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Abstract

Blackwell’s approachability is a framework where two players, the Decision Maker and the
Environment, play a repeated game with vector-valued payoffs. The goal of the Decision
Maker is to make the average payoff converge to a given set called the target. When this
is indeed possible, simple algorithms which guarantee the convergence are known. This
abstract tool was successfully used for the construction of optimal strategies in various
repeated games, but also found several applications in online learning. By extending an
approach proposed by Abernethy et al. (2011), we construct and analyze a class of Follow
the Regularized Leader algorithms (FTRL) for Blackwell’s approachability which are able
to minimize not only the Euclidean distance to the target set (as it is often the case in the
context of Blackwell’s approachability) but a wide range of distance-like quantities. This
flexibility enables us to apply these algorithms to closely minimize the quantity of interest
in various online learning problems. In particular, for regret minimization with `p global
costs, we obtain the first bounds with explicit dependence in p and the dimension d.

Keywords: Blackwell’s Approachability, Follow the Regularized Leader, Online Learning,
Regret Minimization, Global Costs

1. Introduction

One of the foundational results of game theory is von Neumann’s minimax theorem which
characterizes the highest payoff that each player of a finite zero-sum game can guarantee
regardless of the opponent’s strategy. In the seminal works of Blackwell (1956, 1954),
a surprising extension of this result was proposed in the context of repeated games with
vector-valued payoffs. The so-called Blackwell’s condition characterizes the convex sets that
the player can guarantee to asymptotically reach, regardless of the opponent’s actions. In
the case of non-convex sets, this condition remains sufficient. When the above condition
is satisfied for a given set called the target, the original algorithm proposed by Blackwell
guarantees that the average vector-valued payoff converges to (approaches) the target set
at rate O(1/

√
T ), where T is the number of rounds of the repeated play. This topic is now

called Blackwell’s approachability.

This framework was used for the construction of optimal strategies in repeated games
as in Kohlberg (1975), see also the survey work by Perchet (2014) and references therein.
Beyond the field of game theory, this tool has been noticed by the machine learning com-
munity and used for constructing and analyzing algorithms for various online decision prob-
lems such as regret minimization (Cesa-Bianchi and Lugosi, 2006), asymptotic calibration
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(Dawid, 1982; Foster and Vohra, 1998), regret minimization with variable stage duration
(Mannor and Shimkin, 2008) or with global cost functions (Even-Dar et al., 2009). How-
ever, one drawback of using Blackwell’s approachability is that algorithms then usually
minimize the Euclidean distance of the average payoffs to the target set, which is seldom
the exact quantity of interest in online learning applications. One of the main objectives
of the present work is to provide a flexible class of algorithms which are able to minimize
various distance-like quantities, and not only the Euclidean distance.

Several alternative approachability algorithms were also proposed, including potential-
based algorithm (Hart and Mas-Colell, 2001) which generalize the Euclidean projection
involved in Blackwell’s algorithm, and response-based algorithms (Bernstein and Shimkin,
2015) which avoid the projection altogether. Besides, an important scheme used in several
works is the conversion of regret minimization algorithms into approachability algorithms
(Abernethy et al., 2011; Shimkin, 2016; Mannor et al., 2014).

Regret minimization was introduced by Hannan (1957) and is a sequential decision prob-
lem where the Decision Maker aims at minimizing the difference between its payoff and the
highest payoff in hindsight given by a constant strategy. The link between approachabil-
ity and regret minimization was already noticed by Blackwell (1954) who reduced regret
minimization to an approachability problem. Hart and Mas-Colell (2001) proposed an al-
ternative reduction and constructed a whole family of regret minimization algorithm using
potential-based approachability algorithms. Gordon (2007) extended the potential-based
approach to a wider range of regret minimization problems, seen as approachability prob-
lems. Conversely, regret minimizing algorithms have been converted into approachability
algorithms (Gordon, 2007; Abernethy et al., 2011; Perchet, 2015; Shimkin, 2016).

It is worth noting that modern variants of the Regret Matching algorithm, which is a spe-
cial case of potential-based approachability algorithms (Hart and Mas-Colell, 2000, 2001),
are today the state-of-the-art online learning algorithms for Nash equilibrium computation
in large zero-sum games (Zinkevich et al., 2007; Tammelin et al., 2015).

1.1 Related work

In Perchet (2015), the Exponential Weights Algorithm, which is a central regret minimiza-
tion algorithm, is adapted to approachability, and the resulting algorithm minimizes the `∞
distance to the target set.

The conversion scheme presented in Abernethy et al. (2011) deals with online linear
optimization algorithms which are transposed into the approachability of convex cone target
sets, and the associated guarantee is an upper bound on the Euclidean distance to the
target set. An extension to all convex target sets is also given, which involves the adding
of a dimension.

A closely related work is Shimkin (2016) where a conversion from online convex opti-
mization algorithm to approachability of bounded convex sets is presented, which guarantees
an upper bound on the distance to the target set measured with the Euclidean norm or
possibly any other norm.

One of the applications of approachability is the problem of regret minimization with
global costs, introduced in Even-Dar et al. (2009) and already analyzed as an approachability
problem. This problem was further studied in Rakhlin et al. (2011); Bernstein and Shimkin
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(2015), and in a recent paper (Liu et al., 2021), the authors used the conversion scheme
from Shimkin (2016) to construct and analyze algorithms for this problem.

A recent paper (Farina et al., 2021) proposes an extension of Abernethy et al. (2011) by
introducing predictive approchability algorithms. The proposed construction shares simi-
larities with the present work but focuses on variants of Regret Matching, and only derives
upper bounds on Euclidean distances to target sets—see (Farina et al., 2021, Proposition
2), whereas we consider a more general class of quantities in Definition 3 and Theorem 10
below.

1.2 Contributions

• We consider a class of Follow the Regularized Leader algorithms (FTRL) which we
convert from regret minimization to approachability. The conversion scheme we use is
a refinement of Abernethy et al. (2011), which itself is an extension of Gordon (2007),
and the algorithms that we obtain are capable of minimizing not only the Euclidean
distance to the target set as in Abernethy et al. (2011), but the distance measured
by an arbitrary norm, or even more general distance-like quantities. This flexibility
will prove itself useful in the construction of tailored algorithms with tight bounds for
various problems.

• For the problem of regret minimization with global cost, we construct algorithms for
arbitrary norm cost functions and obtain novel guarantees. In particular, for `p norm
cost functions (p > 1), we obtain the first explicit regret bounds that depend on p
and the dimension d, and which recovers, in the special case p = ∞ the best known
O(
√

(log d)/T ) bound.

1.3 Summary

In Section 2, we present a model of approachability with target sets which are closed convex
cones. In Section 3, we define a class of FTRL algorithms and derive a general guarantee.
In Section 4, we recall the problem of regret minimization with global cost functions and
relate it to our approachability framework and FTRL algorithms. In the special case of
`p norm cost functions, we derive regret bounds with explicit dependence in d and p. In
Appendix D, we recall Blackwell’s algorithm and prove that it belongs to the class of
algorithms defined in Section 3. In Appendix E, we present a variant of the model from
Section 2, where the Decision Maker may choose its actions at random from a finite set.
We then define corresponding FTRL algorithms and provide guarantees in expectation,
with high probability and almost-surely. In Appendices G and H, we recall the problems of
online combinatorial optimization and internal/swap regret respectively, their reductions to
approachability problems, and demonstrate that a carefully chosen FTRL algorithm recover
the known optimal bounds.

