Ωe

(
Z̃τs,z

pn23Nj Ni,y + Z̃τs,z
pn36Nj Ni,x + Z̃τ,zs

nn45Nj,x Ni + Z̃τ,zs
nn55Nj,y Ni

)
dΩ ,

Kτsij
zx =

∫
Ωe

(
Z̃τs,z

nn44Nj Ni,x + Z̃τs,z
nn45Nj Ni,y + Z̃τ,zs

np13Nj,x Ni + Z̃τ,zs
np36Nj,y Ni

)
dΩ ,

Kτsij
zy =

∫
Ωe

(
Z̃τs,z

nn45Nj Ni,x + Z̃τs,z
nn55Nj Ni,y + Z̃τ,zs

np23Nj,y Ni + Z̃τ,zs
np36Nj,x Ni

)
dΩ ,

Kτsij
zz =

∫
Ωe

(
Z̃τs

nn44Nj,x Ni,x + Z̃τs
nn45Nj,y Ni,x + Z̃τs

nn45Nj,x Ni,y + Z̃τs
nn55Nj,y Ni,y + Z̃τ,zs,z

nn33 Nj Ni

)
dΩ .

(32)

The mass FN can be written as:

Mτsij =
∫

Ωe
(NiI)ρEτs

(
NjI
)
dΩ . (33)

It is possible to observe that Mτsij is a diagonal matrix and that since the plate density is
assumed to be constant, the term ρEτs can be placed outside the integral.

In the RMVT case, transverse stresses are a priori approximated:

σn = Fτ Ni


gxzτi
gyzτi
gzzτi

 = Fτ Nigτi . (34)

Through the substitution of Equations (5), (15), (27) and (34) into Equation (14), the RMVT
weak form can be obtained:∫

Ωe

δqT
τi
[
DT

p (NiI)Ẑ
τs
ppDp

(
NjI
)]

qsj + δqT
τi
[
DT

p (NiI)Ẑ
τs
pn

(
NjI
)
+ DT

nΩ(NiI)(EτsI)
(

NjI
)

+(NiI)(Eτ,zsI)
(

NjI
)]

gsj + δgT
τi
[
(NiI)(EτsI)DnΩ

(
NjI
)
+ (NiI)(Eτs,z I)

(
NjI
)

−(NiI)Ẑ
τs
npDp

(
NjI
)]

qsj − δgT
τi(NiI)Ẑ

τs
nn

(
NjI
)

gsjdΩ = −
∫

Ωe

δqT
τi(NiI)ρEτs

(
NjI
)

q̈sjdΩ ,

(35)

where:(
Ẑτs

wr, Ẑτ,zs
wr , Ẑτs,z

wr , Ẑτ,zs,z
wr

)
=
(

ĈwrEτs, ĈwrEτ,zs, ĈwrEτs,z , ĈwrEτ,zs,z

)
: w, r = p, n . (36)

In a compact form:

δqT
τiK

τsij
uu qsj + δqT

τiK
τsij
uσ gsj = −δqT

τiM
τsijq̈sj ,

δgT
τiK

τsij
σu qsj + δgT

τiK
τsij
σσ gsj = 0 .

(37)
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In this case, four fundamental nuclei are obtained. The components of the FN for the RMVT
case can be written as:

