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Abstract

Estimating the distance at which pathogens disperse from one season to the next is crucial

for designing efficient control strategies for invasive plant pathogens and a major milestone

in the reduction of pesticide use in agriculture. However, we still lack such estimates for

many diseases, especially for insect-vectored pathogens, such as Flavescence dorée (FD).

FD is a quarantine disease threatening European vineyards. Its management is based on

mandatory insecticide treatments and the removal of infected plants identified during annual

surveys. This paper introduces a general statistical framework to model the epidemiological

dynamics of FD in a mechanistic manner that can take into account missing hosts in sur-

veyed fields (resulting from infected plant removals). We parameterized the model using

Markov chain Monte Carlo (MCMC) and data augmentation from surveillance data gathered

in Bordeaux vineyards. The data mainly consist of two snapshot maps of the infectious sta-

tus of all the plants in three adjacent fields during two consecutive years. We demonstrate

that heavy-tailed dispersal kernels best fit the spread of FD and that on average, 50%

(resp. 80%) of new infection occurs within 10.5 m (resp. 22.2 m) of the source plant. These

values are in agreement with estimates of the flying capacity of Scaphoideus titanus, the

leafhopper vector of FD, reported in the literature using mark–capture techniques. Simula-

tions of simple removal scenarios using the fitted model suggest that cryptic infection ham-

pered FD management. Future efforts should explore whether strategies relying on reactive

host removal can improve FD management.

Author summary

The dispersal of pathogen propagules is an important feature of spatial epidemiology that

has a major impact on the prevalence and distribution of disease in a population. In

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011399 September 1, 2023 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Adrakey HK, Gibson GJ, Eveillard S,

Malembic-Maher S, Fabre F (2023) Bayesian

inference for spatio-temporal stochastic

transmission of plant disease in the presence of

roguing: A case study to characterise the dispersal

of Flavescence dorée. PLoS Comput Biol 19(9):

e1011399. https://doi.org/10.1371/journal.

pcbi.1011399

Editor: Alex Perkins, University of Notre Dame,

UNITED STATES

Received: January 27, 2023

Accepted: July 28, 2023

Published: September 1, 2023

Copyright: © 2023 Adrakey et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The authors confirm

that all data underlying the findings are fully

available without restriction. The FD dataset,

MCMC codes (written in C language) and scripts to

generate the figures and tables (written in R

language) are available in INRAE Dataverse at

https://doi.org/10.57745/YXOEHX.

Funding: This study received financial support

from Plan National Deperissement du Vignoble

https://orcid.org/0000-0001-8203-0083
https://orcid.org/0000-0002-8078-9384
https://orcid.org/0000-0001-8422-6610
https://orcid.org/0000-0001-8271-7678
https://doi.org/10.1371/journal.pcbi.1011399
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011399&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011399&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011399&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011399&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011399&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011399&domain=pdf&date_stamp=2023-09-14
https://doi.org/10.1371/journal.pcbi.1011399
https://doi.org/10.1371/journal.pcbi.1011399
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.57745/YXOEHX


agriculture, properly characterising the dispersal of emerging diseases is of great impor-

tance in designing science-based control strategies that allow pesticide use to be reduced.

Although field epidemiological surveys can provide informative data, they are by nature

rare while resulting from the interactions between disease spread and the undergoing sur-

veillance and control. Here, we take advantage of a general statistical framework to model

the epidemiological dynamics of Flavescence dorée (FD), a quarantine disease threatening

European vineyards, in a mechanistic manner that can take into account missing hosts in

surveyed fields (resulting from infected plant removals). We parameterized the model

with a Bayesian approach using mainly two snapshot maps of the infectious status of all

plants in three adjacent fields during two consecutive years. We demonstrate that on aver-

age, 50% (resp. 80%) of new FD infection occurs within 10.5 m (resp. 22.2 m) of the source

plant. Although FD mainly spreads locally from one year to the next, our results also indi-

cate frequent long-distance dispersal events, a feature crucial to consider when designing

control strategies.

Introduction

The management of emerging plant pathogens is of foremost importance in the effort to

reduce pesticide use in agriculture, particularly since the rate of introduction of alien species is

higher than ever due to increasing globalisation [1]. The design of efficient management strate-

gies has much to gain from the recent advances in epidemiological modelling. In particular,

spatially explicit stochastic models are able to simulate realistic patterns of epidemic spread

and test the effectiveness of a range of management strategies (for a review, see [2] and, more

recently, [3–8]). However, for this approach to be feasible, the underlying model parameters

must be estimated.

The main issue encountered when fitting spatially explicit mechanistic models is the type

and nature of the available data. First, epidemiological surveys most often provide information

on epidemic dynamics in the presence of control, which must accordingly be explicitly

accounted for in models and fitting procedures [9, 10]. Second, there is a trade-off between the

number of fields that can be studied and the number of seasons over which they can be

observed. The data collected most often contain only partial spatial and/or temporal informa-

tion on the location of infected individuals. Moreover, the timing of true infection events is

typically not observed. The first symptom expression in an individual plant (the most easily

accessible variable during field surveys) can take place a long time after that plant becomes

infected and even infectious. The latter situation results from the presence of cryptic infection,

during which an infectious host is asymptomatic [2, 11]. All of this context involves the exis-

tence of missing data. Data augmentation, a technique first introduced to plant disease epide-

miology by [12], enables tractability of model likelihoods and so, in turn, facilitates rigorous

Bayesian inference for mechanistic models. Within this framework, unobserved events, typi-

cally the timing of infection events, are treated as additional unknown parameters, and the

inference is based on Markov chain Monte Carlo (MCMC) methods. These methods have had

great success in analysing plant epidemic data over several years [3, 9, 10, 13–18].

Here, Markov chain Monte Carlo (MCMC) was used to fit a spatially explicit stochastic

model of Flavescence dorée (FD) spread. FD is a quarantine disease threatening European

vineyards. FD is one of the most damaging diseases in European vineyards. It is caused by the

FD phytoplasma (taxonomic subgroups 16SrV-C and 16SrV-D), a small bacterium that multi-

plies in the phloem sap of infected plants. FD phytoplasma is transmitted from grapevine to
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grapevine by the leafhopper vector Scaphoideus titanus Ball [19]. Typical symptoms are leaf

yellowing or reddening, downward rolling, incomplete lignification of canes, abortion of flow-

ers, and grape wilting. FD phytoplasma, which is endemic to European alders, emerged as a

disease in South West France in the 1950s, following the accidental introduction of the ampe-

lophagous vector S. titanus from North America [20]. Since then, the disease has spread

throughout European vineyards [21]. Due to the severe economic consequences of the disease,

FD phytoplasma has been classified as a quarantine organism in Europe since 1993. There is

currently no means of curing plants of FD phytoplasma. The current regulation of the disease

relies mainly on four mandatory measures: (i) the planting of disease-free material, (ii) the

application of insecticides to kill the vector, (iii) the establishment of annual vineyard surveys

for monitoring plant infection, and (iv) the removal of infected plants.

