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Abstract

BACKGROUND: Starch, dry matter content (DMC), proteins, and sugars are among the major influences on yam tuber quality.
Genetic improvement programs need simple, rapid, and low-cost tools to screen large populations. The objectives of this work
were, using a quantitative trait loci mapping approach (QTL) on two diploid full-sib segregating populations, (i) to acquire
knowledge about the genetic control of these traits; (ii) to identify markers linked to the genomic regions controlling each trait,
which are useful for marker-assisted selection (MAS); (iii) to validate the QTLs on a diversity panel; and (iv) to identify candidate
genes from the validated QTLs.

RESULTS: Heritability for all traits wasmoderately high to high. Significant correlations were observed between traits. A total of
25 QTLs were identified, including six for DMC, six for sugars, six for proteins, and seven for starch. The phenotypic variance
explained by individual QTLs ranged from 14.3% to 28.6%. The majority of QTLs were validated on a diversity panel, showing
that they are not specific to the genetic background of the progenitors. The approximate physical location of validated QTLs
allowed the identification of candidate genes for all studied traits. Those detected for starch content were mainly enzymes
involved in starch and sucrose metabolism, whereas those detected for sugars were mainly involved in respiration and
glycolysis.

CONCLUSION: The validated QTLs will be useful for breeding programs using MAS to improve the quality of yam tubers. The
putative genes should be useful in providing a better understanding of the physiological and molecular basis of these impor-
tant tuber quality traits.
© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.
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INTRODUCTION
Yams (Dioscorea spp.) are herbaceous vines cultivated for their
starchy tubers. They represent a major food crop in the tropical
andsubtropical regionsofOceania,Asia, theCaribbean,SouthAmer-
ica, and in particular in West Africa, which accounts for 92% of the
world's production.1 Dioscorea rotundata and D. alata are the most
important cultivated species. Dioscorea alata ranks second in pro-
duction importance,but it is theworld'smostwidelydistributedspe-
cies. This is due to the fact that it offers several particular advantages
in terms of early vigor for weed control, yield potential under low to
medium soil fertility conditions, and a better tuber storage ability.2,3

In West Africa, yams are consumed in several ways (boiled, fried,
roasted, baked, or pounded, after being cooked, into a stiff paste
called fufu). Cultivars of D. rotundata are more suitable for the
preparation of fufu. However one study showed that tubers from
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some D. alata genotypes could form a good dough, comparable
to that of some D. rotundata genotypes.4

The sensory quality of tubers depends on many physico-
chemical and textural characteristics.5,6 It has been shown that
the quality of tubers for consumption (either boiled or pounded)
was strongly related to their dry matter content (DMC), starch,
and amylopectin content.7 The four main constituents of tubers
are starch, DMC, sugars, and proteins. Tubers of D. alata contain
20–40% of DMC, 60–80% starch, 0.5–11.6% sugars, and 4.0–7.4%
proteins.8

Genetic improvement programs need simple, rapid, and low-
cost tools to screen large populations. Near-infrared reflectance
spectroscopy (NIRS) has been demonstrated to be a reliable tech-
nique to predict the major tuber constituents in D. alata yam
species.9,10 However, as spectra were generated from flour sam-
ples and not from raw samples, this protocol requires a long
sample-processing time and remains rather difficult to apply to
a large number of genotypes.
Marker-assisted selection could be a high-throughput method

facilitating breeding efforts. Indeed, with the development of
new-generation sequencing technologies, it has become much
easier to search for genomic regions associated with traits of inter-
est. A few studies have been conducted with yam to elucidate the
genetic determinism of tuber quality related traits. By using a
quantitative trait loci (QTL) mapping approach on two biparen-
tal populations, several genomic regions linked to important
morphological and agronomic tuber quality traits have been
identified.11 The heritability of DMC was estimated on a diver-
sity panel including eight different Dioscorea species.12 A
Genome-Wide-Association study was carried out in D. alata
and some single-nucleotide polymorphism (SNP) markers
linked to DMC could be identified.13

The current study used a QTLmapping approach on two diploid
full-sib segregating populations, aiming: (i) to acquire knowledge
about the genetic control of starch, DMC, sugar, and protein con-
tent in tubers; (ii) to identify markers linked to the genomic
regions controlling each trait, useful for marker-assisted selection
(MAS); (iii) to validate the QTLs on a diversity panel; and (iv) to
identify candidate genes from the validated QTLs.