Kτsij
uuxx =

∫
Ωe

(
Ẑτs

pp11Nj,x Ni,x + Ẑτs
pp31Nj,x Ni,y + Ẑτs

pp13Nj,y Ni,x + Ẑτs
pp33Nj,y Ni,y

)
dΩ ,

Kτsij
uuxy =

∫
Ωe

(
Ẑτs

pp12Nj,y Ni,x + Ẑτs
pp32Nj,y Ni,y + Ẑτs

pp13Nj,x Ni,x + Ẑτs
pp33Nj,x Ni,y

)
dΩ ,

Kτsij
uuyx =

∫
Ωe

(
Ẑτs

pp21Nj,x Ni,y + Ẑτs
pp31Nj,x Ni,x + Ẑτs

pp23Nj,y Ni,y + Ẑτs
pp33Nj,y Ni,x

)
dΩ ,

Kτsij
uuyy =

∫
Ωe

(
Ẑτs

pp22Nj,y Ni,y + Ẑτs
pp32Nj,y Ni,x + Ẑτs

pp23Nj,x Ni,y + Ẑτs
pp33Nj,x Ni,x

)
dΩ ,

Kτsij
uuxz = 0 , Kτsij

uuyz = 0 , Kτsij
uuzx = 0 , Kτsij

uuzy = 0 , Kτsij
uuzz = 0 ,

Kτsij
uσxx =

∫
Ωe

(
Eτ,zs Nj Ni

)
dΩ , Kτsij

uσxz =
∫

Ωe

(
Ẑτs

pn13Nj Ni,x + Ẑτs
pn33Nj Ni,y

)
dΩ ,

Kτsij
uσyy =

∫
Ωe

(
Eτ,zs Nj Ni

)
dΩ , Kτsij

uσyz =
∫

Ωe

(
Ẑτs

pn23Nj Ni,y + Ẑτs
pn33Nj Ni,x

)
dΩ ,

Kτsij
uσzx =

∫
Ωe

(
Eτs Nj Ni,x

)
dΩ , Kτsij

uσzy =
∫

Ωe

(
Eτs Nj Ni,y

)
dΩ , Kτsij

uσzz =
∫

Ωe

(
Eτ,zs Nj Ni

)
dΩ ,

Kτsij
uσxy = 0 , Kτsij

uσyx = 0 ,

Kτsij
σuxx =

∫
Ωe

(
Eτs,z Nj Ni

)
dΩ , Kτsij

σuxz =
∫

Ωe

(
Eτs Nj,x Ni

)
dΩ , Kτsij

σuyy =
∫

Ωe

(
Eτs,z Nj Ni

)
dΩ ,

Kτsij
σuyz =

∫
Ωe

(
Eτs Nj,y Ni

)
dΩ , Kτsij

σuzx = −
∫

Ωe

(
Ẑτs

np31Nj,x Ni − Ẑτs
np33Nj,y Ni

)
dΩ ,

Kτsij
σuzy = −

∫
Ωe

(
Ẑτs

np32Nj,y Ni − Ẑτs
np33Nj,x Ni

)
dΩ , Kτsij

σuzz =
∫

Ωe

(
Eτs,z Nj Ni

)
dΩ ,

Kτsij
σuxy = 0 , Kτsij

σuyx = 0 ,

Kτsij
σσxx = −

∫
Ωe

(
Ẑτs

nn11Nj Ni

)
dΩ , Kτsij

σσxy = −
∫

Ωe

(
Ẑτs

nn12Nj Ni

)
dΩ ,

Kτsij
σσyx = −

∫
Ωe

(
Ẑτs

nn21Nj Ni

)
dΩ , Kτsij

σσxx = −
∫

Ωe

(
Ẑτs

nn22Nj Ni

)
dΩ ,

Kτsij
σσxz = 0 , Kτsij

σσyz = 0 , Kτsij
σσzx = 0 , Kτsij

σσzy = 0 , Kτsij
σσzz = 0 .

(38)

The mass FN is the same as the PVD case; see Equation (33). Since the in-plane integrals are
calculated via Gauss quadrature, it is crucial to consider an appropriate number of Gauss
points in accordance with the variational rule of the fiber angle.

3. Results and Discussion

Three cases are analyzed in this work: a cantilever monolayer plate, a clamped
multilayer plate and a clamped multilayer plate with a central circular cut-out. For each
case, a square geometry is considered (a = b = 1 m). Parametric studies are performed
considering different side-to-thickness ratios (a/h = 100, 10, 5). Material properties are
represented in Table 1 for all the considered analyzed cases.

Table 1. Material properties.

Case EL (GPa) ET (GPa) GLT = GTT (GPa) νLT = νTT

1 50.0 10.0 5.0 0.25
2 173.0 7.2 3.8 0.29
3 138.0 9.0 7.1 0.30

Reference solutions are represented by an Abaqus 3D model where quadratic elements
(C3D20R) were used. For CUF solutions, nine-node square elements were used. For each
case study, a preliminary convergence analysis was carried out to identify the appropriate
mesh for both CUF and Abaqus solutions.
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3.1. Monolayer Plate

The first case corresponds to a cantilever monolayer plate with density ρ = 1540 kg/m3.
For this problem, axes x′ and y′ of the angle reference system are coincident with axes x
and y of the plate. This means that the origin of the angle reference system is the same as
the global one and that x′ and y′ are parallel to x and y, respectively. It is assumed that the
fiber angle is a linear function of y′; see Equation (10). The length parameter corresponds to
d = b, while the direction of fiber variation α corresponds to y′, which means that Φ = 90◦.
In this case, T0 = 0◦ and T1 = 90◦. The fiber orientation changes only along y′ from a value
of θ(0) = Φ + T0 = 90◦ to θ(b) = Φ + T1 = 180◦. The angle variational law in this case can
be expressed as 90 < 0, 90 >, and it is presented in Figure 4.