The epidemiology of FD in vineyards is driven primarily by the spatio-temporal dynamics

of its univoltine vector S. titanus. The eggs hatch in May, and there are then five nymphal

instars before the first adults appear, usually in July. The adults live from one to two months

[22, 23]. The fertilised females can lay eggs from around 10 days after their emergence till the

end of summer [22]. Considering as starting point a plant infected during year t, the FD epi-

demic cycle occurs as follows. The vine plant usually becomes infectious from the spring of

year t + 1 [24–26] as a result, during fall and winter, of its own dormancy stage and of the con-

comitant diapause of the eggs of the vector. Phytoplasmas are acquired passively in year t + 1,

through feeding on infected plants, from the first larval stage onwards hatched in May.

Winged adults mainly, but also last instar larvae, can transmit the phytoplasma to healthy

plants, from late spring to late summer [27, 28]. While some non-specific FD symptoms such

as delayed bud break may appear in early spring of year t + 1, the set of specific symptoms

mostly appear throughout the summer [22, 26]. In the Bordeaux vineyard, the probability of

detecting the set of typical FD symptoms is substantially increased after the third week of

August [29]. In the vineyard, the epidemiology of FD is also influenced by vine cultivar effects.

Although no genetic resistance to FD is known, vine cultivars differ in their susceptibility to (i)

phytoplasma transmission by S. titanus and (ii) phytoplasma multiplication and diffusion in

the plant [30–32]. For example, Merlot and Cabernet Sauvignon, the two main cultivars in the

Bordeaux area, display contrasting susceptibilities. Merlot is characterised by a lower propor-

tion of infected shoots and reduced phytoplasma titers in the leaves as compared to the highly

susceptible cultivar Cabernet Sauvignon [31]. These features affect FD epidemiology, as phyto-

plasma acquisition efficiency by S. titanus increases with its titers in the plant [27, 33]. Direct

cultivar effects on the feeding behaviour of S. titanus have also been shown to explain some

cultivars’ higher susceptibility to FD [34].

A feature of FD epidemiology that is poorly understood is its spatial dispersal kernel. Dis-

persal kernels represent the statistical distribution of the location of the infected hosts after

inoculum dispersal from a focal plant source [35, 36]. Dispersal kernels play a crucial role in

the design of control strategies for emerging pathogens that rely on reactive host removal.

They consist of removing plants within a particular distance of locations identified as contain-

ing the infection. The rationale is to remove (or treat) locations that are likely to be infected

but not yet showing symptoms [11, 36–38]. Here, recent georeferenced inspection and eradi-

cation data supplied by extensive surveillance at the landscape scale (representing an area of 28

hectares) was used to fit a mechanistic and spatio-temporal model of FD spread from one sea-

son to the next. The model builds on the work of [14] regarding the spread of Huanglongbing

through citrus groves. It provides insights into the dispersal kernel that underlies FD spread.

For coherent integration of information from different observations gathered at plant and

field scales, we worked within a Bayesian framework. A key feature of the approach considered

here is the use of data augmentation techniques to account for the missing information in the
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data related to plants removed before the initial survey date in order to construct the full trajec-

tory of the epidemic. Accounting for this information enables us to use MCMC, a Bayesian

computational method to sample from the posterior distribution of the model parameters.

Materials and methods

Data

A plant-by-plant survey of FD symptoms in three fields. The study area is situated in

Faleyras (S1(A) Fig), a district near Bordeaux in South West France, where three plots labelled

F1, F2 and F3 (S1(B) Fig) were monitored. These plots belong to the same owner. The plot F1

was planted in 2002, F2 in 1976 and F3 in 1998. They are located in an open vineyard landscape

at an altitude of 60—70 m with some woods and meadows (S1(A) Fig). The three plots are not

separated by any hedgerow. The initial state of the fields before the FD incursion is shown in

S1(B) Fig. In that initial state, there were 2259, 677 and 3120 plants distributed in F1, F2 and F3

respectively, with two different cultivars, 2354 Cabernet Sauvignon (CS) and 3702 Merlot (M),

the most widely grown cultivars in the region (S1(B) Fig). Of these cultivars, 2259 CS were

planted in F1, 677 M in F2 and 3025 M and 95 CS in F3.

The three fields were extensively monitored on October 11, 2018, and on September 23,

2019, following the methodology described in [31]. The three fields were mapped by distin-

guishing the non-symptomatic, the symptomatic and the missing (due to removal) plants.

Over the two studies performed by the same team (this one and [31]), in fields with high FD

prevalence and sampling done at the end of summer, 98% of symptomatic Merlot plants

(n = 207) and 99% of symptomatic Cabernet Sauvignon plants (n = 202) were positive for FD.

Similarly, 97% of non-symptomatic Merlot plants sampled (n = 88) and 98% of non-symptom-

atic Cabernet Sauvignon plants sampled (n = 96) were negative in real-time PCR tests. Geno-

typing of FD phytoplasma was performed by nested PCR followed by sequencing of the secY-

map gene [39] on 4 samples of Merlot (in F2 and F3) and 4 samples of Cabernet Sauvignon (in

F1 and F3) from 2018 and 2019. All samples were infected by the M54 genotype (Map-FD2)

which is predominant in outbreaks from Europe and France [20].

For each symptomatic plant, symptom severity was recorded. A severity score from 1 to 4

was assigned depending on the proportion of symptomatic branches on the stock: 1) 0–25%,

2) 26–50%, 3) 51–75% and 4) >75%. The symptomatic plants were marked, and the wine

grower was asked to remove them during the winter following the inspection. The growers

may have also removed some non-symptomatic plants for other agronomic reasons. The two

snapshots of the health status of the fields in October 2018 and September 2019 are shown in

Fig 1A and 1B respectively. In 2018, 713 symptomatic plants including 668 CS and 45 M were

detected, while 411 were missing (352 CS and 59 M). Field F1 was entirely removed during

winter 2018 in compliance with FD management rules because its prevalence (i.e. the percent-

age of diseased plant in the field) exceeded 20%. In 2019, 638 new symptomatic plants includ-

ing 46 CS and 592 M were recorded on F2 and F3. During this same year, 50 additional

missing plants, arising from the removal of asymptomatic plants, were identified in F2 and F3.

Disease prevalence in the extended area of the focal fields. The three fields, F1, F2 and

F3, are located in a larger region where FD surveys are performed by a professional organisa-

tion known as GDON (Groupements de Défense contre les Organismes Nuisibles) des Bor-

deaux. The district of Faleyras was surveyed in 2014. The survey is conducted as follows.