MATERIALS AND METHODS
Plant material and sample preparation
Two diploid full-sib segregatingD. alata populations composed of
93 (population A, 74F x Kabusa) and 80 (population B, 74F x 14 M)
progenies, respectively, were used to map the quality traits. Both
populations were generated previously11 and derived from
crosses between diploid progenitors contrasting for expression
of quality traits. The male Kabusa and 14 M parents have signifi-
cantly higher DMC and starch content than the female parent
74F, which has, on the other hand, higher sugar content than
14 M and lower sugar content than Kabusa. Progenitors do not
differ significantly in protein content.
The mapping populations and progenitors were planted in two

blocks at Roujol experimental station in Guadeloupe, France
(16° 100 5600 N, 61° 350 2400 W, 10 m.a.s.l.) during cropping season
2017–2018. Each block included nine plants of each genotype.
After harvest, about 200 g of the central part of three to four
tubers per genotype was sliced into chips and dried in an oven
at 60 °C for 72 h (3 to 4 tubers × 200 g × 2 blocks). Then flours
of each tuber were prepared for NIRS screening as described in
Ehounou et al. (2021).10

The diversity panel used for the validation of QTLs consisted of
24 D. alata genotypes and included landraces and breeding lines
presenting a high diversity for the four traits whose qualities were
studied. These accessions were planted together in the same field
during two cropping seasons (2016–2017 and 2017–2018) in Gua-
deloupe (16° 100 5600 N, 61° 350 2400 W, 10 m.a.s.l.). After harvest, as
for biparental populations, about 200 g of the central part of three
to five tubers of each genotype were sliced into chips and oven
dried at 60 °C for 72 h (3 to 5 tubers × 200 g × 2 years). Then flour
from each tuber was prepared for chemical analysis as described
in Ehounou et al. (2021).10

Phenotyping of progenies and the diversity panel
Phenotyping of 24 accessions of the diversity panel was carried
out using the chemical analysis and methods described in Ehou-
nou et al. (2021).10 Starch, sugar, and protein content was
expressed as a percentage of dry weight.
Dry matter content, starch, sugar, and protein content of prog-

enies and progenitors were predicted by NIRS analysis, using a
FOSS-NIRSystems model 6500 scanning monochromator
(FOSS-NIRSystems, Silver Spring, MD, USA) and partial least
squares models developed previously.10 Two replicates were
scanned for each flour sample. A total of 1762 NIRS measures
were carried out in the technical platform of INRAE's UR143 ASSET
research unit, in Guadeloupe. The NIRS spectra were generated
from a single block for population B.

Statistical analysis
Pearson correlation tests, histograms, box plots, ANOVA, and nor-
mality analysis were performed using XLSTAT version
19.03.44616. Distributions of progeny phenotypic data were
tested for normality using Shapiro–Wilk and JarqueBera tests.
Broad-sense heritability was estimated as described in Ehounou
et al. (2022).11

Genotyping by sequencing
Single-nucleotide polymorphism genotyping data of both map-
ping populations, progenitors and the diversity panel were gener-
ated previously.11,14

Quantitative trait loci mapping
Quantitative trait loci analysis was performed for each population
separately using Map QTLversion 6.15 Quantitative trait loci were
detected using the interval mapping (IM) approach, mean values
and the previously published reference genetic map generated
from two populations.16 Significance LOD score thresholds were
calculated through permutation of 1000 iterations with an alpha
risk of 0.05 and confidence limit of 95%. Confidence intervals of
QTL positions were determined as two-LOD support intervals.