1.4 Notation

R∗+ denotes the set of positive real numbers. d > 2 will always denote an integer. All vector
spaces will be of finite dimension. For p ∈ [1,+∞], we denote ‖ · ‖p the `p norm, meaning for
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x ∈ Rd, ‖x‖p =
(∑d

i=1 |xi|
p
)1/p

for p < +∞ and ‖x‖∞ = max16i6d |xi|. For a given norm

‖ · ‖ in a vector space, the dual norm ‖ · ‖∗ is defined by ‖y‖∗ = sup‖x‖61 |〈y, x〉|. Denote ∆d

the unit simplex of Rd: ∆d =
{
x ∈ Rd+,

∑d
i=1 xi = 1

}
. For a sequence (rt)t>1 of vectors,

we denote rT = 1
T

∑T
t=1 rt the average of the T first terms (T > 1). If X a subset of a

vector space, IX denotes the convex indicator of X , in other words: IX (x) = 0 if x ∈ X and
IX (x) = +∞ otherwise. If a vector xt ∈ Rd is denoted with an index (t in this example),
its components are denoted with an additional index as follows: xt = (xti)16i6d.

2. Approachability of convex cones

We introduce a simple repeated game with vector-valued payoffs between two players (the
Decision Maker and the Environment) with a closed convex cone target set for the Decision
Maker. We then state a few properties about closed convex cones and support functions.

2.1 Model

Let V be a finite-dimensional vector space and denote V∗ its dual. The latter will be the
payoff space. Let A and B be the action sets for the Decision Maker and the Environment
respectively, about which we assume no special structure. Let r:A× B → V∗ be a vector-
valued payoff function. The game is played as follows. At time t > 1,

• the Decision Maker chooses action at ∈ A;

• the Environment chooses action bt ∈ B;

• the Decision Maker observes vector payoff rt := r(at, bt) ∈ V∗.

We allow the Environment to be adversarial1.
The problem involves a target set C ⊂ V∗ which we assume to be a closed convex cone2.

The goal is to construct algorithms which guarantee that the average payoff rT := 1
T

∑T
t=1 rt

is close to the target C in a sense that will be made precise.
The above model does not allow the Decision Maker to choose actions at random. Such

a model is presented in Appendix E.

2.2 Generator of a closed convex cone

We now introduce a key notion of this work which will be used in Section 2.3 to define
the class of quantities that will be minimized by the algorithms defined in Section 3.2.
Definitions and properties about closed convex cones are gathered in Appendix A.

Definition 1 Let C be a closed convex cone. A set X is a generator of C if it is convex,
compact and if R+X = C.

1. In other words, action bt chosen by the Environment may depend on anything that has happened before
it is chosen, including at.

2. For the case where target set is a closed convex set but not a cone, we refer to (Abernethy et al., 2011,
Section 4 & Lemma 14) where a conversion scheme into an auxiliary problem where the target is a cone
is presented.
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The following proposition gives three examples of generators. The second example
demonstrates that a generator always exists. The proof is given in Appendix A.1.

Proposition 2 Let W be the ambient finite-dimensional vector space.

(i) If W = W∗ = Rd, the negative orthant Rd− is a closed convex cone and (Rd−)◦ = Rd+.
Moreover, ∆d is a generator of Rd+.

(ii) Let C ⊂ W be a closed convex cone, ‖ · ‖ a norm on W, and B the closed unit ball with
respect to ‖ · ‖. Then, B ∩ C is a generator of C.

(iii) If X is a nonempty convex compact subset ofW, then X is a generator of X ◦◦ = R+X .

2.3 Support functions

We now present support functions which will be used in Section 3.2 to express the quantities
that will be minimized by our algorithms.

Definition 3 For a nonempty subset X ⊂ V, the application I∗X : V∗ → R ∪ {+∞} defined
by

I∗X (y) = sup
x∈X
〈y, x〉 , y ∈ V∗,

is called the support function of X .

The support function can be written as the Legendre–Fenchel transform of the indicator
function of the set X . It is therefore convex. Moreover, in the case where X is a generator of
the polar cone C◦ of some closed convex cone C ⊂ V∗, the properties of I∗X make it suitable
for measuring how far a point of V∗ is from C. Indeed, it is easy to check that I∗X is then
real-valued, continuous, and that for all points y ∈ V∗,

I∗X (y) 6 0 ⇐⇒ y ∈ C.

The following proposition demonstrates that the distance to a closed convex cone C with
respect to an arbitrary norm can be written as a support function. It is an is an extension
of Lemma 13 in Abernethy et al. (2011) to an arbitrary norm. The proof is given in
Appendix C.1.

Proposition 4 Let C be a closed convex cone in V∗, ‖ · ‖ a norm on V and ‖ · ‖∗ its dual
norm on V∗. Then,

inf
y′∈C

∥∥y′ − y∥∥∗ = I∗B∩C◦(y), y ∈ V∗,

where B is the closed unit ball for ‖ · ‖.

2.4 Blackwell’s condition

In the case of convex sets, Blackwell’s condition (Blackwell, 1956) is a characterization of
the target sets to which the Decision Maker can guarantee a convergence. We here present
the special case of convex cones, which will be used in the construction and the analysis of
the algorithms in Section 3.2.
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Definition 5 (Blackwell’s condition for convex cones) A closed convex cone C of the
payoff space V∗ is a B-set for the game (A,B, r) if

∀x ∈ C◦, ∃ a(x) ∈ A, ∀b ∈ B, 〈r(a(x), b), x〉 6 0.

Such an application a : C◦ → A is called a (A,B, r, C)-oracle.

The geometric interpretation of this condition is that for any given hyperplane containing
the target, the Decision Maker has an action which forces the payoff vector to belong the
same side of the hyperplane as the target, regardless of the Environment’s action.

In some situations, it is easier to establish the following equivalent dual condition. The
proof is given in Appendix C.2 for completeness.

Proposition 6 (Blackwell’s dual condition) We assume that A, B are convex sets of
finite dimensional vectors spaces, such that A is compact, and that the payoff function
r:A× B → V∗ is bi-affine. Then, a closed convex cone C of the payoff space V∗ is a B-set
for the game (A,B, r) if, and only if

∀b ∈ B, ∃a ∈ A, r(a, b) ∈ C.

3. A class of FTRL algorithms

We define a class of Follow the Regularized Leader algorithms (FTRL) which are transposed
from regret minimization, and which guarantee, when the target is a B-set, that the average
payoff converges to the target set, the convergence being measured in a sense that will be
made precise.

3.1 Regularizers

We first introduce regularizers functions and the notion of strong convexity needed for the
definition and the analysis of FTRL algorithms (Shalev-Shwartz, 2007, 2011; Bubeck, 2011),
which are also known as dual averaging (Nesterov, 2009) in the context of optimization.
These are classic: basic properties, proofs and important examples are recalled in Ap-
pendix B. Again, V and V∗ are finite-dimensional vectors spaces and X is a nonempty con-
vex compact subset of V. We recall that the domain domh of a function h : V → R∪{+∞}
is the set of points where it has finite values.

