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1 Introduction

The current agricultural and food system faces diverse and increasing challenges. These

include feeding an ever-growing human population, expected to reach about 10 billion by

2050 combined with societal disruption, and the need to cope with the impact of climate

change (FAO, 2022). Given that future environmental conditions will limit crop

productivity (Zhao et al., 2017; Cooper et al., 2021) and the limited potential to

continually increase the performance of staple crops by conventional breeding (Hickey

et al., 2019), there is an urgent need to transform agricultural systems. Central to this

transformation is the application of alternative, accelerated, and sustainable approaches for

the improvement and development of underutilized crops (Hickey et al., 2019). Modern

breeding strategies for major crops have widely integrated novel technologies, such as

advanced phenotyping or genome-wide interactions, and even epigenomics within

“beyond the gene” strategies (Crisp et al., 2022) to speed up crop/genotype selection

(Hickey et al., 2019; Kumar et al., 2023). Deploying phenotyping at different scales has the

potential to identify novel trait(s) components that can be targeted to accelerate crop

improvement (Araus and Cairns, 2014; Großkinsky et al., 2015b; Zhao et al., 2019;

Varshney et al., 2021). There is even greater potential for these technologies when used

to improve underutilized crops and support the agricultural transformation, as

underutilized crops typically lack a biased breeding/selection history, i.e., they often

exhibit a high genetic diversity and potential, and are usually better adapted to
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1216337/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1216337/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1216337/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1216337/full
https://orcid.org/0000-0001-8976-1057
https://orcid.org/0000-0001-6867-6021
https://orcid.org/0000-0001-6226-5643
https://orcid.org/0000-0003-0921-8041
https://orcid.org/0000-0003-4729-2082
https://orcid.org/0000-0001-9605-6751
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1216337&domain=pdf&date_stamp=2023-06-20
mailto:dominik.grosskinsky@ait.ac.at
mailto:claudia.jonak@ait.ac.at
https://doi.org/10.3389/fpls.2023.1216337
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1216337
https://www.frontiersin.org/journals/plant-science


Großkinsky et al. 10.3389/fpls.2023.1216337
challenging environments (Kumar et al., 2021; Kumar et al., 2023).

To illustrate the application of an integrative phenomics approach

we discuss how combining multi-omics and advanced phenotyping

is being applied to the underutilized oilseed crop Camelina sativa

(camelina, gold-of-pleasure, false flax) to facilitate the generation of

climate-smart crops for future agricultural systems.
2 Novel technologies and approaches
for crop improvement

The time needed to select new varieties or species, but also to set

up new agronomic practices (e.g., reduced input management) is

currently too long in view of the rapidly changing climate1. While

traditionally varieties have often been selected in a context of high

input mechanized monoculture, it is now necessary to develop

predictive strategies to formulate the genotypes and agronomic

practices adapted to low input, sustainable and diversified cultures.

That said, plant biologists have long been studying adaptation or

acclimation to stresses associated with climate change (e.g., drought,

heat, attacks from pests and pathogens) to unravel the involved

mechanisms and identify targets to improve crop performance.

Reverse genetics usually starts from a gene and characterizes

associated phenotypes. Here, the development of “omics” has

revolutionized biology over the past 20 years and led to a

dramatic increase in the number of candidate genes and networks

(e.g., Kajala et al., 2021). Great progress was initially achieved in

Arabidopsis but has increasingly been translated to major crops

(Fernie and Tohge, 2017). Bottom-up systems biology goes one step

further by assembling reductionist knowledge using models to

explain phenotypes (Keurentjes et al., 2011). One consequence of

this is that more complex mechanisms can be analysed, and more

sophisticated improvement strategies proposed (Chen et al., 2021).

This ensemble of approaches is being carried out in a growing

number of species (Stevens et al., 2018; Hawkins et al., 2021).