Quantitative trait loci validation
Based on the genotypic and phenotypic data from the diversity
panel, QTL validation was performed in two steps. First, a simple
linear model that associates each phenotype with a SNP was
tested using the Pearson correlation test and a 5% significance
level. All markers included in the QTL confidence intervals were
tested. The Pearson coefficient of determination (R2) and the
P-value (Pearson) of each SNP marker were thus determined.
Second, an ANOVA was performed for the significant markers to
determine whether the observed genotypic classes were signifi-
cantly different at P < 0.05.
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Identification of candidate genes
Candidate genes for the validated QTLs were identified by search-
ing near the significant SNPs in the NCBI database, which contains
all 35 078 genes that were annotated on the D. rotundata refer-
ence genome.17

RESULTS
Phenotyping of mapping populations
The mean values and ranges of scores for starch, DMC, sugar, and
protein content in the two mapping populations are presented in
Table 1. Starch content ranged from 74.0% to 83.6% in population
A (74F × Kabusa) and from 71.1% to 85.6% in population B
(74F × 14 M). For DMC, the range of scores was from 26.7% to
38.8% in population A and from 27.6% to 41.3% in population B.
Sugar content ranged from 0.58% to 5.08% in population A and
from0.10% to 5.84% in population B. Finally, protein content scores
ranged from 3.95% to 7.64% and from 4.05% to 7.90% in popula-
tions A and B, respectively. In male progenitors, 14 M and Kabusa,
the values were significantly different from those of female 74F
for starch (80.5%, 79.2%, and 77.2%, respectively), DMC (31.5%,
28.9%, and 28.1%), and sugars (1.79%, 4.12%, and 3.22%).
The ANOVA on phenotypic data of population A showed highly

significant (P < 0.0001) genotype effects and significant repeti-
tion effects (P < 0.05) for all traits (Table 1). However, genotypes
were the most important source of variation for each studied trait.
An ANOVA of phenotypic data from population B also showed
highly significant genotypic effects (P < 0.0001) for all studied
traits (Table 1).
The frequency distribution of all traits studied showed typical

quantitative variation in both mapping populations and all traits
fitted a normal distribution (Fig. 1). Transgressive segregations
were observed with lower or higher phenotypic values than those
of the parents for all traits (Fig. 1).
Broad heritability for the four traits ranged from 0.68 to 0.88 in

population B and from 0.69 to 0.81 in population A (Table 1).
The heritability for starch was similar in both populations (0.68
and 0.69) and also for protein (0.78 and 0.81). The heritability
obtained for DMC and sugar content was significantly higher in
population B (0.86 and 0.88) than in population A (0.75 and 0.72).
Several significant correlations were detected between traits

(Table 2). Negative correlations were found in both biparental
populations between starch content and protein content, and

between starch content and sugar content. A positive correlation
was detected in population A between starch content and DMC,
while in population B, a positive correlation was detected
between DMC and sugars.

Quantitative trait loci detection
A total of 25 QTLs were identified for the four studied traits in both
mapping populations. For starch content, four QTLs were
detected in the population B located on chromosomes 2, 5,
6, and 10, which explained 22.4, 22.6, 20.1, and 22.1% of pheno-
typic variance, respectively (Table 3). In population A, three QTLs
were detected on chromosomes 10, 11, and 18, which explained
15.4, 19.1, and 16.1%, respectively of total phenotypic variance.
Both QTLs identified on chromosome 10 were located in distinct
regions and are two different loci. Figure 2(a) shows the one that
was identified in population B.
For DMC, four QTLs were identified in population B located on

chromosomes 1, 4, 7, and 12, which explained 98.5% of total phe-
notypic variance. In population A, two QTLs were found on chro-
mosomes 1 and 2, explaining 14.3% and 18.7% of phenotypic
variance, respectively. Figure 2 shows information from the QTL
identified on chromosome 2 (population A).
Three QTLs were detected for sugars in population B (chromo-

somes 7, 9, and 13) and three in population A (chromosomes
6, 7 and 12), explaining 68.5% and 58.8% of total phenotypic var-
iance in each population, respectively. Figure 2 shows results from
the QTL found in chromosome 7 (population A).
Finally, four QTLs were revealed for proteins in population B