Definition 7 A convex function h : V → R ∪ {+∞} is a regularizer on X if it is strictly
convex, lower semicontinuous, and has X as domain.

Definition 8 Let h : V → R ∪ {+∞} be a function, ‖ · ‖ a norm on V, and K > 0. h is
K-strongly convex with respect to ‖ · ‖ if for all x, x′ ∈ V and λ ∈ [0, 1],

h(λx+ (1− λ)x′) 6 λh(x) + (1− λ)h(x′)− Kλ(1− λ)

2

∥∥x′ − x∥∥2
. (1)
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3.2 Definition and analysis of the algorithm

We now construct the FTRL algorithms for the model introduced in Section 2.1 and estab-
lish guarantees.

Let C be a B-set for the game (A,B, r) and a : C◦ → A a (A,B, r, C)-oracle. Let X ⊂ V
be a generator of C◦, h a regularizer on X , and (ηt)t>1 a positive sequence of parameters.
The associated algorithm is then defined for t > 1 as:

compute xt = arg max
x∈X

{〈
ηt−1

t−1∑
s=1

rs, x

〉
− h(x)

}
compute at = a (xt)

observe rt = r(at, bt),

where the first line is well-defined thanks to the basic properties of regularizers gathered
in Proposition 20. We prove in Appendix D that Blackwell’s original algorithm belongs to
this class.

The above definition of xt can be interpreted as the action played by a FTRL algorithm in
an online linear optimization problem with action set X and payoff vectors (rt)t>1. We state
in the following lemma the classical regret bound guaranteed by such an algorithm (Shalev-
Shwartz, 2007, 2011; Bubeck, 2011). The proof is given in Appendix C.3 for completeness.
This regret bound will then be converted in Theorem 10 into an upper bound on I∗X (rT ),
thus providing a guarantee for the approachability game. This conversion is an extension of
the scheme introduced in Abernethy et al. (2011), which gives approachability algorithms
which minimize the Euclidean distance of the average payoff to the target set. Our approach
is more general as it allows, by the choice of the generator X , to minimize a whole class of
distance-like quantities.

The conversion is here applied to FTRL algorithms, but could have been applied to any
online linear optimization algorithm.

In a recent paper (Farina et al., 2021), the authors also propose a similar extension
of Abernethy et al. (2011) which is however less general, as they only consider generators
which contain C◦ ∩ B2, where B2 is the Euclidean ball.

Lemma 9 (Regret bound) Let ∆,K,M > 0, ‖ · ‖ a norm on V, and ‖ · ‖∗ its dual norm
on V∗. We assume:

(i) maxx∈X h(x)−minx∈X h(x) 6 ∆,

(ii) h is K-strongly convex with respect to ‖ · ‖,

(iii) ‖rt‖∗ 6M for all t > 1.

Then, the choice ηt =
√

∆K/M2t (for t > 1) guarantees

∀T > 1, max
x∈X

T∑
t=1

〈rt, x〉 −
T∑
t=1

〈rt, xt〉 6 2M

√
∆T

K
.
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The following theorem provides upper bounds on I∗X (rT ) (where rT = 1
T

∑T
t=1 rt is the

average payoff) and not only the Euclidean distance from rT to C, which is a special case—
see Proposition 4. Therefore, the choice of the generator X determines the quantity that is
minimized by the algorithm. We present in Sections 4 and Appendices G and H examples
of problems where a judicious choice of generator X allows I∗X (rT ) to be equal (or close) to
the quantity the Decision Maker actually aims at minimizing and therefore yields tailored
algorithms.

Theorem 10 Let ∆,K,M > 0, ‖ · ‖ a norm on V, and ‖ · ‖∗ its dual norm on V∗. We
assume:

(i) maxx∈X h(x)−minx∈X h(x) 6 ∆,

(ii) h is K-strongly convex with respect to ‖ · ‖,

(iii) ‖r(a, b)‖∗ 6M for all a ∈ A and b ∈ B.

Then the above algorithm guarantees, with the choice ηt =
√

∆K/M2t (for t > 1), against
any sequence of actions (bt)t>1 chosen by the Environment,

∀T > 1, I∗X (rT ) 6 2M

√
∆

KT
.

Proof The regret from Lemma 9 is the following quantity:

RegT = max
x∈X

T∑
t=1

〈rt, x〉 −
T∑
t=1

〈rt, xt〉 .

The first term above can be written

max
x∈X

T∑
t=1

〈rt, x〉 = T ·max
x∈X

〈
1

T

T∑
t=1

rt, x

〉
= T · I∗X (rT ) ,

whereas the second sum is nonpositive because each term is. Indeed, by definition of the
algorithm, and because a is a (A,B, r, C)-oracle,

〈rt, xt〉 = 〈r(at, bt), xt〉 = 〈r(a(xt), bt), xt〉 6 0.

Therefore I∗X (rT ) 6 1
T RegT and the regret bound from Lemma 9 gives the result.

In Appendix E, we present a variant of the present model where the Decision Maker
can choose its actions at random. The above guarantee is transposed into guarantees in
expectation, in high-probability (using the Azuma–Hœffding inequality), and into almost-
sure convergence (using a Borel–Cantelli argument).
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4. Regret minimization with global costs

The problem of regret minimization with global costs was introduced in Even-Dar et al.
(2009). It is an adversarial online learning problem motivated by load balancing and job
scheduling, where at each step, the Decision Maker first chooses a distribution (task allo-
cation) over d machines, and then observes the cost of using each machine, which may be
different for each machine and each step. The goal of the Decision Maker is to minimize,
not the sum of the cumulative costs of using each machine, but a given function of the
vector of cumulative costs. A typical example of such global cost function is the `p norm,
which includes as special cases the sum of the costs (for p = 1), as well as the makespan i.e.
the highest cumulative cost (for p =∞). A very common approach for this type of problem
is to focus on competitive ratio (Borodin and El-Yaniv, 1998; Azar et al., 1993; Molinaro,
2017). We instead follow Even-Dar et al. (2009) and aim at minimizing the regret.

In the seminal paper by Even-Dar et al. (2009), the authors introduce a reduction of
the problem to an approachability game and obtain a regret bound of order O((log d)/

√
T )

for the `∞ cost function. For general convex cost functions, the authors present a regret
bound that reads

√
d/T ; however, this expression does not reflect the true dependency

of the bound in the number d of machines, as this bound also involves several Lipschitz
constants that depend on the cost function, and which may also depend on d, as it is
the case for `p cost functions. In a theoretical work, Rakhlin et al. (2011) proved that
the regret bound can be improved to O(

√
(log d)/T ) in the `∞ case, but no algorithm

achieving this bound was provided. Bernstein and Shimkin (2015) also studied alternative
algorithms for minimizing regret with global cost but no explicit bound was given. In a
recent paper by Liu et al. (2021), new algorithms are proposed, based on a technique for
adapting online convex optimization algorithms to approachability games (Shimkin, 2016),
and regret bounds for monotone norms cost functions (which include `p norms) are derived.
The bounds are abstract, except for the `∞ case where the algorithm achieve the best known
O(
√

(log d)/T ) bound in addition of being the first such algorithm to run in polynomial
time. Besides, more general problems than the one we consider below are studied in Azar
et al. (2014); Mannor et al. (2014) and both provide algorithms with convergence rate T−1/4.