Inspectors walk around all the fields in the area in search of symptomatic plants. Once symp-

tomatic plants are located in a given field, the inspector collects symptomatic leaves from one

to five plants and pools them into a single sample. The detection of the FD phytoplasmas in

samples collected is performed by accredited laboratories using a real-time PCR test [40]. Each
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field is then classified as infected or not. If the field is infected, the inspectors count its total

number of symptomatic plants. The field will be monitored in subsequent years. The infection

status of the fields monitored by the GDON des Bordeaux in 2014 within 300 m of the three

focal fields is shown in Fig 2A. Note that the fields in the neighbouring district of Romagne

(the northeastern part of the map) were not inspected. From 2015 to 2017, the survey contin-

ued in the fields found to be infected in 2014 and spread to nearby fields after 2017 (Fig 2B,

2C, 2D and 2E). Note that GDON inspectors did not record the precise localisation of symp-

tomatic plants. This information is only available in F1, F2 and F3 for 2018 and 2019 following

a dedicated survey performed by INRAE staff.

As shown in Fig 2A, FD was first detected in the area in 2014, most prevalently in field F1

but also in three other fields. FD has since spread to more fields. The symptoms in the fields F2

and F3 were first reported by GDON in 2018 during the second round of inspection of F2 and

F3 since 2014. Accordingly, their year of initial infection is unknown. In agreement with the

set of mandatory measures to control FD, one or two insecticide treatments were recom-

mended from 2015 to 2018 in the area corresponding to the districts of Faleyras and Romagne.

Epidemiological models

A mechanistic compartmental SIR model with a discrete time step of one year was considered

to describe the infectious status of each plant from 2014 to 2019 within the two focal fields F2

and F3. Three statuses were considered: Susceptible (noted S, i.e. healthy plant), Infectious

(noted I, i.e. infected plant able to transmit infection) and Removed (noted R). The annual dis-

crete time step assumed fits the univoltine cycle of S. titanus (i.e. one generation per year) and

the existence of a dormancy phase (both for the plants and the eggs of the vector). This

Fig 1. Individual status of the plants in the three vineyard fields F1, F2 and F3 considered. The field F1 was planted with 2259

Cabernet Sauvignon, the field F2 with 677 Merlot, and the field F3 with 3025 Merlot and 95 Cabernet Sauvignon in two rows

surrounded by a dotted line. The status of the plants is i) asymptomatic, ii) symptomatic or iii) removed. A: Spatial distribution of

713 FD-symptomatic plants including 668 CS and 45 M detected (red) in 2018 (October 11) as well as the 411 (352 CS and 59 M)

holes showing plant removals before 2018. B: Spatial distribution of 638 FD-symptomatic plants including 46 CS and 592 M detected

in 2019 (September 23), 2011 plants removed in 2018 (in grey) and the same 411 (352 CS and 59 M) missing plants indicating

removal before 2018. Note that real-time PCR tests indicate that more than 98% of symptomatic plants are infected with FD, while

more than 97% of asymptomatic plants are FD negative. Maps were drawn by authors using own data set released in the dataverse at

https://doi.org/10.57745/YXOEHX.

https://doi.org/10.1371/journal.pcbi.1011399.g001
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dormancy phase, which results in infected plants in year t becoming infectious in year t + 1

(see Introduction), explained why an exposed compartment (host infected, but not yet able to

transmit infection) was not considered here. Moreover, all infectious plants in year t + 1 were

assumed to be removed in year t + 2 in compliance with the mandatory measures applied in

France to manage FD (see below). Note that, as this transition is deterministic, the model cor-

responds formally to a SI model.

Modelling the infection pressure. Let first introduce the probability Pi(t) that a suscepti-

ble plant i is infected in year t (and therefore becomes infectious in year t + 1). This probability

is defined as

PiðtÞ ¼ 1 � expð� �iðtÞÞ: ð1Þ

where

�iðtÞ ¼ �ðtÞ þ b
X

j2It� 1

cjKðrij; aÞ1j2F1
þ b

X

j2It� 1

cjKðrij; aÞ1j2F2[F3 ð2Þ

Eq 2 is the infection pressure on host i at year t. Its first two terms together represent the

infection pressure exerted on plants located in fields F2 and F3. The first term represents the

instantaneous infection pressure exerted by all the fields other than F2 and F3 at time t = 2014,

2015, 2016, 2017, and by all the fields other than F1, F2 and F3 in 2018 as an infection snapshot

was available for F1 in 2018. It corresponds to a primary infection rate that varies with time in

proportion to the total number of infectious plants in the neighbouring fields (except for the

plants in field F1 in 2018). Specifically, �(t) = �nt−1, where nt−1 is the number of symptomatic

Fig 2. Status of fields within 300 m around the targeted fields from 2014 to 2018. The status of fields is either i) not inspected, ii)

not infected by FD (if symptomatic plants were sampled but the PCR test was negative) or iii) infected by FD. For the latter category,

the values inside each infected correspond to the number of symptomatic plants recorded and subsequently removed. The area with

the three focal fields, F1, F2 and F3, is circled in dotted line. Maps were drawn by authors using own data set released in the dataverse

at https://doi.org/10.57745/YXOEHX.

https://doi.org/10.1371/journal.pcbi.1011399.g002
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plants at year t − 1 within a radius 300 m measured from the centre of the two focal fields F2

and F3 (Fig 2 and Table 1). The second term represents the external force of infection exerted

by the infectious plants in field F1 in 2018 on the plants in the fields F2 and F3 in 2019. It incor-

porates a distance-dependent kernel K(rij;α) shared with the third term, which represents the

secondary infections taking place within the fields F2 and F3. In the second and third terms,

the sum is over infectious individuals j (i.e. individuals infected during year t − 1). These terms

also include a parameter cj that accounts for the differences in infectivity between cultivars.

Differences in infectivity were assumed to be related to the proportion of symptomatic

branches on the stock. Accordingly, it was estimated independently using the severity score

ranging from 1 to 4 that was described previously. Of the 668 CS plants recorded in 2018, 328

scored 1, 126 scored 2, 87 scored 3 and 127 scored 4, leading to a mean severity score value of

2.02. Of the 637 M plants recorded in 2018 and 2019, 437 scored 1, 147 scored 2, 38 scored 3

and 15 scored 4, leading to a mean severity score value of 1.42. Accordingly, cj was set to 1.42

(� 2.02/1.42) if the cultivar of the source plant is Cabernet Sauvignon and to 1 if the cultivar is

Merlot.

The dispersal kernel K is a non-negative function also known as the infection kernel. It

characterises the spatial dispersal process with a parameter α. Specifically, it characterises the

relationship between infective challenge and the relative positions of infected and susceptible

plants. A number of candidate models were proposed for K:

Exponential : Kðr; aÞ ¼
1

2pa2
exp �

r
a

� �
with m ¼ 2a ð3Þ

Gaussian : Kðr; aÞ ¼
1

pa2
exp �

r2

a2

� �

with m ¼ a
ffiffiffi
p
p

=2 ð4Þ

Power law : Kðr; aÞ ¼
ðb � 2Þðb � 1Þ

2pa2
1þ

r
a

� �� b
; with m ¼

2a

b � 3

2p

ðb � 2Þðb � 1Þ
ð5Þ

for b ¼ 4; 6; 8

where r is the Euclidean distance (measured in m) between a given pair of plants. The mean of

the dispersal kernel is given by μ and corresponds to the mean distance to the first infection in

a totally susceptible population. The Gaussian and exponential kernels correspond to thin-

tailed kernels, while the power law kernel corresponds to thick-tailed kernels. Kernels such as

power law result in a rapid and long dispersal ahead of the source [41, 42]. Note that these

1-dimensional kernels are isotropic and can represent different spatial patterns of epidemic

dynamics. They also allow these different spatial patterns to be compared directly.