(chromosomes 2, 5, 8, and 19) and two in population A (chromo-
somes 10 and 18), which explained 98.4% and 38.4% of each
population's total phenotypic variance. Figure 2 shows the results
from the QTL found on chromosome 19.

Quantitative trait loci validation
The majority of QTLs (22 of 25) were validated in the diversity
panel. Table 3 presents the SNP markers located within confi-
dence intervals of the QTLs, showing a significant association with
the diversity panel phenotypic data (at P < 0.01** or P < 0.05*).
The alleles at each locus and the allelic effects are also presented
in Table 3. The analyses of variance showed that differences
between the different genotypic classes were significant
(P < 0.05) for all validated QTLs. Figure 2(b) presents the pheno-
typic data distributions of the different genotypic classes for QTLs

Table 1. Phenotypic variation for starch, DMC, sugar and protein content in mapping populations A (74F × Kabusa) and B (74F × 14 M)

Trait Pop Mean Min. Max. G R H2a

Starch B 78.7 71.1 85.6 *** - 0.68
DMC 33.3 27.6 41.3 *** - 0.86
Sugars 3.03 0.10 5.84 *** - 0.88
Proteins 5.74 4.05 7.90 *** - 0.78
Starch A 79.8 74.0 83.6 *** * 0.69
DMC 32.7 26.7 38.8 *** * 0.75
Sugars 236 0.58 5.09 *** ** 0.72
Proteins 5.55 3.95 7.64 *** * 0.81

Note: ***Significant at P < 0.0001, ** P < 00.1, * P < 00.5 for the effects of genotype (G) and repetition (R) on the phenotypic variance estimated by
ANOVA.
a Broad –sense heritability. Starch, proteins and sugars are expressed as a percentage of dry weight, and dry matter content is expressed as a percent-
age of fresh weight.
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detected for starch, proteins, sugars and DMC on chromosomes
10, 19, 7, and 2, respectively. These QTLs were used as examples
to illustrate the kind of data obtained for the different traits. At
locus 10.1.6610171, the allele C is associated with a lower starch
content, whereas at locus 02.1.28100114, the allele A is associated
with low dry matter content. At locus 21.1.307693 three different
genotypic classes were observed and varieties homozygous for
allele T (TT) had significantly higher protein content. At locus
07.1.1765193, varieties homozygous for allele T (TT) had signifi-
cantly higher sugar content.

Identification of potential candidate genes
Candidate genes were detected for the majority of validated QTLs
and they are presented in Table 3. The significant SNP markers
were generally located in intergenic regions but four were found
in intronic regions and one in an exon.
Five candidate genes were identified out of the seven QTLs for

starch, including Sucrose phosphatase 1 (EC 3.1.3.24), Sucrose phos-
phatase synthase (EC 2.4.1.14), Isoamylase 3 (EC 3.2.1.68), Glycosil
hydrolase, and Serine/threonine protein kinase.
Three candidate genes were identified out of the five QTLs for

DMC, including a Xyloglucan galactosyltransferase, an Ubiquitin
specific protease and an Endo beta D Glucanase.

A total of five candidate genes were identified out of six QTLs for
sugars. They are Pyruvate dehydrogenase kinase (EC 1.2.4.1),
Enolase Chloroplastic (EC 4.2.1.11), beta glucosidase, rhamnose-
galactose sugar transporter, and glycine cleavage system H protein.
Finally, four candidate genes for proteins were detected out of

the five QTLs (Table 3). They are a D amino acid transaminase, Pro-
tein activity of BC1 complex kinase 7, Indole-3-Glycerol phosphate
synthase (EC 4.1.1.48), and Proline rich receptor like protein kinase.