In this section, we apply the tools introduced in Sections 2 and 3 to construct and
analyze new algorithms for this problem. Although our approach applies to general norm
cost functions (unlike Liu et al. (2021) which assumes the norm to be monotone), we focus
in Section 4.4 on `p norms (p > 1) to obtain explicit regret bounds in Theorem 14, which,
in the special case p = ∞, recovers the best known O(

√
(log d)/T ) bound. To the best of

our knowledge, these are the first regret bounds for `p norm cost functions with explicit
dependence in d and p.

We use the reduction of the problem to an approachability game from Even-Dar et al.
(2009). We then choose a generator of the polar of the target set based on a specially crafted
norm on the payoff space, which then enables us to bound the regret with cost functions
by a support function. Then, in the case of `p cost functions, the explicit regret bounds are
derived with the help of a carefully chosen regularizer.
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4.1 Problem statement

Let d > 2 be an integer and ‖ · ‖ a norm on Rd. Recall that ∆d denotes the unit simplex of
Rd and is identified with the set of probability distributions over I. For t > 1,

• the Decision Maker chooses distribution at ∈ ∆d;

• the Environment chooses loss vector `t ∈ [0, 1]d.

The Decision Maker aims at minimizing the following average regret:

RegT =

∥∥∥∥∥ 1

T

T∑
t=1

at � `t

∥∥∥∥∥− min
a∈∆d

∥∥∥∥∥ 1

T

T∑
t=1

a� `t

∥∥∥∥∥ ,
where � denotes the component-wise multiplication. At each stage t > 1, the i-th compo-
nent of vector at ◦ ` is equal to ati`i and corresponds to the cost of using machine i for a
fraction ati of the job. The regret is the difference between the actual global cost incurred
by the Decision Maker and the best possible global cost in hindsight for a static distribution
a ∈ ∆d. Important special cases include the makespan which corresponds to ‖ · ‖ = ‖ · ‖∞:
the global cost is then the highest average cost over the machines; and for ‖ · ‖ = ‖ · ‖1 the
global cost simply corresponds to the sum of the costs of all the machines, and the problem
then reduces to basic regret minimization.

4.2 Reduction to an approachability game

We recall the reduction given in (Even-Dar et al., 2009, Section 4) of the above problem to
an approachability game which fits the model from Section 2.

Consider the following action sets for the Decision Maker and the Environment respec-
tively: A = ∆d and B = [0, 1]d. Define the payoff function r : ∆d × [0, 1]d → (Rd)2 as

r(a, `) = (a� `, `), a ∈ ∆d, ` ∈ [0, 1]d,

and consider the following target set:

C =

{
(y, y′) ∈ (Rd+)2, ‖y‖ 6 min

a∈∆d

∥∥a� y′∥∥} .
The payoff space is therefore V∗ = (Rd)2.

Proposition 11 (Even-Dar et al. (2009)) C is a closed convex cone. Moreover, it is a
B-set for the game (∆d, [0, 1]d, r).

Proof We give the proof for the sake of completeness and essentially follow (Even-Dar
et al., 2009, Lemma 5 & Theorem 6). C can be written as

C =

{
(y, y′) ∈ (Rd+)2 | ‖y‖ − min

a∈∆d

∥∥a� y′∥∥ 6 0

}
,

which then appears as a closed level set of a convex function because y 7→ ‖y‖ is continuous
and convex for all norms, and because y′ 7→ mina∈∆d

‖a� y′‖ is concave on Rd+ according
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to (Rakhlin et al., 2011, Lemma 22) and continuous as the minimum of a family of continuous
functions. C is thus closed and convex, and because it is is clearly closed by multiplication
by a nonnegative scalar, it is a closed convex cone.

We can now establish that C is a B-set for the game (∆d, [0, 1]d, r) using Blackwell’s
dual condition from Proposition 6, because the payoff function r is indeed bi-affine. Let
` ∈ [0, 1]d and consider a0 = arg mina∈∆d

‖a� `‖. Then, we clearly have r(a0, `) ∈ C, which
concludes the proof.

Remark 12 (Computation of the oracle) As noted in (Even-Dar et al., 2009, Sec-
tion 4) and (Liu et al., 2021, Section 4.1), a (∆d, [0, 1]d, r, C)-oracle is given by

a(z, z′) = arg min
a∈∆d

d∑
i=1

max(0, ziai + z′i), (z, z′) ∈ C◦,

which is a linear program with O(d) variables and O(d) constraints, which can thus be
computed in polynomial time.

4.3 A special norm on the payoff space

We now define a special norm on the payoff space V∗ which will allow us to bound the regret
from above with the help of a support function, and will therefore provide the generator of
C◦ for defining the regularizer and constructing our algorithm.

We introduce the following norm ‖ · ‖V∗ whose definition is based on the norm ‖ · ‖ given
in Section 4.1: ∥∥(y, y′)

∥∥
V∗ = ‖y‖+ max

a∈∆d

∥∥a� y′∥∥ , (y, y′) ∈ V∗ = (Rd)2.

It is easy to check that ‖ · ‖V∗ is indeed a norm and we consider the associated the dual
norm, defined on V, which we denote ‖ · ‖V . We can now consider the following generator of
C◦: X = B ∩ C◦, where B denotes the closed unit ball with respect to ‖ · ‖V . The following
proposition shows that this choice of X makes the average regret RegT bounded from above
by I∗X (rT ).

Proposition 13 Let (at)t>1 and (`t)t>1 be sequences of actions chosen by the Decision
Maker and the Environment respectively. Denote for all t > 1, rt = r(at, `t) the correspond-
ing payoffs. Then for all T > 1, the regret is bounded as

RegT =

∥∥∥∥∥ 1

T

T∑
t=1

at � `t

∥∥∥∥∥− min
a∈∆d

∥∥∥∥∥ 1

T

T∑
t=1

a� `t

∥∥∥∥∥ 6 I∗B∩C◦ (rT ) ,

where B denotes the closed unit ball associated with ‖ · ‖V .

11
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Proof Let T > 1 and denote y = 1
T

∑T
t=1 at � `t and y′ = 1

T

∑T
t=1 `t. Let (ỹ, ỹ′) ∈ C be

any vector from the target set. Then, we can write

RegT = ‖y‖ − min
a∈∆d

∥∥a ◦ y′∥∥ = ‖y‖ − ‖ỹ‖+ ‖ỹ‖ − min
a∈∆d

∥∥a� y′∥∥
+ min
a∈∆d

∥∥a� ỹ′∥∥− min
a∈∆d

∥∥a� ỹ′∥∥
6
∥∥y − y′∥∥+ min

a∈∆d

∥∥a� ỹ′∥∥− min
a∈∆d

∥∥a� y′∥∥
=
∥∥y′ − y∥∥+ max

a∈∆d

min
a′∈∆d

{∥∥a′ � ỹ′∥∥− ∥∥a� y′∥∥}
6
∥∥y − y′∥∥+ max

a∈∆d

∥∥a� (ỹ′ − y′)
∥∥ =

∥∥(y, y′)− (ỹ, ỹ′)
∥∥
V∗ ,

where the first inequality follows from the reverse triangle inequality and the definition
of C and the third inequality from removing the minimum over a′ ∈ ∆d and using the
reverse triangle inequality again. Then, taking the minimum over (ỹ, ỹ′) ∈ C and applying
Proposition 4 gives the result:

RegT 6 min
(ỹ,ỹ′)∈C

∥∥(y, y′)− (ỹ, ỹ′)
∥∥
V∗ = I∗B∩C◦(y, y

′) = I∗B∩C◦

(
1

T

T∑
t=1

r(at, `t)

)
.