However, when going beyond model plants and major established

crops, challenges remain. Whilst resolving homozygous genomes

(van Rengs et al., 2021) and pangenomes (Bayer et al., 2020) of

crops with a medium genome size is now achievable with the advent

of novel sequencing technologies (Mascher et al., 2021), challenges

remain with consistent gene annotation and ontology

developments. Rapid progress is being made with more mature

tools, facilitating structural (Holst et al., 2023) and functional

genome annotation (Bolger et al., 2018; Schwacke et al., 2019),

whilst plant genome data continues to be gathered in

comprehensive databases (Vandepoele, 2017). However, several

problems remain outstanding, including the accurate description

of phenotypes together with necessary metadata (Papoutsoglou

et al., 2020) and simple data management approaches (Pommier

et al., 2019; Jacob et al., 2020). This is especially true for minor or

even orphan crops where, without the necessary resources, these

strategies have not yet reached the same level of maturity as for

major field crops (Watt et al., 2020). To address this, remote
1 https://climate.copernicus.eu/esotc/2022
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sensing, deep phenotyping, and machine learning approaches are

continually being developed for crops (Fernie et al., 2021; Wong

et al., 2023).

Forward genetics starts from the phenotype and tries to identify

the underlying mechanisms, genes and/or markers. Traditionally,

crop improvement has been based on traits of interest, especially

yield. The most promising lines are retained, which results in an

enrichment of the germplasm with performance-promoting alleles.

More recently, proxies such as plant height have started to be used

to speed up the process (Madec et al., 2017). The aim being to find

phenotype-based parameters that are easy and cheap to measure.

Classical selection in the field using plots is very expensive and

generally subject to seasons and environmental hazards. It is in this

context that multiple phenotyping facilities have been established2.

By enabling plant phenotyping under controlled conditions, their

purpose is to generate field performance proxies at affordable cost

(Reynolds et al., 2019), although the confirmation of agronomic

trait evaluations carried out under controlled conditions in the field

is challenging (Hohmann et al., 2016). Indeed, when transferring

phenotypic information from controlled environments to

agronomic field conditions, phenotypes are not always confirmed

(Shi et al., 2017; Zhang et al., 2019; Metje-Sprink et al., 2020). For

example, evaluations of edited plants that have targeted mutations

for specific and well-characterized traits have shown limitations, as

only 13 out of 22 publications confirmed yield effects of edited

plants identified in controlled environments in subsequent field

trials (Metje-Sprink et al., 2020). Therefore, field trials remain

essential for the study of traits interacting with complex

environments. Phenotyping under controlled conditions requires

continued evaluation of growth scenarios to determine the best

predictive variables. Over the past decade more and more

sophisticated sensors and platforms have emerged. Whether in

fields or greenhouses, they use an ever-increasing number of

imaging techniques (Großkinsky et al., 2015a; Brichet et al., 2017;

Yang et al., 2020; Dodig et al., 2021) as non-destructive tools that

allow the generation of performance proxies throughout plant

growth (e.g., Millet et al., 2019). Genomic selection (e.g., R2D2

Consortium et al., 2021), increasingly used by breeders, consists of

predicting the genetic value of candidates for selection through the

development of models linking phenotype and genotype. The

advantage of this approach is that the phenotyping step can be

done with a small subset of the germplasm and the search for

potentially interesting genotypes (pre-breeding) can be done with

young plants and therefore at low cost. Paradoxically, sampling of

plant material is still largely manual and the development of robots

for destructive-type observations is still in its infancy (Foix et al.,

2018). This may be one of the reasons why “omics” are not yet fully

considered as selection tools, in particular metabolomics, whose

costs have fallen sharply (López-Ruiz et al., 2019). Evidence

continues to emerge demonstrating that transcriptomics or

metabolomics (Westhues et al., 2017) can carry more condensed

information than the genome, and these approaches can be used to

build top-down models capable of predicting traits, particularly in
2 www.plant-phenotyping.org
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integrative approaches combining omics technologies with

advanced phenotyping.
3 Underutilized crops and their
agricultural potential

Despite a huge variety of cultivated plants, historical

developments in global agriculture have resulted in a very narrow

diversity of crops contributing to our current food system, with only

few species accounting for over 90% of world food production, e.g.,

the staple cereals rice, wheat, and maize (Milla and Osborne, 2021).