DISCUSSION
This research provides valuable insights into the genetic architec-
ture of key quality related traits in yam; identifies markers linked
to the genomic regions controlling each trait, which is useful for
MAS; validates the QTLs on a diversity panel; and identifies candi-
date genes from the validated QTLs.
A larger phenotypic variability was observed in population B

(74F X 14 M) than in population A (74F X Kabusa) for DMC, starch,
and sugars. This could be explained by greater differences
observed between progenitors of this population. In both proge-
nies the presence of transgressive hybrids (having higher or lower
values than those of their parents) could be due to the heterozy-
gosity of progenitors, and in particular of female 74F and male
14 M. Indeed, the high heterozygosity found for these two geno-
types16 would favor a high frequency of new allelic combinations,
thus widening of phenotypic variation within their progenies. A
similar phenomenon was observed in a previous study focusing
on the same populations but on other tuber quality traits.11

Heritabilities of all traits weremoderately high to high, with 68%
to 88% of the phenotypic variation in hybrid means due to
genetic differences between hybrids. This makes selection for
these quality traits possible in breeding programs. The high heri-
tability for DMC was similar to that found in 191 genotypes of dif-
ferent Dioscorea species (0.86).12 As expected, starch content was
the trait with the lowest heritabilitiy. Indeed, it is known that
starch content varies between different parts of tuber (‘head, mid-
dle, bottom’)18 and also during the storage of tubers.19 Interest-
ingly, starch was negatively correlated with proteins and sugars
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Figure 1. Phenotypic distributions for starch, dry matter content, sugar and protein content in mapping populations A (74F × Kabusa) and B
(74F × 14 M).

Table 2. Coefficients of correlation between traits in biparental
populations A (74F × Kabusa) and B (74F × 14 M)

Variable Starch Sugars Proteins

Sugars −0.34*
−0.57*

Proteins −0.66* −0.11
−0.27* −0.24

DMC 0.22* −0.15 −0.20
−0.23 0.47* 0.00

Note: Top values are those from population A and bottom values from
population B.
*Significant at P < 0.01.
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in both populations. This is consistent with previous results
obtained on D. alata9 and other root and tuber crops.20

The current research has led to the identification of 25 QTLs
associated with the genetic variation of these four important
tuber quality traits. Several QTL co-localizations were congruent
with the observed genetic correlations. Three QTL co-localizations
were observed for starch and proteins on chromosomes 18, 10,
and 5. In addition, one QTL co-localization was observed for starch
and sugars on chromosome 6. The starch QTL on chromosome
18was locatedwithin 67 kb of the protein QTL. This short distance
separating the QTLs suggests that these could be under the con-
trol of a same gene with a pleiotropic effect or several distinct,
closely related genes. Starch QTLs on chromosomes 10 and 5were
at 1 Mb and 896 kb of protein QTLs, respectively. The QTL for
starch on chromosome 6 was approximately 1.5 Mb from the
sugar QTL. For these more distant QTLs, the hypothesis of a con-
trol by separate genes seems the most likely. Despite the exis-
tence of a negative correlation between starch and proteins,
several hybrids containing both high starch and protein content
were detected in both biparental populations. This can be
explained by genetic recombinations between QTLs, which is fea-
sible considering their physical distances and its telomeric chro-
mosomal localization. Furthermore, no co-localization was
observed for QTLs detected for a same trait in both populations

on the same chromosome (starch on chromosome 10, sugars on
chromosome 7, and DMC on chromosome 1), which is in accor-
dance with the hypothesis that these are different loci.
Before being used for MAS, a QTL needs to be validated to con-

firm that its effect can be also detected in different genetic back-
grounds. For this purpose, we used a contrasting diversity panel. A
total of 22 QTLs could be validated showing that they are not spe-
cific to the genetic background of progenitors. These should be
useful for breeding programs using MAS to select the favorable
alleles and to improve yam tuber quality.
In addition, the validation process was very useful to identify the

candidate genes, in particular when QTL confidence intervals
were large. A total of five putative candidate genes were detected
near the markers associated with starch content of which four
genes (Isoamylase ISA3, Serine/threonine protein kinase, Sucrose
phosphate synthase, Sucrose phosphatase) play important roles in
the starch and sucrose metabolism. Isoamylase ISA3 was reported
to participate in the process of starch degradation in potatoes.21