4.4 An algorithm for `p global cost functions

We define and analyze an algorithm based on a carefully chosen regularizer which takes
advantage of the properties of `p norms. The construction for general norms in given in
Appendix F. We consider on X = B ∩ C◦ the following regularizer:

h(z, z′) =


A

2
‖z‖22 +

1

2

∥∥z′∥∥2

q′
if (z, z′) ∈ B ∩ C◦,

+∞ otherwise.

where q′ ∈ (1, 2] and A > 0 are to be chosen later. The algorithm associated with a positive
sequence (ηt)t>1 and an oracle a from Remark 12 writes, for t > 1,

compute xt = arg max
x∈X

{〈
ηt−1

t−1∑
s=1

rs, x

〉
− h(x)

}

compute at = arg min
a∈∆d

d∑
i=1

max(0, ztiai + z′ti), where (zt, z
′
t) = xt,

observe rt := r(at, bt).

12



Refined approachability algorithms

Theorem 14 Let p ∈ (1,+∞] and assume ‖ · ‖ = ‖ · ‖p. Then, the above algorithm with

A = min
{
d1−2/p, 1

}
, q′ = 1 + (2 log d− 1)−1 and coefficients

ηt =
1

2
√
tmax

{
d2/p−1, e(2 log d− 1)

} , t > 1,

guarantees, against any sequence (`t)t>1 in [0, 1]d chosen by the Environment,

∀T > 1, RegT 6
4√
T

max
{
d1/p−1/2,

√
2e log d

}
. (2)

Remark 15 In the special case p = ∞, the above bound recovers the best known bound
of order O(

√
(log d)/T ) from Rakhlin et al. (2011). For 1 < p < +∞, we obtain, to the

best of our knowledge, the first bounds with explicit dependence in d and p. Surprisingly,
the same O(

√
(log d)/T ) bound with logarithmic dependence in the dimension d also holds

for all p > 2. We were unable to find in the literature any lower bound for a given cost
function3, and standard techniques from regret minimization, which involves a randomized
Environment which cancels the influence of the Decision Maker on its own reward, do
not seem to work at all, because of the particular form of the quantity to be minimized.
Developing lower bound techniques for this kind of online learning problems appears to be
an interesting and challenging research direction.

Proof We aim at applying Theorem 10. Let us first establish an upper bound on the
difference between the highest and lowest values of h. Note that maxa∈∆d

‖a� y′‖p = ‖y′‖∞
for all y′ ∈ Rd. Indeed, by denoting e1, . . . , ed the canonical basis of Rd, and using the fact
that ‖ · ‖p 6 ‖ · ‖1,

∥∥y′∥∥∞ = max
16i6d

∣∣y′i∣∣ = max
a∈{e1,...,ed}

∥∥a� y′∥∥
p
6 max

a∈∆d

∥∥a� y′∥∥
p

6 max
a∈∆d

∥∥a� y′∥∥
1

= max
a∈∆d

d∑
i=1

ai
∣∣y′i∣∣ =

∥∥y′∥∥∞ .
Therefore, ‖(y, y′)‖V∗ = ‖y‖p + ‖y′‖∞ for all (y, y′) ∈ V∗. Using a standard argument, we
can prove that its dual norm writes

∥∥(z, z′)
∥∥
V = max

{
‖z‖q ,

∥∥z′∥∥
1

}
, (z, z′) ∈ V,

where q = (1 − 1/p)−1. Therefore, B =
{

(z, z′) ∈ V, ‖z‖q 6 1 and ‖z′‖1 6 1
}

. Besides,

because 0 ∈ X , it holds that minX h = 0. Therefore, using the standard inequality between

3. Even-Dar et al. (2009) gives a lower bound, but is of a different kind, as the cost function depends on
the time horizon.
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`p norms that can be written ‖ · ‖q′ 6 dmax(1/q′−1/q,0) ‖ · ‖q,

max
X

h−min
X

h 6 max
(z,z′)∈B

h(z, z′) = max
‖z‖q61

‖z′‖161

{
A

2
‖z‖22 +

1

2

∥∥z′∥∥2

q′

}

6 max
‖z‖q61

‖z′‖161

{
A

2
dmax(1−2/q,0) ‖z‖2q +

1

2

∥∥z′∥∥2

1

}

=
1

2
(Admax(1−2/q,0) + 1) =

1

2

(
Admax(2/p−1,0) + 1

)
.

(3)

Let us introduce the following norm on the payoff space V∗, which is different from the
norm ‖ · ‖V∗ involved in Proposition 13:∥∥(y, y′)

∥∥
(V∗) = ‖y‖1 +

∥∥y′∥∥∞ .
We can see that the vector-valued payoffs are bounded by 2 with respect to this norm.
Indeed, for all a ∈ ∆d and ` ∈ [0, 1]d,

‖r(a, `)‖(V∗) = ‖a� `‖1 + ‖`‖∞ 6 2.

Denote ‖ · ‖(V) the dual norm of ‖ · ‖(V∗), which has the following expression: ‖(z, z′)‖(V) =

max(‖z‖∞ , ‖z′‖1) for all (z, z′) ∈ V.

Let us now prove for regularizer h a strong convexity property with respect to ‖ · ‖V . It
can be practical to write h as

h(z, z′) = h1(z) + h2(z′) + IX (z, z′), (z, z′) ∈ V,

where h1(z) = A
2 ‖z‖

2
2 and h2(z) = 1

2 ‖z
′‖2q′ . We note that according to Proposition 24, h1

is A-strongly convex with respect to ‖ · ‖2 and h2 is (q′ − 1)d2(1/q′−1)-strongly convex with
respect to ‖ · ‖1. For all (z, z′), (z̃, z̃′) ∈ V, and λ ∈ [0, 1], denote zλ = λz + (1 − λ)z̃ and
z′λ = λz′+ (1−λ)z̃′. Then, using the strong convexity properties of h1 and h2, and the fact
that ‖ · ‖2 > ‖ · ‖∞,

λh(z, z′) + (1− λ)h(z̃, z̃′) > λ(h1(z) + h2(z′)) + (1− λ)(h1(z̃) + h2(z̃′))

= λh1(z) + (1− λ)h1(z̃) + λh2(z̃) + (1− λ)h2(z̃′)

> h1(zλ) +
Aλ(1− λ)

2
‖z̃ − z‖22 + h2(z′λ)

+
(q′ − 1)d2(1/q′−1)λ(1− λ)

2

∥∥z̃′ − z′∥∥2

1

> h(zλ, z
′
λ)

+ min
{
A, (q′ − 1)d2(1/q′−1)

} λ(1− λ)

2

∥∥(z̃, z̃′)− (z, z′)
∥∥2

(V)
.