Overall, 20 models were fitted. They represented all combinations of two hypotheses

regarding the external source �(t) (1: constant, by setting to �(t) = � in Eq 2, or 2: variable

between years) with two hypotheses regarding a cultivar infectivity effect (1: presence, by set-

ting cy = 1.42 for a Cabernet Sauvignon source plant and cy = 1 for a Merlot source plant, or 2:

Table 1. Total number of FD-symptomatic plants detected in a radius of 300 m around the focal fields F2 and F3.

The values of nt include the number of symptomatic plants in all the neighbouring fields including the field F1 from

2014 to 2017 but excluding F1 in 2018. These symptomatic plants are assumed to be infectious in the model.

t 2014 2015 2016 2017 2018

nt 11 24 29 21 47

https://doi.org/10.1371/journal.pcbi.1011399.t001
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absence, by setting cy = 1 regardless of the cultivar of the source plant) and five hypotheses

regarding the shape dispersal kernel. The 20 models considered are summarised in Table 2,

and the corresponding equations for the infection pressure are detailed in Text A in S1 Text.

Finally, the parameters to be estimated are summarised in Table 3.

Modelling the initial infection year of the fields F2 and F3. The fields F2 and F3 were not

inspected from 2015 to 2017 (Fig 2). Let t0 denote the year the inoculum was first transmitted

to either of these fields. The unobserved levels of initial infection of the fields F2 and F3 (i.e.

number and position of infected plants at t0) are treated as additional model parameters.

Table 2. Specification of the 20 models considered. They include 2 × 2 × 5 combinations of hypotheses regarding the primary infection rate (column External source),

the presence of a cultivar effect (column Cultivar effect) and the shape of the dispersal kernels (column Kernel). The numbering of equations (columns Eqn) corresponds

to the equations detailed in Text A in S1 Text for the infection pressure and in the main text for the kernels.

Label Infection pressure (ϕ(x; t)) Kernel K(r; α)

External source Cultivar effect Eqn Name Eqn

Model 0 Constant No S1 Gaussian 4

Model 1 Exponential 3

Model 2 Power law, b = 4 5

Model 3 Power law, b = 6 5

Model 4 Power law, b = 8 5

Model 5 Variable No S2 Gaussian 4

Model 6 Exponential 3

Model 7 Power law, b = 4 5

Model 8 Power law, b = 6 5

Model 9 Power law, b = 8 5

Model 10 Constant Yes S3 Gaussian 4

Model 11 Exponential 3

Model 12 Power law, b = 4 5

Model 13 Power law, b = 6 5

Model 14 Power law, b = 8 5

Model 15 Variable Yes S4 Gaussian 4

Model 16 Exponential 3

Model 17 Power law, b = 4 5

Model 18 Power law, b = 6 5

Model 19 Power law, b = 8 5

https://doi.org/10.1371/journal.pcbi.1011399.t002

Table 3. Definition of model parameters and their mean posterior values along with their 95% credible interval obtained from the MCMC algorithm using Model

18. The credible interval for t0 is ignored, as there was a negligible posterior weight on years other than 2016.

Process Symbol Description Estimated value Unit1

Dispersal α Scale parameter 22.9 [20.1—26.5] m

Infection � Primary infection rate 10−4[10−4−2.10−4] year−1

β Secondary infection rate 106.1[94.5–118.4] m2.year−1

cy Cultivar’s infectivity2 cy = 1 or cy = 1.42 na

Removal q Probability of removal for reasons other than FD 0.004 [0.004—0.005] na

Initial infection date in F2 [ F3 t0 Year of first infection 2016 na

1 na when not applicable or for dimensionless parameters.
2 Values estimated independently using data published by [31].

https://doi.org/10.1371/journal.pcbi.1011399.t003
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Modelling removal process. The set of specific FD symptoms mostly appear through-

out the summer and are best identified between mid-August and mid-October in the Bor-

deaux vineyard [29]. Symptomatic plants were assumed to be removed during the winter

following their identification. This succession during the same year of the periods where a

plant is first infectious, then expressed the typical set of FD symptoms, next identified as

such and finally removed led us to consider thereafter that the FD survey currently imple-

mented in the Bordeaux area is characterised by the existence of “cryptic” infection from

late spring/early summer until optimal detection of symptoms in late summer/early

autumn. It corresponds sensu [2] to a period of time where infectious hosts go undetected

while providing a source of inoculum for spread. Finally, we assumed that any susceptible

individual could be removed in a given year for some agronomic reason unrelated to

FD infection. The probability q of this event was considered as an additional model

parameter.

Model inference

Likelihood. The data y record the status of plants at n discrete observation times in [t0,

tmax], along with information on removed plants. In addition, let denote the set of removed

hosts with R, the corresponding set of reasons hosts are removed with R ¼ ðr1; r2; . . . ; rjRjÞ
and the corresponding set of removal times with tR ¼ ðtR

1
; tR

2
; . . . ; tR

jRjÞ. It is worth noting that

jRj represents the size of the removed hosts in the population. For simplicity, rj is set to 0 if the

host j was removed due to causes other than FD, or to 1 if the host was removed due to FD

infection. The set of reasons hosts are removed R comprises those with known reason Rk and

those for which the reason for removal is unknown Ru. In other words, R = Rk [ Ru. Finally, let

us denote the set of the model parameters with θ = (α, �, β, q, t0). Then, taking the reasons

hosts are removed and their corresponding times as known, the complete data likelihood func-

tion is given as

Lðy;R; tR; yÞ ¼
Q

j2R

��
QtRj � 1

i¼1 exp ð� �jðiÞÞð1 � qÞ
�

ðð1 � exp ð� �jðtRj ÞÞÞð1 � qÞ1rj¼1þ

exp ð� �jðtRj ÞÞq1frj¼0gÞ��

Q
j2 �R

Qtmax
i¼1

exp ð� �jðiÞÞð1 � qÞ

ð6Þ

The first two lines of Eq 6 represent the contribution to the likelihood arising from the

removal events. Two classes of removed hosts are considered: those removed due to the disease

(rj = 1) and those removed due to causes other than FD (rj = 0). The term (1 − q) ensures that

symptomatic plants are not removed due to any other causes. The third line represents the

contribution to the likelihood of plants that escaped the removal with probability 1 − q and

also escaped infection.