This gene was also reported to be involved in the reduction of
dormancy period.21 Both Sucrose phosphate synthase and Sucrose
phosphatase play important roles in the sucrose metabolism.22

The fourth putative gene, Serine/threonine-protein kinase was
reported to participate in the process of starch and sugar biosyn-
thesis in potato.23 The fifth putative gene, Glycosil hydrolase family

Table 3. Quantitative trait loci validated for starch, DMC, sugar, and protein content in the diversity panel, and candidate genes identified

Trait Chr Pop. LOD R2 (%) SNP
Alleles /Allele

effect Localization Candidate gene

Starch 5 B 3.67 22.6 05.1_32707706** CC/CT/TT (T-) Intergenic G- type lectin Receptor like serine/threonine
protein kinase

Starch 2 B 3.63 22.4 02.1_32141722* TG/GG (G-)
Starch 6 B 3.39 20.1 06.1_20308422* AA/A*/**(*+) Intergenic Sucrose phosphatase 1 EC 3.1.3.24
Starch 10 B 3.58 22.1 10.1_6610171* T*/**(*-) Intergenic Glycosil hydrolase family 5
Starch 10 A 3.24 15.4 10.1_17600318* CC/C* (*+) Intergenic Sucrose phosphate synthase EC 2.4.1.14
Starch 11 A 4.10 19.1 11.1_4493720** TT/TC (C-) Intronic Uncharacterized protein Loc120271825
Starch 18 A 3.40 16.1 18.1_1695612* GG/GA/AA (A+) Intronic Isoamylase 3 chloroplastic EC 3.2.1.68
Proteins 8 B 4.46 26.6 08.1_18931363* CC/CG (G-) Intergenic D amino acid transaminase EC2.6.1.21
Proteins 19 B 4.33 26.1 21.1_107691* CC/CT/TT (T+) Intergenic Protein activity of BC1 complex kinase 7
Proteins 5 B 3.85 23.6 05.1_31811203* TT/T* (*-) Intergenic Indole-3-Glycerol phosphate synthase EC

4.1.1.48
Proteins 2 B 3.54 21.9 - non val.
Proteins 18 A 4.90 22.4 18.1_1629151** GG/GA/AA (A+) Exon Uncharacterized protein Loc120282302
Proteins 10 A 3.36 16.1 10.1_16586803** GG/GC/CC (C-) Intergenic Putative proline rich receptor like protein kinase
Sugars 9 B 4.07 24.7 09.1_19344114** A*/** (*-) Intergenic Enolase 1 chloroplastic EC 4.2.1.11
Sugars 7 B 3.91 23.9 07.1_351152* GG/GA/AA (A-) Intronic Pyruvate dehydrogenase kinase EC 1.2.4.1
Sugars 13 B 3.18 19.9 - non val.
Sugars 12 A 4.60 21.2 12.1_17583120** TG/GG (G+) Intergenic Alpha 1 Arabinofuranosidase 1 EC 3.2.1.55
Sugars 6 A 4.49 20.7 06.1_18785797 AA/A* /** (*-) Intergenic Glycine cleavage system H Protein 2
Sugars 7 A 3.51 16.6 07.1_1765193** CT/TT (T+) Intergenic Beta glucosidase 22
DMC 4 B 4.84 27.2 04.1_10157871* TT/TC/CC (C-) Intergenic Xyloglucan galactosyltransferase GT17
DMC 12 B 4.77 25.1 12.1_24347534* TT/TC/CC(C-)
DMC 7 B 4.13 24.0 07.1_3805155* GG/GA (A+) Intergenic Endo 1,3 (4) beta D Glucanase
DMC 1 B 3.79 22.2 01.1_601071* GG/**/** (*-) Intronic Ubiquitin like specific protease 2B
DMC 1 A 3.00 14.3 - non val.
DMC 2 A 3.99 18.7 02.1_28100114** GA/AA (A-)