Figure 4. Stacking sequence; case 1.

This law has been taken from Viglietti et al. [27]. The reference solution contains
80 elements along each in-plane side and 12 elements along the thickness. The only
clamped side of the plate is the one that lies on the xz plane, corresponding to y′ = 0. For
the CUF results, a 10× 10 mesh is considered. Table 2 shows the degrees Of freedom (DOF)
for some considered solutions.

Table 2. Degrees of freedom; case 1.

Model DOF

Abaqus 3D 997,515
3LM4 34,398
2LM2 13,230
3LD4 17,199
2LD2 6615
ED4 6615
ED2 3969
FSDT 2646
CLT 2646

It is possible to observe that higher-order CUF models allow for a DOF reduction of
one order of magnitude in comparison with the Abaqus 3D reference solution. Table 3
shows the first five natural frequencies for a/h = 100.
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Table 3. Natural frequencies (Hz), a/h = 100; case 1.

Mode
1 2 3 4 5

Abaqus 3D 7.397 16.354 37.158 48.025 63.349
3LM4 7.399 16.334 37.164 47.988 63.310
2LM2 7.398 16.333 37.162 47.986 63.309
3LD4 7.400 16.362 37.179 48.053 63.378
2LD2 7.400 16.362 37.179 48.054 63.379
ED4 7.400 16.362 37.179 48.053 63.378
ED2 7.401 16.368 37.186 48.069 63.399
FSDT 7.398 16.363 37.171 48.054 63.388
CLT 7.403 16.414 37.213 48.175 63.537

For this case, classic and higher-order theories show very good approximations of
the reference solution, where the maximum difference from the reference solution is 0.4%
for the second natural frequency computed via CLT. Table 4 shows the first five natural
frequencies for a/h = 10.

Table 4. Natural frequencies (Hz), a/h = 10; case 1.

Mode
1 2 3 4 5

Abaqus 3D 72.229 151.762 338.517 389.336 431.011
3LM4 72.244 151.751 338.577 389.554 431.004
2LM2 72.233 151.705 338.432 389.546 430.824
3LD4 72.250 151.796 338.625 389.587 431.151
2LD2 72.269 151.906 338.939 389.589 431.577
ED4 72.253 151.810 338.669 389.588 431.207
ED2 72.466 153.069 342.179 389.592 435.990
FSDT 72.437 153.021 342.036 389.510 435.853
CLT 73.825 163.064 365.813 389.510 472.565

It is possible to observe that classical and lower-order ESL theories are now less
accurate, especially for the prediction of higher frequencies. For example, CLT, FSDT
and ED2 models, corresponding to the third natural frequency, present a percentage error
equal to 8.1%, 1.0% and 1.1%, respectively. This can be explained by considering that the
side-to-thickness ratio a/h = 10 corresponds to a thick plate. In this case, higher-order
theories are needed to obtain an accurate approximation. Since a moderately thick plate is
considered, transverse shear stresses affect the solution. This is the reason that CLT, which
neglects those stresses, is less close to the reference solution. The best approximations
of plate natural frequencies are given by 2LM2 and 3LM4 mixed theories, which show a
maximum percentage error of 0.1% each for the fourth natural frequency. In particular, it is
possible to observe that the 2LM2 solution is globally closer to Abaqus in comparison with
the 3LD4 solution, even if the last one is characterized by a higher number of degrees of
freedom. Table 5 shows the first five natural frequencies for a/h = 5.

Because of the low side-to-thickness ratio, a very thick plate is considered, and lower-
order theories do not provide a correct prediction of the natural frequencies. For CLT,
the sixth mode is the same as the fifth mode of the reference solution, that is, the order
of appearance is swapped. In this regard, mode tracking was performed by visually
comparing the modes of each proposed solution with those of the reference solution
obtained in Abaqus. The corresponding percentage error is as high as 27.1%. On the other
hand, a 3LM4 model matches the Abaqus reference results.
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Table 5. Natural frequencies (Hz), a/h = 5; case 1.