Bayesian inference. The likelihood Lðy;R; tR; yÞ is not straightforward to compute, as the

locations, dates and natures of infections between 2014 and 2017 were not observed. However,

this problem can be overcome using the data-augmented approach by treating the missing

plants in 2018 as an additional unknown “parameter” and investigating the joint posterior dis-

tribution Pða; �; b; q;Ru; tRu jyÞ [3, 13–15, 17, 43]. The algorithm involves proposing accepting

changes to the times and nature of removals before 2018 and provides posterior distribution of

infection sources as a by-product. This is done using methods which are now standard in

computational epidemiology, such as reversible-jump [44, 45] MCMC techniques. Details of

algorithms are given in Text B in S1 Text.
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Model checking and model comparison

The MCMC algorithm described in Text B in S1 Text resulted in a joint posterior distribution

of both the model parameters and the time and nature of missing plants during the first visit to

fields F2 and F3 in 2018. These outputs can be used both to perform posterior model checking

and to select the subset of candidate models that best explains the data. In the context of a spa-

tio-temporal transmission model, natural model selection criteria such as the deviance infor-

mation criterion (DIC) suffer from important limitations because of their sensitivity and

complexity [46]. Following work by [12, 14, 15, 17] in a closed context, model selection was

performed by comparing (i) the posterior predictive distribution of the counts of symptomatic

and removed plants and (ii) the posterior predictive distribution of the spatial structure of the

epidemic to the observed ones.

Count of symptomatic and removed plants in 2018 and 2019. Samples were randomly

drawn from the joint posterior distribution of the model parameters to simulate the epidemic

process, assuming that the first infection(s) occurred in 2013 on the field F1. It is worth recall-

ing that the initial infection on F2 [ F3 was estimated and therefore also sampled from the

joint posterior distribution. The counts of symptomatic and removed plants observed in 2018

and 2019 were compared to those of the simulated epidemics.

Spatial autocorrelation. The spatial structure of the simulated epidemics described above

was compared to those of the actual observations. Specifically, Moran’s I index and Ripley’s L

index [47–49] were considered as our spatial summary statistics.

The region was divided into 5 × 10 square sub-regions, each containing numbers of plants

ranging from 1 to 19 (with median value 16), and count of the number of symptomatic sites

for the time point used for the computation of Moran’s I

I ¼
n

Pn
i¼1

Pn
j¼1
wij

Pn
i¼1

Pn
j¼1
wijðyi � �yÞðyj � �yÞ

Pn
i¼1
ðyi � �yÞ2

ð7Þ

where yi = 1 if plant i is symptomatic before the observation time and yi = 0 otherwise, and �y is

the mean of the observation yi over n sub-regions. Here, wij represents a distance-dependent

weight between sub-regions i and j. There are many ways to define wij, and the distance

weights between plant i and j was used here. The index was computed by using the ape package

[50] available in the statistical software R.

Similarly, the Ripley’s L function to characterise clustering/dispersion of point patterns at

multiple distances was defined as

LðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðrÞ=p

p
ð6Þ

where K(r) is the Ripley K function defined as

KðrÞ ¼
A

nðn � 1Þ

X

i;j

1dij�r:

A represents the area of the window, n is the number of data points, and the sum is taken over

all ordered pairs of points i and j in the window. dij is the distance between the two points, and

1dij is the indicator that equals 1 if the distance is less than or equal to r. This spatial index is

computed without requiring any aggregation of the points and therefore gives a more com-

plete description than statistics that utilise aggregation. The index was computed by using the

spatstat package available in the statistical software R [51].
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Effect of removal efficiency on FD spread

For further insight into how FD spreads, FD epidemics were simulated in a single large square

field of 1 km2 with 167 334 plants. Vines were assumed to be of the same cultivar and planted

to mimic the practices in the Bordeaux vineyard, with spacing along rows of 2 m and spacing

between rows of 3 m. Disease progress was simulated over 10-year time spans, starting with a

single initial infection located at the centre of the field. FD spread only through secondary

infections (i.e. no primary infection) according to the rate β and to the kernel scale α estimated

from the data. Realisations of the epidemic process were generated by sampling sets of parame-

ter (α, β) from the joint posterior distribution of Model 18. Note that, with these assumptions,

the maximum distance FD can spread from the initial source is ð1000
ffiffiffi
2
p
Þ=2 ’ 707 m.

Removal due to causes other than FD was ignored (q = 0), but the assumption that symp-

tomatic plants will be systematically removed one year after their infection was relaxed by

introducing a parameter τ that represents the efficiency of the removal process. More precisely,

the parameter τ corresponds to the probability of removing during the autumn/winter of year

t + 1, that is after the infectiousness period which extends from late spring to late summer, a

plant infected during year t. Viewed another way, 1 − τ corresponds to the proportion of infec-

tious plants that escape removal each year, as a result of either flawed identification of symp-

tomatic plants or flawed plant removal. Removed plants are replaced immediately. The

algorithm is described in Text C in S1 Text. For each removal efficiency ranging from 0 (no

removal) to 100% (full removal) by steps of 20%, 500 realisations of the epidemic process were

run. For each run, the observations consisted of the annual snapshots of infected hosts in the 1

km2 square field considered. Specifically, the distances between the newly infected plants and

the initial foci were computed for each year. The median distance, 95% quantile distance and

maximum distance between the newly infected plants and the initial source plant were charac-

terized based on the 500 realisations performed. Note that the secondary infection rate β used

in the simulation is representative of the average conditions of FD spread in the area and

period considered for parameter estimation. In particular, it depends on (and represents) the

local population dynamics of S. titanus in a context where one to two annual insecticide appli-

cations are recommended (but not necessarily done, or done in suboptimal conditions).

Results

Model selection and parameter estimation

The 20 models (Table 2) were fitted to the data using reversible-jump MCMC with data aug-

mentation (Text B in S1 Text and Table A in S2 Text). The MCMC algorithm was iterated for

200 000 iterations, discarding the first 50 000 iterations (the burn-in period) to ensure the con-

vergence to the stationary distribution is reached, with uninformative exponential priors to

obtain a joint posterior distribution density for the parameters �, β, α, q and t0. Trace plots

demonstrated that there is no evidence of non-convergence across all models.

We first discuss those parameters whose posterior distributions did not differ greatly with

the model fitted. First, the posterior distribution of the starting time of the epidemic revealed

that 2016 was the most likely year of introduction of the inoculum into the fields F2 [ F3 (Fig

A in S2 Text). This introduction probably occurred from field F1, as infection in this field was

first spotted in 2014. Second, the 95% credible interval for the probability q of a plant being

removed in any given year due to causes other than FD was consistently estimated to be

[0.004, 0.005]. Third, the posterior distribution of � (rate of primary infection from surround-

ing fields) depended on the assumption made (constant rate or varying with the number of

symptomatic plants in the neighbourhood fields, Table 1). Nevertheless, this estimation
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revealed that the number of initial infections arising from primary sources is likely to be 4 for

all models.

In contrast, the posterior distribution of other parameters differed significantly with the fit-

ted models. As expected without normalizing the kernel, the infection rate β and the kernel

shape α were highly correlated (Table A in S2 Text). Normalizing the kernel by following the

approach developed in [52, 53] would have reduced this correlation. The model outputs were

used to select the best model(s) by comparing the dynamics and the spatial pattern of simu-

lated epidemics with those of the actual observation. To do so, 1 000 epidemics were simulated

for each model using 1 000 samples from their joint posterior distributions.