Note: Chr Chromosome, Pop Population, SNPmarker in the QTL confidence interval that showed a significant association with phenotypic data from
the diversity panel.
Note: **Significant at P < 00.1, * P < 00.5.
Note: Non val QTLs not validated in the diversity panel.
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5, was reported to hydrolyze the glycosidic bond between two or
more carbohydrates, and is present in many plant tissues.24,25

Five putative candidate genes were detected for sugar content,
of which three play an important role in plant respiration or gly-
colysis (Enolase, Pyruvate dehydrogenase kinase, Glycine H Protein).
Pyruvate dehydrogenase kinase was reported to be a negative reg-
ulator of the mitochondrial pyruvate dehydrogenase that plays a
central role in control of cell respiration.26 Enolase, also known as
Phosphopyruvate hydratase, catalyzes the ninth and penultimate
step of glycolysis. In tobacco, the glycine H protein was reported
to play an important role in the photorespiratory flux.27 Overex-
pression of this protein reduced the amounts of soluble sugars
and increased the accumulation of starch.27 The fourth putative
gene Beta Glucosidasewas reported to be involved in the hydroly-
sis of cellobiose and other oligosaccharides into glucose.28

The fifth putative gene UDP-rhamose/UDP-galactose transporter

was reported to be involved in the transport of nucleotide sugars
(UDP rhamose, UDP galactose) from the cytosol into the Golgi
lumen to be used in the synthesis of polysaccharides.29

Three putative candidate genes were identified for DMC. Of
these three genes, Xyloglucan galactosyltransferase was reported
to play a significant role in enhancing the plasticity of cell wall
components through its ability to hydrolyze and reconnect the
xyloglucan chains.30 The second candidate gene, endo Beta D Glu-
canase, was reported to be involved in the cleavage of glucan
chains, which are major constituents in cell walls, generating
mainly oligosaccharides.31 The third putative gene, Ubiquitin pro-
tease, was reported to play an important role in many plant devel-
opmental processes.32

Four putative candidate genes were detected for proteins. Of
these four genes, D-amino acid transaminasewas reported to play
a crucial role in the biosynthesis and/or degradation metabolism

Figure 2. (A) Examples of QTLs detected in the biparental populations for starch, proteins, sugars and drymatter on chromosomes 10, 19, 7, and 2 respec-
tively. (B) SNPs markers in the QTL confidence interval that showed a significant association with phenotypic data from diversity panel. The alleles at each
locus and the allelic effects are depicted.

www.soci.org G Arnau et al.

wileyonlinelibrary.com/jsfa © 2023 The Authors.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

J Sci Food Agric 2023

6

 10970010, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jsfa.12822 by Inrae - D

ipso, W
iley O

nline L
ibrary on [25/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com/jsfa


of different amino acids in plants, such as alanine and serine.33

The second candidate gene, Indole 3 glycerol phosphate synthase,
was reported to be involved in the tryptophan biosynthesis.34

The third putative gene Complex kinase 7 was reported to
be involved in the phosphorylation of proteins both in the mito-
chondrial outer membrane and in chloroplasts.35 The fourth
putative gene, Proline-rich like receptor kinase, belongs to the
hydroxyproline-rich glycoprotein (HRGP) superfamily, which
was reported to be involved in many plant developmental
processes.36

The candidate genes identified should be useful in providing a
better understanding of the physiological and molecular basis of
these important tuber quality traits.
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