In contrast, the vast majority of more than 5000 known edible crops

are only cultivated on a small scale, if at all, and are largely neglected

in modern agricultural settings due to their limited competitiveness

(Padulosi, 2017). These wild, cultivated, or semi-domesticated crops

are not yet fully integrated into typical agricultural systems

worldwide (Padulosi, 2017). These crops are typically

underutilized in agriculture due to a lack of improvement and in-

depth agronomic knowledge and/or experience, moreover, they are

poorly represented in fundamental research, which is mostly

focused on model plants or staple crops. Thus, there is often a

lack of complementary knowledge, technologies, and resources

from basic research to support use and integration of such crops.

Underutilised crops (for examples see Table 1) have recently gained

attention as many of them hold untapped potential for coping with

the challenges of current and future agriculture (Padulosi, 2017;

Kumar et al., 2023), e.g., increasing agro-biodiversity, improving the

overall resilience of agricultural systems against climate change and

sourcing alternative (high-quality) food ingredients. This is evident

in research today e.g., EU-funded projects, aiming to promote the

use of underutilized crops, such as INCREASE3 aiming at

improving the sustainable use of the pulses chickpea, common

bean, lentil and lupin, PROTEIN2FOOD4 addressing the

development and sustainable use of quinoa, amaranth, buckwheat

and pulses like lupins, and UNTWIST5 aiming at the promotion of

the sustainable use of camelina as a promising climate-resilient

oilseed crop. All these projects focus on crop phenotypes and

environmental plasticity.

Among underutilized crops with significant potential, camelina

has recently attracted interest as a promising alternative to other

oilseeds (e.g., rapeseed). From a scientific perspective, this is also

due to its genetic similarity with the model plant Arabidopsis

(Kagale et al., 2014). Camelina can be easily integrated into

existing agricultural systems (Zanetti et al., 2021). It has a natural

capacity to withstand harsh environmental conditions, and

tolerance to pests and diseases represent additional features that

make it a suitable crop for many environments worldwide (Berti

et al., 2016; Zanetti et al., 2021), except for too wet conditions

(Stasnik et al., 2022). This particularity also makes it a potential
3 www.pulsesincrease.eu

4 www.protein2food.eu

5 www.untwist.eu
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source of resistance mechanisms that would have disappeared or

have become insufficient in species that have been selected above all

for their yield in optimal conditions. So, the aim here is not to

rediscover mechanisms that are already known. The emerging

interest in camelina has spurred genomic and genetic

investigations, including the description of a reference genome

(Kagale et al., 2014). The development of Recombinant Inbred

Lines (RILs) has further allowed the identification of important

QTLs e.g., 1000-seed weight, seed number per pod, days to

flowering or seed oil content (King et al., 2019; Li et al., 2021).

Nevertheless, the throughput of these approaches is limited

particularly at the phenotype level, as for other (underutilized)

crops. Hence, further focused improvement of camelina is required

and the use of novel approaches and technologies, specifically

integrating the crop phenotype, is necessary and achievable as

respective protocols for high-throughput phenotyping are

established (Vello et al., 2022).
4 Integrative phenomics to unlock
the potential of the oilseed crop
camelina as a blueprint to improve
stress tolerance

Several projects are emerging that take advantage of the

availability and affordability of modern technologies (e.g., multi-

omics, phenomics, network discovery) to investigate plant plasticity

in novel crops (e.g., Girija et al., 2021; Marks et al., 2021).

Understanding plant plasticity is key for the development of

novel crops for resilient food production systems in increasingly

variable climates. As an exemplary project, UNTWIST5 targets

camelina to develop a systems-based understanding of the key

mechanisms underlying crop stress tolerance using a phenomics

approach. The project is based on the premise that the unravelling

of stress adaptation mechanisms in naturally resilient camelina

(Zanetti et al., 2021), which has not yet undergone intensive

breeding, will reveal successful stress adaptation strategies.