The first model selection criteria compared the simulated counts of symptomatic and

removed plants to observed values in 2018 and 2019 (Fig 3 and S2 Fig). For clarity of these

figures and similar ones, the labelling has been chosen so that each line shows the results of

different parameterization of the infection pressure and each column the results of different

dispersal kernels. The actual counts lay within the distribution of simulated counts only for

Fig 3. Comparison of the 20 models using the posterior predictive distribution of the counts of observed symptomatic and removed plants in 2018. Each panel

corresponds to a model. The dotted line is the actual observed count, and the density of counts is obtained from 1 000 simulations. The colors correspond to the

symptomatic (red) and the removed (grey) plants. The 20 models (described in Table 2) differ according to their dispersal kernel (by column) and formulation of

infection pressure (by row).

https://doi.org/10.1371/journal.pcbi.1011399.g003
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Model 18. Models relying on Gaussian and exponential thin-tail kernels did not seem to

offer an appropriate fit. Observed counts lay in the good range of the posterior count distri-

butions provided by Models 3, 4, 8 and 9, except for the counts of symptomatic plants in

2018.

The second model selection criterion compared the spatial structures of the simulated epi-

demics to those of the actual observation using the indices of Moran’s I (S3 Fig) and Ripley’s L

(Fig 4). While the actual value of Moran’s I index lay in a good range of the posterior distribu-

tion for all models, models with thin-tail kernels were completely ruled out when considering

Ripley’s L index. Power law kernel models fitted reasonably well for this criterion, especially

for the exponent parameters b = 4 and b = 6.

To summarise, four of the 20 models considered (Model 3, Model 4, Model 8 and Model

18) displayed the best fit for both observed counts and observed spatial structures. Of these,

Model 18 performed slightly better. Interestingly, similar to Model 18, Models 3 and 8 rely on

a power law kernel with b = 6. They differed by the hypothesis underlying the infection pres-

sure, with Model 8 utilising a variable primary infection rate (but no cultivar effect) and Model

18 assuming both a variable primary infection rate and a cultivar effect, Cabernet Sauvignon

being a better source of infection than the cultivar Merlot. In the following, we will focus on

the results obtained from these four models, particularly Model 18.

Fig 4. Comparison of the 20 models using the posterior predictive distribution of Ripley’s L function. The Ripley’s L function

determines the clustering/dispersion of point data over a range of distances. In each panel, corresponding to a model, the red line

represents the actual measure of Ripley’s L function for the observed data, and the grey area indicates the 95% marginal credible

region from the simulated epidemic. The 20 models (described in Table 2) differ in their dispersal kernel (column) and formulation

of the infection pressure (row).

https://doi.org/10.1371/journal.pcbi.1011399.g004
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Dispersal kernels and FD transmission distance

A key epidemiological feature obtained in this study was the dispersal kernel of FD. It repre-

sents the rate of disease transmission between a pair of hosts at a given distance. The estimated

spatial kernels are shown in Fig 5 for the 4 selected models. The posterior distribution of the

kernel means μ showed little variation. This was evidenced by the 95% credible intervals lying

within [9, 18] m (Fig 5A). In particular, the posterior mean of μ estimated from the best model

(Model 18) was 13 m. It was comparable to the 15 m obtained from Model 3 and Model 8 (that

only differ by the formulation of the primary infection rate). Model 4 resulted in a slightly

lower estimate of 10 m compared to the three others. Besides the posterior distribution of the

kernel mean, the probability of transmission was consistently observed to vanish beyond 20 m

for the 4 models considered in a uniformly distributed host landscape (Fig 5B).

Running simulations without removal in the 1 km2 square field considered enable to locate

infected hosts after a single cropping season and thus estimate the posterior predictive distri-

bution of the transmission distance, i.e. the mean distance of hosts infected from a given

source in a totally susceptible population (Fig 5C). The posterior median (resp. mean) of the

Fig 5. Posterior distribution of the spatial transmission under the four best models. The set of best models is Models 3, 4, 8 and

18, the last being the best one. A: Posterior distribution of the kernel mean, the mean distance to the first infection in a totally

susceptible population. B: Probability density of the distance between an infectious plant and the first secondary infection that it

causes assuming a uniformly distributed population of susceptible hosts when the scale parameter α is set to its posterior mean. C:

Posterior predictive distribution of the mean transmission distance obtained by simulating epidemic realisations using 500 samples

from the posterior distribution of parameters estimated from Model 18. D: Corresponding posterior predictive distribution of the

cumulative distribution function (CDF) of the distance between the initial source plant and new infections in a single epidemic

season (i.e. one year). Error bars represent 95% credible intervals of the CDF. The dotted lines show that on average, 50%, 80% and

95% of the new infections occur within 10.5, 22.2 and 55.2 m of the source, respectively.

https://doi.org/10.1371/journal.pcbi.1011399.g005
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transmission distance was 15.01 m (resp. 16.9 m), with the 95% credible interval estimated to

be [5.67, 33.59] m. The corresponding posterior predictive distribution of the cumulative dis-

tribution function of the distance of the newly infected plants after a single annual epidemic

cycle is shown in Fig 5D. On average, 50%, 80% and 95% of the new infection occurred within

10.5, 22.2 and 55.2 m of the source, respectively.

Effect of removal efficiency on FD spread

The simulations also allowed us to estimate how removal efficiency affects the distribution of

the distance of the newly infected plants over 10 annual epidemic cycles (Fig 6A, 6B and 6C).

The median distance remained in the same range regardless of the level of removal efficiency

during the first 5 years (Fig 6A). Then, they substantially increased for low removal efficiencies

(τ� 20%) while remaining in the same range for higher removal efficiencies (τ� 60%). Ten

seasons after epidemic onset, infected plants were at a median distance of 273 m from the

source without removal. This distance was reduced to 212 m for low removal efficiencies (τ =

20%) while remaining close to 140 m for removal efficiencies� 60%. The higher level of

removal efficiencies was particularly important for reducing the upper quantiles of the distance

between newly infected plants of the initial source (Fig 6B and 6C). The maximum distance

without removal is 604 m, meaning that FD infection almost reached the border of the square

field of 1 km2 considered, as the maximum distance FD can spread from the initial source is

707 m. With removal, the maximum distance decreased almost linearly to 443 m with a

removal efficiency of 80%, while remaining at a close value with full removal. Importantly, a

full removal strategy slowed down but did not stop FD spread. This is mainly due to the pres-

ence of a delay between plant infectiousness and optimal symptom detection, followed by

removal. For example, ten seasons after epidemic onset, 166 m separated the maximum dis-

tance of localisation of newly infected plants between the no removal and full removal strate-

gies. Besides these effects on the distributions of the distance of the new infections, increasing

removal efficiencies strongly reduces the number of newly infected plants in each cropping

season (Fig 6D), and thus, epidemic size. Ten years after the epidemic onset, this reduction

amounted to nearly 85% between the no removal and the full removal strategy.