Therefore, h is min
{
A, (q′ − 1)d2(1/q′−1)

}
-strongly convex with respect to ‖ · ‖(V).
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Applying Theorem 10 with

M = 2, ∆ =
1

2
(Admax(2/p−1,0) + 1), and K = min

{
A, (q′ − 1)d2/q′−2

}
,

together with Proposition 13 gives

RegT 6
4√
2

√
Admax(2/p−1,0) + 1

T min
{
A, (q′ − 1)d2/q′−2

} =
4√
T

max
{
d1/p−1/2,

√
e(2 log d− 1)

}
,

where the equality follows from the choice A = min
{
d1−2/p, 1

}
and q′ = 1 + (2 log d− 1)−1.

Hence the result.
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•0

A◦

A◦◦

A

Figure 1: The polar cone of a set A and the bipolar

Appendix A. Definitions and properties about closed convex cones

We recall the definitions of a closed convex cone, of the polar cone, and gather a few
properties. W will be a finite-dimensional vector space and W∗ its dual.

Definition 16 A nonempty subset C of W is a closed convex cone if it is closed and if for
all y, y′ ∈ C and λ ∈ R+, we have y + y′ ∈ C and λy ∈ C.

Definition 17 Let A be a subset of W. The polar cone of A is a subset of the dual space
W∗ defined by

A◦ = {x ∈ W∗ , ∀y ∈ A, 〈y, x〉 6 0} .

The following proposition is an immediate consequence of the bipolar theorem—see
e.g.Theorem 3.3.14 in Borwein and Lewis (2010).

Proposition 18 Let A be a subset of W.

(i) A◦◦ is the smallest closed convex cone containing A.

(ii) If A is closed and convex, then A◦◦ = R+A.

(iii) If A is a closed convex cone, then A◦◦ = A.

The following statement is a simpler version of Moreau’s decomposition theorem (Moreau,
1962).

Proposition 19 Assume that W is an Euclidean space. We identify W and its dual space
W∗. Let C be a closed convex cone in W, and y ∈ W. Then, y − projC y = projC◦ y, where
proj denotes the Euclidean projection. In particular, y − projC y belongs to C◦.

A.1 Proof of Proposition 2

(i) is easy. (ii) holds because B ∩ C is indeed nonempty, convex as the intersection of two
convex sets, and for any point x ∈ C \ {0}, x/‖x‖ belongs to B ∩ C, so that R+(B ∩ C) = C.
(iii) is a consequence of Proposition 18.
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y − projC y

•0

•
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•
projC y

• projC◦ y
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Figure 2: Illustration of Proposition 19

Appendix B. Properties of regularizers

Proposition 20 Let h be a regularizer on X . Its Legendre–Fenchel transform, defined by

h∗(y) = sup
x∈V
{〈y, x〉 − h(x)} , y ∈ V∗,

satisfies the following properties.

(i) domh∗ = V∗;

(ii) h∗ is differentiable on V∗;

(iii) For all y ∈ V∗, ∇h∗(y) = arg maxx∈X {〈y, x〉 − h(x)}. In particular, ∇h∗ takes values
in X .

Proof (i) Let w ∈ V∗. The function x 7 −→ 〈w, x〉 − h(x) equals −∞ outside of X , and is
upper semicontinuous on X which is compact. It thus has a maximum and h∗(w) < +∞.

(ii,iii) Moreover, this maximum is attained at a unique point because h is strictly convex.
Besides, for x ∈ V and w ∈ V∗

x ∈ ∂h∗(w) ⇐⇒ w ∈ ∂h(x) ⇐⇒ x ∈ arg max
x′∈X

{〈
w, x′

〉
− h(x′)

}
,

in other words, ∂h∗(w) = arg maxx′∈X {〈w, x′〉 − h(x′)}. This argmax is a singleton as we
noticed. It means that h∗ is differentiable.

Recall that ∆d denotes the unit simplex of Rd: ∆d =
{
x ∈ Rd+

∣∣∣∑d
i=1 xi = 1

}
.

Definition 21 (Entropic regularizer) The entropic regularizer hent : Rd → R ∪ {+∞}
is defined as

hent(x) =

{∑d
i=1 xi log xi if x ∈ ∆d

+∞ otherwise,

where xi log xi = 0 when xi = 0.
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Proposition 22 (i) hent is a regularizer on ∆d;

(ii) ∇h∗ent(y) =

(
exp yi∑d
j=1 exp yj

)
16j6d

, for all y ∈ Rd;

(iii) maxx∈∆d
hent(x)−minx∈∆d

hent(x) = log d;

(iv) hent is 1-strongly convex with respect to ‖ · ‖1.

Proof (i) is immediate, and (ii) is classic—see e.g. (Boyd and Vandenberghe, 2004, Example
2.25).

(iii) hent being convex, its maximum on ∆d is attained at one of the extreme points.
At each extreme point, the value of hent is zero. Therefore, max∆d

hent = 0. As for
the minimum, hent being convex and symmetric with respect to the components xi, its
minimum is attained at the centroid (1/d, . . . , 1/d) of the simplex ∆d, where its value is
− log d. Therefore, min∆d

hent = − log d and max∆d
hent −min∆d

hent = log d.

(iv) Consider F : Rd → R ∪ {+∞} defined by

F (x) =

{∑d
i=1(xi log xi − xi) + 1 if x ∈ Rd+

+∞ otherwise.

Let us prove that F is 1-strongly convex with respect to ‖ · ‖1. By definition, the domain of
F is Rd+. It is differentiable on the interior of the domain (R∗+)d and ∇F (x) = (log xi)16i6d

for x ∈ (R∗+)d. Therefore, the norm of ∇F (x) goes to +∞ when x converges to a bound-
ary point of Rd+. (Rockafellar, 1970, Theorem 26.1) then assures that the subdifferential
∂F (x) is empty as soon as x 6∈ (R∗+)d. Therefore, the characterization of strong convexity
from (Shalev-Shwartz, 2007, Lemma 14), which we aim at proving, can be written〈

∇F (x′)−∇F (x), x′ − x
〉
>
∥∥x′ − x∥∥2

1
, x, x′ ∈ (R∗+)d. (4)

Let x, x′ ∈ (R∗+)d.

〈
∇F (x′)−∇F (x), x′ − x

〉
=

d∑
i=1

log
x′i
xi

(x′i − xi).

A simple study of function shows that (s−1) log s−2(s−1)2/(s+1) > 0 for s > 0. Applied
with s = x′i/xi, this gives

d∑
i=1

log
x′i
xi

(x′i − xi) >
∥∥x′ − x∥∥2

1
,

and (4) is proved. F is therefore 1-strongly convex with respect to ‖ · ‖1 and so is hent

thanks to Lemma 25.
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Definition 23 (`p regularizer) For p ∈ (1, 2] and a nonempty convex compact subset X
of Rd, the associated `p regularizer is defined as

hp(x) =

{
1
2 ‖x‖

2
p if x ∈ X

+∞ otherwise.