Research is centred on agronomically relevant stress scenarios

(linking experiments in controlled environments and field

conditions) to improve our understanding of plant responses to

challenging growth conditions. Therefore, diverse germplasm is

analysed at the genomic, epigenetic, transcriptional, physiological,

proteomic, and metabolomic level (incl. lipidome, redox status)

complemented by agronomic parameters and advanced non-

invasive multi-sensor phenotyping. Despite limited basic

knowledge on camelina compared to well-studied plant species,

this integrative multi-omics approach deploying phenotyping from

cell to whole plant level (Dhont et al., 2013; Ghanem et al., 2015;

Großkinsky et al., 2015b) allows the identification and dissection of

mechanisms contributing to camelina performance under

challenging environments representative of future conditions.

Integration of the multi-layered data serves modelling approaches

and supports potential marker development for crop improvement

under adverse climate conditions. Furthermore, the results will

underpin databases, protocols, and advice for downstream
frontiersin.org
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application. The new knowledge can be utilized for further

improvements of camelina and other (underutilized) crops in

combination with modern strategies in breeding and engineering

crops (Jiang et al., 2017; Morineau et al., 2017; Lemmon et al., 2018;

Fernie and Yan, 2020; Rönspies et al., 2021; Yu et al., 2021; Bellec

et al., 2022; Han et al., 2022).
5 Discussion

Global agriculture urgently requires alternative strategies in

crop development and improvement. So far, the great potential of

underutilized crops to contribute to the agricultural transition in

our food systems remains untapped. This is due to a lack of

knowledge and appropriate technologies; shortfalls that are now

being addressed. Recognizing that phenotypes are as or even more

important than genotypic information has driven recent advances

in crop phenotyping. These advances greatly contribute to the

development of multi-omics systems-based phenomics

approaches, which have shown their potential for accessing

previously untapped resources and can be applied more directly

to underutilized non-staple crops in the future, significantly

reducing the dependency on information from staple crops and

model plants as the only information source. This allows the

effective improvement and utilization of such crops to support

the re-configuration of agricultural and food systems in a

sustainable manner. Most notably, phenomics and multi-omics

approaches will enable agriculture to harness the potential of
Frontiers in Plant Science 04
underutilized crops. Projects like UNTWIST, which apply these

approaches, are needed to prove, and validate the potential of these

novel tools. Ultimately, such projects can serve as a blueprint for

improving underutilized crops and provide a platform for

establishing more climate-resilient food production systems.
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TABLE 1 Examples of promising underutilized crops exploitable for agricultural use.

Underutilized
crop

Origin Alternative
to

Purpose / Advantage Suitable for

Amaranth Global Wheat/cereals Alternative grain, protein source, gluten-free Dry, hot tropical to temperate climates

Buckwheat Asia Cereals Alternative grain, protein source, gluten-free Cool, moist climates

Camelina Europe Rapeseed,
soybean

Alternative oilseed, high oil quality, protein
source, climate-resilient

Marginal land/poor soils, dry, warm to cold, not too
moist climates

Carinata Africa Rapeseed,
soybean

Alternative oilseed, aviation/biofuel production Marginal land, dry climates

Cowpea Africa, Asia Other legumes Alternative protein Dry climates, sandy soils

Cucurbits Americas Oilseeds, (sweet)
potato

High-quality seed oil, nutritional value of flesh Warm, dry, not too moist climates

Linseed Global Oilseeds, cotton High-quality oil, natural fibres Wet, not too warm climates

Lupin Africa, Andes,
Europe

Other legumes Alternative protein Dry, not too warm climates, high sun exposure,
acidic soils (some types)

Millets Global Cereals High nutritional value, climate-resilient, gluten-
free

Dry, hot climates, areas of high flood risk

Pennycress Americas,
Eurasia

Oilseeds Alternative oilseed, protein source Wet, cold climates

Quinoa Andes Wheat/cereals Alternative grain, protein source, gluten-free Dry, not too warm climates, mountainous regions,
saline soils

Sorghum Global Cereals Alternative grain, gluten-free Hot, dry climates, saline soils

Teff Africa Wheat/cereals Alternative grain, protein source, gluten-free Dry, hot climates, poor soil, areas of high
waterlogging risk
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