Discussion

While the estimation of dispersal parameters of plant pathogens using spatio-temporal sto-

chastic mechanistic models has been an active research area for more than 20 years [12], infor-

mation is still lacking for many diseases, especially for insect-vectored pathogens [36]. In this

study, data incorporating two consecutive annual snapshots indicating the symptomatic status

of thousands of host plants in three close vineyard plots were used to fit a spatially explicit

model representing the epidemiology of FD, a major quarantine disease damaging European

vineyards. We assumed that symptom expressions reveal the infected status of plants to FD,

based on quantitative real-time PCR tests indicating that more than 98% of symptomatic

(resp. more than 97% of asymptomatic) plants noted by the team in charge of the survey were

positive (resp. negative) for the phytoplasma. The corresponding high sensitivity and specific-

ity of FD detection are strongly supported for the sampling period in autumn. Indeed, the

visual identification of FD symptoms is much easier in autumn [29], as this period is the ideal

time for the expression of certain specific symptoms, such as grape shrivelling and the non-lig-

nification of canes [26]. Based on this premise, model inference relies on Markov chain Monte

Carlo methods with data augmentation and allows extraction of new insights into the spread

of FD. In particular, as far as we know, this study provides the first characterisation of the dis-

persal kernel of FD. The inference was challenging in our case study because the observed data
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mainly consist of only two snapshots taken in two consecutive years, a situation similar to the

data analysed by [12]. Such situations can be frequent for quarantine disease. Many detailed

studies of plant epidemics have benefitted from more frequent spatio-temporal observations

(e.g. 4 in [14], 6 in [16] and� 15 in [10, 17, 18]). The inference framework, which reconstructs

the infection dynamics in the area of interest, notably relies on the presence of missing plants

(i.e. vine plants removed) before the year of observation of the first snapshot (2018) in the two

Fig 6. Posterior predictive distribution of the distance between newly infected plants and the initial FD source and posterior

predictive distribution of numbers of new infections as a function of the number of seasons after epidemic onset and removal

efficiency. Distance and new infections are obtained by simulating epidemics in a square field of 1 km2 with 167334 vine plants.

Epidemics, initiated by a single infected plant at the centre of the field, spread as a result of secondary infections and of the removal

efficiency of FD-infectious plants. A: Posterior distribution of the median distance during 10 cropping seasons as a function of

removal efficiency (6 levels, from no to full removal). B: Same as A for the 95% quantile of the distance. C: Same as A for the

maximum distance. The dashed line indicates the maximum distance FD can spread in the field considered. D: Posterior

distributions of the mean number of newly infected plants occurring each year during 10 cropping seasons as a function of 6 levels of

removal efficiency.

https://doi.org/10.1371/journal.pcbi.1011399.g006
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target fields. The data augmentation methodology used here makes it feasible to infer the

causes of these observed removals by considering the probability q that a vine plant is removed

due to agronomic causes other than FD. Including this parameter allows the spread of FD dur-

ing the first years after its initial incursion in the area to be slowed in a manner reflecting the

situation in the field. Our results strongly suggest that the most likely year of the first infection

of fields F2 and F3 is 2016 (Fig A in S2 Text).

Dispersal kernels are the key to understanding the spatial transmission of pathogens. They

are firstly characterised by their scale parameter. The mean of the posterior distribution of the

kernel mean μ obtained from the best model is 13 m (Fig 5A), and the values estimated with

the 4 best models range from 10 to 15 m (Fig 5A). In addition, the predictions-based epidemic

simulations indicate that the mean (resp. the median) of the posterior distribution of the mean

transmission distance is 16.9 m (resp. 15.02 m) (Fig 5C). It also indicates that 50% (resp. 80%)

of the new infections are likely to be found within 10.5 m (resp. 22.2 m) of the infectious source

plant (Fig 5D). Accordingly, FD mainly spreads locally from one year to the next. Interestingly,

these estimations are in broad agreement with the space-time point pattern analysis of an FD

epidemic (surveyed from 2011 to 2015) in a field located in Italy [54]. These authors found

that the dominant feature was an aggregated cluster of symptomatic plants in moving windows

of 8 × 8 plants (equivalent to a square of 11 m/side) to 12 × 12 plants (equivalent to a square of

17 m/side). They also estimated that about 50% of newly symptomatic plants (on year t) were

found within 3 m of plants already symptomatic (on year t − 1) while discussing how this fig-

ure was somewhat blurred by their statistical approaches, which could not necessarily disen-

tangle primary from secondary infections. Our estimations are also in agreement with

observations on the fly activity of S. titanus, the vector of FD [55]. These authors have shown

using mark-recapture techniques that 80% of S. titanus adults disperse over distances of less

than 30 m along the whole season, a value in line with the aggregated spatial distribution of

this monophagous leafhopper previously observed [56–58]. Some authors suggest that the cre-

puscular flight activity of S. titanus adults makes them likely to rely on an active wandering

movement rather than on passive wind-borne transport [59]. More broadly, few dispersal ker-

nels are known among insect-vectored pathogens. Huanglongbing, a major disease of citrus

worldwide, is mainly transmitted by the Asian citrus psyllid, Diaphorina citri. The estimation

of its dispersal kernel also indicates a short mean transmission distance of 5 m for 5-year-old

trees and 10 m for 18-year-old trees [14]. By contrast, the mean transmission distance of plum

pox virus by Aphis gosypii amounts to 92.8 m [10], a higher figure possibly linked to the better

dispersal capacity of winged aphids that rely on wind. More broadly, it should be noted that

the mean dispersal distance of fungal plant pathogens propagated by airborne spores is often

much higher (ranging from 213 to 2560 m) in the four pathosystems listed by [36].

Dispersal kernels can be further defined by their shape, which in particular informs the “fat-

ness” of their tails. Tail fatness can be used to categorise kernels in a binary fashion [41]. When

at a relatively large distance the shape of the tail decreases less slowly than exponential distribu-

tion, or equally slowly, a kernel is termed “short-tailed” or “thin-tailed” [60]. In contrast, if the

probability of dispersal decreases more slowly than an exponential distribution at long dis-

tances from the source, kernels are termed “long-tailed” or “fat-tailed”. Long-distance dispersal

events are more frequent than with an exponential kernel that shares the same mean dispersal

distance. Here, the annual spread of FD is best described by a fat-tailed power law with expo-

nent parameter b = 6, whereas the “thin-tailed” kernels considered (Gaussian and exponential

kernels) were clearly discarded by model selection. This result is in line with the maximum dis-

tances occasionally observed for S. titanus by [14] (330 m) and [58] (600 m). The small-scale

dispersion ability of S. titanus does not exclude the larger-scale passive dissemination of infec-

tious S. titanus over longer distances by the wind, as is the case for many insects [61]. A
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consequence of fat tails is the patchiness of the epidemics that can arise. Rather than having a

wave that propagates from an initial focus, you get patterns that appear to have multiple foci

[12, 62] and in some occasions accelerating epidemic waves [63]. These features are crucial to

consider when designing control strategies for emerging plant disease [36].