Proposition 24 Let p ∈ (1, 2].

(i) hp is a regularizer on X ;

(ii) hp is (p− 1)d2(1/p−1)-strongly convex with respect to ‖ · ‖1;

(iii) h2 is 1-strongly convex with respect to ‖ · ‖2;

(iv) ∇h∗2(y) = projX (y) for all y ∈ Rd where projX denotes the Euclidean projection onto
X .

Proof (i) Since p > 1, ‖ · ‖p is a norm and is therefore convex. hp then clearly is a regularizer

on X . (ii,iii) We consider the function F (x) = 1
2 ‖x‖

2
p defined on Rd which is (p−1)-strongly

convex with respect to ‖ · ‖p—see e.g. Bubeck (2011) or (Kakade et al., 2012, Corollary 10).
Then, so is hp thanks to Lemma 25. Substituting p = 2 gives (iii). The strong convexity
with respect to ‖ · ‖1 follows from the standard comparison ‖ · ‖p > d1/q−1 ‖ · ‖1 in Rd. (iv)

For all y ∈ Rd, using property (iii) from Proposition 20,

∇h∗2(y) = arg max
x∈X

{
〈y, x〉 − 1

2
‖x‖22

}
= arg min

x∈X

{
1

2
‖x‖22 − 〈y, x〉+

1

2
‖y‖22

}
= arg min

x∈X
‖y − x‖22 = projX (y).

Lemma 25 Let ‖ · ‖ a norm on V, K > 0 and h, F : V → R∪ {+∞} two convex functions
such that for all x ∈ V,

h(x) = F (x) or h(x) = +∞.

Then, if F is K-strongly convex with respect to ‖ · ‖, so is h.

Proof Note that for all x ∈ V, F (x) 6 h(x). Let us prove that h satisfies the condition
from Definition 8. Let x, x′ ∈ V, λ ∈ [0, 1] and denote x′′ = λx + (1 − λ)x′. Let us first
assume that h(x′′) = +∞. By convexity of h, either h(x) or h(x′) is equal to +∞, and the
right-hand side of (1) is equal to +∞. Inequality (1) therefore holds. If h(x′′) is finite,

h(x′′) = F (x′′) 6 λF (x) + (1− λ)F (x′)− Kλ(1− λ)

2

∥∥x′ − x∥∥2

6 λh(x) + (1− λ)h(x′)− Kλ(1− λ)

2

∥∥x′ − x∥∥2
,

and (1) is proved.
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Appendix C. Various postponed proofs

C.1 Proof of Proposition 4

Let y ∈ V∗. Using the definition of the dual norm and Sion’s minimax theorem,

inf
y′∈C

∥∥y′ − y∥∥∗ = inf
y′∈C

sup
x∈B

〈
y − y′, x

〉
= sup

x∈B
inf
y′∈C

{
〈y, x〉 −

〈
y′, x

〉}
.

Suppose x does not belong to C◦. Then, there exists y′0 ∈ C such that 〈y′0, x〉 > 0. C being
closed by multiplication by R+, the quantity 〈y′, x〉 (with y′ ∈ C) can be made arbitrarily
large by selecting y′ = λy′0 and letting λ → +∞, and thus the above infimum is equal to
−∞. Therefore, we can restrict the above supremum to B ∩ C◦. We thus have

inf
y′∈C

∥∥y′ − y∥∥∗ = sup
x∈B∩C◦

{
〈y, x〉 − sup

y′∈C

〈
y′, x

〉}
.

The above embedded supremum is zero because for x ∈ B ∩ C◦ and y′ ∈ C we obviously
have 〈y′, x〉 6 0, and 0 is attained with y′ = 0. Finally,

inf
y′∈C

∥∥y′ − y∥∥∗ = sup
x∈B∩C◦

〈y, x〉 = I∗B∩C◦(y).

C.2 Proof of Proposition 6

Blackwell’s condition can be written

max
x∈C◦

min
a∈A

max
b∈B
〈r(a, b), x〉 6 0.

Since the above dot product is affine in each of the variables a, b and x, by applying Sion’s
minimax theorem twice, the above is equivalent to

max
b∈B

min
a∈A

max
x∈C◦
〈r(a, b), x〉 6 0,

which is exactly the dual condition.

C.3 Proof of Lemma 9

Assume that the sequence of parameters (ηt)t>1 is nonincreasing. Denote Yt =
∑t

s=1 rt for
t > 1 and η0 = η1. Let x ∈ X . Using Fenchel’s inequality, we write

〈YT , x〉 =
〈ηTYT , x〉

ηT
6
h∗(ηTYT )

ηT
+
h(x)

ηT

6
h∗(0)

η0
+

T∑
t=1

(
h∗(ηtYt)

ηt
− h∗(ηt−1Yt−1)

ηt−1

)
+

maxx∈X h(x)

ηT
.

(5)

Let us bound h∗(ηtYt)/ηt from above. For all x ∈ X we have

〈ηtYt, x〉 − h(x)

ηt
=
〈ηt−1Yt, x〉 − h(x)

ηt−1
− h(x)

(
1

ηt
− 1

ηt−1

)
.
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The maximum over x ∈ X of the above left-hand side gives h∗(ηtYt)/ηt. As for the right-
hand side, let us take the maximum over x ∈ X for each of the two terms separately. This
gives

h∗(ηtYt)

ηt
6 max

x∈X

{
〈ηt−1Yt, x〉 − h(x)

ηt−1

}
+ max

x∈X

{
−h(x)

(
1

ηt
− 1

ηt−1

)}
=
h∗(ηt−1Yt)

ηt−1
+

(
min
x∈X

h(x)

)(
1

ηt−1
− 1

ηt

)
,

where we used the fact that the sequence (ηt)t>0 is nonincreasing. Injecting this inequality
in (5), we get

〈YT , x〉 6
h∗(0)

η0
+

T∑
t=1

h∗(ηt−1Yt)− h∗(ηt−1Yt−1)

ηt−1

+

(
min
x∈X

h(x)

) T∑
t=1

(
1

ηt−1
− 1

ηt

)
+

maxx∈X h(x)

ηT
.

We now make the quantity

Dh∗(ηt−1Yt, ηt−1Yt−1) := h∗(ηt−1Yt)− h∗(ηt−1Yt−1)− 〈∇h∗(ηt−1Yt−1), ηt−1Yt − ηt−1Yt−1〉

(called a Bregman divergence) appear in the first above sum by by subtracting

〈ηt−1Yt − ηt−1Yt−1,∇h∗(ηt−1Yt−1)〉
ηt−1

= 〈rt, xt〉 .

Therefore,

〈YT , x〉 6
h∗(0)

η0
+

T∑
t=1

Dh∗(ηt−1Yt, ηt−1Yt−1)

ηt−1
+

T∑
t=1

〈rt, xt〉

− minx∈X h(x)

ηT
+

minx∈X h(x)

η0
+

maxx∈X h(x)

ηT
.