Mode
1 2 3 4 5

Abaqus 3D 136.723 264.080 389.391 556.394 704.284
3LM4 136.742 264.077 389.557 556.404 704.295
2LM2 136.667 263.747 389.550 555.332 703.121
3LD4 136.755 264.119 389.638 556.511 704.442
2LD2 136.875 264.684 389.643 558.145 706.381
ED4 136.774 264.224 389.640 556.855 704.832
ED2 138.015 269.553 389.651 570.563 721.354
FSDT 137.947 269.463 389.510 570.329 721.159
CLT 146.479 319.929 389.510 696.687 895.089

3.2. Multilayer Plate

The second case is taken from Viglietti et al. [27] and corresponds to a multilayer
clamped plate with density ρ = 1540 kg/m3. The plate is composed of three layers with the
same thicknesses. It is assumed that fiber angle is a function of y′ only, which means that α
is parallel to y′ (Φ = 90◦). In this case, a linear law is considered for the fiber path, according
to Equation (10). For this problem, axes x′ and y′ of the angle reference system are aligned
with axes x and y of the plate, but their origin is placed on the center of the plate (a/2, b/2).
In this case, d = b/2 is considered as the length parameter in Equation (10). T0 and T1 are
set for each layer as follows: Tlayer1

0 = Tlayer3
0 = 0◦, Tlayer2

0 = −45◦, Tlayer1
1 = Tlayer3

1 = 45◦,

Tlayer2
1 = −60◦. The lamination of the plate is 90 < 0, 45 > for layer 1, 90 < −45,−60 > for

layer 2 and 90 < 0, 45 > for layer 3. The stacking sequence is presented in Figure 5.

Figure 5. Stacking sequence; case 2.

As for the previous case, the Abaqus reference solution contains 80 elements along
each side and 12 elements along the thickness. For the CUF results, a 10× 10 mesh is
considered. Table 6 shows the first five natural frequencies for a/h = 100, together with
the results presented in Viglietti et al. [27].

In this case, the best approximation is given by the LM2 and LM4 theories. The LM2
and LM4 models both have a maximum percentage error as high as 0.4% corresponding to
the third frequency. In addition, classical and low-order theories provide good results since
a thin plate is considered. For this reason, transverse stresses do not play an important role.
For example, the maximum error given by CLT is 2.1% for the fifth frequency. The case for
a/h = 10 is presented in Table 7.
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Table 6. Natural frequencies (Hz), a/h = 100; case 2.

Mode
1 2 3 4 5

Abaqus 3D 92.18 130.68 194.96 237.56 274.60
Ref. [27] 92.90 132.28 198.97 240.46 278.75
LM4 92.35 131.01 195.77 238.25 275.60
LM2 92.34 130.99 195.74 238.23 275.58
LD4 92.36 131.03 195.81 238.30 275.67
LD2 92.36 131.04 195.84 238.31 275.69
ED4 92.37 131.06 195.88 238.32 275.72
ED2 92.49 131.23 196.16 238.97 276.48
FSDT 92.38 131.01 195.75 238.74 276.20
CLT 93.04 131.85 197.00 242.48 280.40

Table 7. Natural frequencies (Hz), a/h = 10; case 2.

Mode
1 2 3 4 5

Abaqus 3D 606.67 896.70 1208.24 1313.26 1458.25
Ref. [27] 609.79 903.63 1216.00 1328.41 1469.33
LM4 606.90 897.26 1208.80 1314.85 1459.23
LM2 606.33 896.52 1206.86 1313.56 1457.30
LD4 607.22 897.73 1209.64 1315.80 1460.16
LD2 608.65 901.20 1213.06 1322.93 1465.20
ED4 609.84 905.18 1214.60 1331.82 1469.17
ED2 633.68 941.96 1272.39 1396.16 1540.10
FSDT 632.82 940.46 1271.42 1393.96 1538.74
CLT 921.28 1287.71 2368.22 1885.61 2699.22

Here, the CLT model shows that the inversion of the third and fourth modes can be
observed by the corresponding values of the frequencies that are not in ascending order
as the mode number increases. In comparison with the monolayer plate, in this case, the
mode inversions of the CLT model can be seen for higher side-to-thickness ratios and lower
frequencies. For the third mode, CLT shows a percentage error of 96.0%, while the best
approximation is given by LM4, which has a percentage error of 0.17% for the same mode.
Table 8 shows the first five frequencies for a/h = 5.

Table 8. Natural frequencies (Hz), a/h = 5; case 2.