Given the importance of properly characterising the speed of propagation of the front of

the spread of an emerging disease, it would be interesting to consider other fat-tailed dispersal

kernels, such as exponential power kernels. Indeed, fat-tailed kernels can be further distin-

guished depending on whether they are “regularly varying” (e.g. power-law kernels) or “rap-

idly varying” (e.g. exponential power kernels) [60]. Mathematically, this implies that power

law kernels decrease even more slowly than any exponential power function. Biologically, this

means that fat-tailed exponential power kernels display rarer long-distance dispersal events

than power-law kernels. This affects the dynamics of an epidemic. Indeed, e.g. with weak Allee

effects, subtle interactions between tail fatness (rapidly versus regularly varying) and per capita

growth rate of the epidemic near zero determine whether the spread is accelerating [64, 65].

However, our observations are mainly collected in three fields within a bounding box of 232 m

by 202 m (i.e. over 4.7 ha). It is well known that data confined to relatively small spatial scales

can blur the precise estimates of the form of dispersal at large distances, and in particular the

shape of the kernel’s tail [66]. The selected dispersal at long distances depends on both the ker-

nel considered and the distances over which the dataset is collected [67].

The inference framework used considered a non-spatialized primary infection rate term,

�(t), modelling the introduction of FD in the two targeted fields from a set of remote fields.

Recent work by [14, 17] also incorporates seasonality into the primary or external rate of infec-

tion in modelling plant epidemics, but assumes the rate to be homogeneous. Here, we utilise

the data on the disease dynamic in adjacent fields by building the primary infection rate as a

function of the density of symptomatic plants in those adjacent fields. This could be further

refined by considering the primary infection rate as a spatially decaying source of inoculum as,

in our case study, the spatial polygons of the remote fields are known (Fig 2). Thus, a further

improvement of the inference framework could consist in using the same dispersal kernel for

handling both the data collected at plant scale (in the fields F1, F2 and F3) and the data aggre-

gated at field scale (number of symptomatic plants recorded in remote fields). Regarding this,

the method developed in [68] is of interest, as it allows the quantification of the flow of parti-

cles over a heterogeneous area by integrating a pointwise dispersal function over source and

target polygons. A simpler approach could also be used, e.g. through connectivity matrices

between fields. However, the latter approach neglects field geometry and can be expected to

bias connectivity estimates, such as when field shapes and sizes are disparate. Furthermore,

given the evidence that the FD epidemic spreads more rapidly along than across rows ([54]),

anisotropic kernels, in which propagules can disperse differently depending on the direction

(e.g. [69]), are worth considering. A different aspect, in light of [10], that could be interesting

to take into account in the inference framework is the sensitivity and specificity of FD detec-

tion (as detailed in the materials and methods section), given that FD detection in the focal

fields was assumed to be errorless. Finally, no records of vector population densities were avail-

able for the focal fields. Undoubtedly, incorporating such data, typically throughout a second-

ary infection rate depending annually on sticky traps data, would have improved model fit.

Despite its simplicity, the spatially explicit SIR model developed and fitted here captures the

main features of FD epidemiology in vineyard fields: (i) a single annual infection cycle result-

ing from the univoltine life cycles of S. titanus, (ii) a dormancy phase in the life cycle of the

plants and the vector that results in infected plants in year t becoming infectious in spring of

year t + 1 and (iii) the existence of a delay between plant infectiousness from spring of year

t + 1 and plant removal the next autumn/winter. This time gap results from practical
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considerations for implementing FD management in the field: the beginning of the survey in

August as the set of specific symptoms mostly appear throughout the summer, molecular veri-

fication of diagnosis, and finally plant removal. The simulations consider a basic scenario, all

other factors impacting FD epidemiology being equal: (i) FD is spreading in an isolated and

large field (100 ha) after its introduction in a single infected plant, (ii) plants infected during

the year t are removed with an efficiency τ infected plants during autumn/winter of year t + 1

and (iii) removed plants are replanted immediately. Such removal strategy mimics the current

uprooting practice in France, with the exception of the rule that states that fields must be

entirely removed as soon as their FD prevalences exceed 20%. This rule would be important

for modelling FD control strategies in agricultural landscapes, which is out of the scope of this

study. Overall, in the context of a FD survey as currently carried out in the area, simulations

suggest that even a fully efficient uprooting strategy (τ = 1) is unable to avoid FD spread (Fig

6D). It illustrates, as already emphasised in several pathosystems, that the control of emerging

disease is the most difficult when it is hampered by invisible cryptic infection [11, 16]. In our

case study, “cryptic” infections are the consequence of taking into account practical constraints

in defining the modalities of FD management in the field. It imposes a time gap between the

infectious period and the period of optimal detection of symptoms (and an even larger gap

until effective plant removal). The major interest of mandatory insecticide treatments directed

against nymphs and adults of the vector is precisely to reduce the risk of FD phytoplasma

acquisition/transmission during this time gap.

In a context of a necessary reduction of insecticide treatments, previous results should

lead us to reconsider the component of the global FD control strategy which is identifying

and removing infected plants. Currently, only symptomatic plants are removed in France. In

the presence of “cryptic” infection, strategies relying on reactive host removal are of particu-

lar interest. They consist in removing plants, regardless of their infectious status (i.e. both

asymptomatic and symptomatic plants), within a particular distance of infection foci. The

rationale is to remove (and/or treat) locations that are likely to be infected without yet show-

ing symptoms [11, 37, 38]. In the case of FD, the plants should be removed during the winter

of year t, before their infectiousness. Note that, in line with these reasons, insecticide treat-

ments against S. titanus are already advised in a buffer of 500 m around infected plots.

Another strategy could consist in cutting the vine twigs as soon as the very first symptoms

appear on them, all along the summer, as suggested by [33] and as practiced in some vine-

yards in Italy. It must be followed by a complete removal in winter as imposed by quarantine

measures. The model developed in this work is a first step in redesigning FD control strate-

gies. Future research should take advantage of the (S)usceptible-(E)xposed-(C)ryptic-(D)

etectable-(I)nfected-(R)emoved framework proposed by [11] to optimise control strategies

for invasive plant disease. Research should also benefit from one of the few attempts to

model the long-term epidemiology of FD [70]. Using a mean-field model approximation (i.e.

ignoring the transmission dispersal kernel), these authors explore the role of hotbeds

(defined as vine-growing areas such as abandoned vineyards and woods containing wild

grapevines) and of insecticide spray on FD dynamics. In keeping with these and our

approaches, future works should consider the full spectrum of existing control measures (e.g.

healthier planting material, removal of hotbeds, improving vector control with insecticides

but also vibrational disturbances and “push-pull” strategies, see [22] for a review) when we

only consider here the uprooting of infected plants. Finally, following [7], this approach

should account for economic criteria that balance benefits (generated by the cultivation of

healthy/asymptomatic plants) against costs (particularly due to FD control: surveillance,

plant removal, replanting and insecticide treatments).
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