Mode
1 2 3 4 5

Abaqus 3D 794.730 1201.916 1439.956 1701.328 1810.250
LM4 794.760 1202.101 1440.092 1701.788 1811.113
LM2 792.734 1199.331 1433.897 1696.266 1805.942
LD4 795.213 1202.777 1441.080 1702.986 1812.317
LD2 799.063 1209.706 1448.714 1713.982 1820.716
ED4 802.019 1216.744 1450.930 1723.900 1825.405
ED2 845.154 1294.481 1523.246 1847.193 1930.364
FSDT 844.048 1292.846 1522.478 1845.945 1928.631
CLT 1790.121 2411.198 - - -

In this case, lower-order theories have an evident loss of accuracy. The CLT model
can predict only the first two modes. In addition, the FSDT and ED2 models show non-
negligible errors, which become bigger with the increase in frequency. On the other hand,
mixed models are able to correctly predict the dynamic behavior of the plate for both low
and high frequencies.
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3.3. Multilayer Plate with Central Hole

Case 3 is taken from Hachemi et al. [9] and corresponds to a multilayer clamped
plate that presents a circular cut-out. The center of the cut-out is placed at the plate center
(a/2, b/2), and its radius is r = 0.2 m. It is assumed that the fiber angle is a parabolic
function of x′, which means that α is parallel to x′ (Φ = 0◦). As in the previous case, the
x′ and y′ axes are parallel, respectively, to x and y, and their origin is placed at the center
of the plate. The angle variational law is defined in Equation (12), considering d = a/2.
The plate is composed of two layers that have the same thicknesses. The values of T0 and
T1 are set for each layer as follows: Tlayer1

0 = Tlayer2
0 = 0◦, Tlayer1

1 = 30◦, Tlayer2
1 = −30◦.

The stacking sequence is 0 < 0,±30 >; see Figure 6.

Figure 6. Stacking sequence; case 3.

In this case, the Abaqus reference solution is made of 73728 elements: 4608 elements
are defined on the plate plane, and 16 elements are defined along the thickness. For the CUF
results, 128 elements are used on the plate plane. The natural frequencies are expressed in
the following dimensionless form:

ω =
(

ωa2
)√

ρh/D0 , (39)

D0 = E2h3/12(1− νLTνTL) , (40)

where ω is the natural frequency, while D0 represents a reference bending stiffness. Table 9
presents the first five non-dimensional frequencies for a/h = 100.

Table 9. Non-dimensional frequencies ω, a/h = 100; case 3.

Mode
1 2 3 4 5

Abaqus 3D 87.079 106.407 147.559 184.034 197.096
LM4 87.281 106.622 147.070 184.554 197.522
LM2 87.259 106.593 147.045 184.500 197.489
LD4 87.327 106.704 147.911 184.789 197.969
LD2 87.336 106.719 147.952 184.821 198.022
ED4 87.331 106.708 147.921 184.798 197.984
ED2 87.364 106.768 148.169 184.931 198.228
FSDT 87.184 106.538 148.047 184.525 198.029
CLT 87.387 106.942 150.080 185.420 199.725

It is possible to observe that the theories show a good approximation of the reference
results. In addition, the percentage errors of FSDT and CLT are less than 2%. Mixed theories
match the Abaqus results. Table 10 shows the results for a/h = 10 in order to compare the



Materials 2023, 16, 4643 17 of 21

Abaqus reference solution with the one presented in Hachemi et al. [9] and the solutions
obtained with CUF.

Table 10. Non-dimensional frequencies ω, a/h = 10; case 3.

Mode
1 2 3 4 5

Abaqus 3D 72.645 86.745 104.279 136.366 140.278
Ref. [9] 72.432 86.626 103.910 135.828 139.747
LM4 72.699 86.830 104.307 136.467 140.408
LM2 72.573 86.700 104.051 136.137 140.143
LD4 72.744 86.888 104.376 136.558 140.516
LD2 73.107 87.263 105.144 137.567 141.231
ED4 72.868 86.990 104.630 136.851 140.725
ED2 73.977 88.609 107.143 140.522 143.556
FSDT 74.075 88.782 107.645 141.221 143.885
CLT 84.751 104.166 143.133 190.321 174.656

As already observed in previous cases, classical theories and, in general, low-order
ones are not able to provide an accurate approximation of natural frequencies, because of
the low side-to-thickness ratio value. It is also possible that this generates the inversion of
modes four and five for the CLT case. On the other hand, the best approximation is given
by mixed theories, which are closer to the Abaqus solution for high frequencies. The shapes
of the modes are presented in Figures 7–11 for a/h = 10. The modal shapes obtained with
the LM4 model are compared with those of Abaqus 3D.

(a) LM4 (b) Abaqus 3D

Figure 7. Mode 1, a/h = 10; case 3.

(a) LM4 (b) Abaqus 3D

Figure 8. Mode 2, a/h = 10; case 3.
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(a) LM4 (b) Abaqus 3D

Figure 9. Mode 3, a/h = 10; case 3.

(a) LM4 (b) Abaqus 3D

Figure 10. Mode 4, a/h = 10; case 3.

(a) LM4 (b) Abaqus 3D

Figure 11. Mode 5, a/h = 10; case 3.

The first mode shows a simple bending of the plate on the xy plane with a single half-
wave along each in-plane direction. The second and the third modes show two half-waves
in the y and x directions, respectively. Mode number four shows three half-waves along the
plate diagonally between the x and y axes. The fifth mode shows three half-waves along
the y direction. Finally, Table 11 shows the frequencies for a/h = 5.
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Table 11. Non-dimensional frequencies ω, a/h = 5; case 3.

Mode
1 2 3 4 5

Abaqus 3D 54.333 64.456 70.572 90.875 98.086
LM4 54.326 64.456 70.541 90.866 98.098
LM2 54.038 64.201 70.036 90.292 97.612
LD4 54.388 64.514 70.619 90.956 98.191
LD2 54.875 64.963 71.421 91.868 98.955
ED4 54.554 64.623 70.913 91.224 98.408
ED2 56.062 66.756 73.181 94.442 101.535
FSDT 56.253 66.985 73.702 95.219 102.017
CLT 76.928 95.975 119.513 - -

Since a thick plate is considered, the effect of transverse stresses is not negligible,
which causes the classical and lower-order theories to be inaccurate. This can be observed
for CLT, which is not able to predict the fourth and fifth modes and has an error as high as
69.4% for the third mode. Considering the FSDT, ED4 and LD4 models, this error can be
reduced to 4.4%, 0.5% and 0.1%, respectively.

4. Conclusions

In this paper, a new framework for the dynamic analysis of VAT structures is presented.
RMVT is developed within CUF in order to obtain a new family of 2D models for the free-
vibration analysis of VAT plates. The results are obtained via either RMVT or PVD and
are compared in order to show the effective capabilities of the proposed method in the
prediction of VAT plates’ natural frequencies. The Abaqus 3D reference solutions and
results from Refs. [9,27] are also included to further validate the models proposed in this
article. Linear and parabolic laws are both considered in order to describe the in-plane
path of fiber variation. The possibility to use a polynomial order defined a priori through
CUF and the introduction of the transverse stress field as a primary variable of the problem
through RMVT both help to obtain a valid approach for the prediction of VAT dynamic
behavior. After the results analysis, the following remarks can be made:

• Classical theories (FSDT and CLT) provide the best trade-off between accuracy and
computational costs for thin plates (a/h = 100), whereas they are not able to correctly
predict the behavior of thicker plates (a/h = 10 and 5), specially at high frequencies.
The loss of accuracy is more evident for CLT results, since this theory does not consider
transverse shear stresses, which become important in thick plates. This error is
particularly evident in the second- and third-order theories, where the inversion of
modes can be observed.

• The PVD results show monotonic convergence to the reference solution: the lower
the DOF number, the higher the frequency value. For a given mode, frequency
values decrease when higher-order models are employed, and they move closer to the
reference solution.

• In all the cases, layer-wise mixed theories yield the best match of the reference 3D
solution, independently from the plate geometry or fiber variational law. This is
justified by the fact that RMVT considers both displacements and transverse stresses
as primary variables, assuring a better approximation of the transverse stresses field
into the problem domain, and improving the overall solution accuracy.

• For a given expansion order, models based on RMVT are more computationally expen-
sive than PVD models. For this reason, the use of LW mixed models is advantageous
in the cases where a more precise representation of the through-the-thickness behavior
is needed, as in the case of higher frequencies or for thick plates, whereas low-order
ESL and classical models are accurate for lower frequencies and thin plates.

In conclusion, the application of RMVT within CUF has demonstrated significant po-
tential for improving the accuracy and efficiency of modeling VAT plates for free-vibration
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analyses. The promising results suggest, as future perspectives, the extension to buckling
and failure analyses where an accurate and efficient modeling of VAT structures under
various loading and operational conditions is required.
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