Since h∗(0) = −minx∈X h(x), we get

RegT = max
x∈X
〈YT , x〉 −

T∑
t=1

〈rt, xt〉

6
maxX h−minx∈X h(x)

ηT
+

T∑
t=1

Dh∗(ηt−1Yt, ηt−1Yt−1)

ηt−1

6
∆

ηT
+

T∑
t=1

Dh∗(ηt−1Yt, ηt−1Yt−1)

ηt−1
.

The strong convexity of the regularizer h let us bound the above Bregman divergences
as follows—see e.g. (Shalev-Shwartz, 2007, Lemma 13):

Dh∗(ηt−1Yt, ηt−1Yt−1) 6
1

2K
‖ηt−1Yt − ηt−1Yt−1‖2∗ =

η2
t−1

2K
‖rt‖2∗ , t > 1.
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Then, set η =
√

∆/M2 so that ηt = η t−1/2 for t > 1, which is indeed a nonincreasing
sequence. The regret bound then becomes

∆
√
T

η
+
M2

2K

T∑
t=1

ηt−1.

We bound the above sum as follows. Since η0 = η1 = η,

T∑
t=1

ηt−1 = η

(
2 +

T−1∑
t=2

1√
t

)
6 η

(∫ 1

0

1√
s

ds+

∫ T−1

1

1√
s

ds

)
= η

∫ T−1

0

1√
s

ds = 2η
√
T − 1 6 2η

√
T .

Injecting the expression of η and simplifying gives the result:

RegT 6 2M

√
T∆

K
.

Appendix D. Blackwell’s algorithm

We recall the definition of Blackwell’s algorithm (Blackwell, 1956) and show that it belongs
to the family of FTRL algorithms defined in Section 3.2. In the related work by Shimkin
(2016), it is demonstrated that Blackwell’s algorithm can also be interpreted as a Follow the
Leader algorithm, as well as a FTRL algorithm, in the context of online convex optimization
algorithms converted into algorithms for the approachability of bounded convex target sets.

We consider V = V∗ = Rd equipped with its Euclidean structure. Let C ⊂ Rd be a
closed convex cone which we assume to be a B-set for the game (A,B, r) and a : C◦ → X a
(A,B, r, C)-oracle. It follows from Definition 5 that it is always possible to choose an oracle
a that satisfies

x = λx′ for some λ > 0 =⇒ a(x) = a(x′), x, x′ ∈ C◦. (6)

We assume in this section that oracle a satisfies this property.
Blackwell’s algorithm (Blackwell, 1954) is defined by

at = a

(
rt−1 − proj

C
rt−1

)
, t > 1,

where projC denotes the Euclidean projection onto C. It can be rewritten, using Proposi-
tion 19, as

at = a

(
proj
C◦

rt−1

)
, t > 1.

Theorem 26 Let X = C◦ ∩ B where B denotes the closed Euclidean ball, and h2 the Eu-
clidean regularizer on X . Blackwell’s algorithm and the FTRL algorithm associated with h2

and any sequence of positive parameters (ηt)t>1 coincide. In other words,

a

(
rt−1 − proj

C
rt−1

)
= a

(
∇h∗2

(
ηt−1

t−1∑
s=1

rs

))
, t > 1.
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• projC◦ w = projC◦∩B w

•
w

C◦ ∩ B
C◦

C

• 0

Figure 3: In the case where ‖projC◦ w‖2 6 1, we have projC◦ w = projC◦∩B w.

Proof Recall that the Euclidean projection projE w of a point w on a closed convex set E
is the only point in E satisfying

∀w′ ∈ E ,
〈
w − proj

E
w,w′ − proj

E
w

〉
6 0. (7)

This characterization will be needed later.

Remember from Proposition 24 that ∇h∗2 = projC◦∩B. Since oracle a satisfies property
(6), it is enough to prove that for all u ∈ Rd and µ > 0,

proj
C◦

u ∈ R∗+ proj
C◦∩B

(µu).

Besides, C◦ being a closed convex cone, projC◦(µu) = µprojC◦ u. It is therefore equivalent
to prove that for all w ∈ Rd,

proj
C◦

w ∈ R∗+ proj
C◦∩B

w. (8)

Let w ∈ Rd. If ‖projC◦ w‖2 6 1, then obviously projC◦ w = projC◦∩B w as shown in Figure 3
and (8) is true. We now assume that ‖projC◦ w‖2 > 1. We define

w0 :=
projC◦ w

‖projC◦ w‖2
.

Using characterization (7), we aim at proving that w0 = projC◦∩B w (see Figure 4), which
would prove (8). First, w0 belongs to C◦ ∩ B by definition. Let w′ ∈ C◦ ∩ B. For short,
denote w1 = projC◦ w.〈

w − w0, w
′ − w0

〉
=
〈
w − w1 + w1 − w0, w

′ − w0

〉
=
〈
w − w1, w

′ − w0

〉
+
〈
w1 − w0, w

′ − w0

〉
=

1

‖w1‖
〈
w − w1, ‖w1‖w′ − w1

〉
+
〈
w1 − w0, w

′ − w0

〉
.
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• w1 = projC◦ w

•w
•
w0 = projC◦∩B w

C◦ ∩ B
C◦

C

• 0

Figure 4: In the case where ‖projC◦ w‖2 > 1, we have w0 = projC◦∩B w.

The first dot product above is nonpositive by characterization of w1 = projC◦ w, because
‖w1‖w′ ∈ C◦. Let us prove that the second dot product is also nonpositive. For all
w′′ ∈ C◦ ∩ B, ∥∥w1 − w′′

∥∥ >
∣∣‖w1‖ −

∥∥w′′∥∥∣∣ > ‖w1‖ − 1 = ‖w1 − w0‖ ,

which means that w0 = projC◦∩B w1. Thus, 〈w1 − w0, w
′ − w0〉 6 0. Therefore,〈

w − w0, w
′ − w0

〉
6 0

and (8) is proved.

We can now recover via Theorem 10 the classic guarantee for Blackwell’s algorithm in
the case where the vector payoffs are bounded with respect to the Euclidean norm.

Theorem 27 Let M > 0. Assume that ‖r(a, b)‖2 6 M for all a ∈ A and b ∈ B. Then,
against any sequence of actions (bt)t>1 chosen by the Environment, Blackwell’s algorithm
guarantees:

∀T > 1, d2 (rT , C) 6
2
√

2M√
T

,

where d2 denotes the Euclidean distance.

Proof With notation from Theorem 26, we have maxx∈X h2(x) − minx∈X h2(x) = 1/2,
and h2 is 1-strongly convex with respect to ‖ · ‖2 by Proposition 24. According to Theo-
rem 26, Blackwell’s algorithm corresponds to the FTRL algorithm associated with h2 and
any sequence of parameters (ηt)t>1. We can therefore apply Theorem 10 with ∆ = 1/2 and
K = 1, together with Proposition 4 and the result follows.
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Appendix E. Model with mixed actions

We here present a variant of the model from Section 2.1, in which the decision maker has a
finite set of pure actions I = {1, . . . , d} from which he is allowed to choose at random. We
define the corresponding FTRL algorithms, and state guarantees in expectation, with high

probability, and almost-surely. Let the simplex ∆d =
{
x ∈ Rd+,

∑d
i=1 xi = 1

}
be the set of

mixed actions (which we identify to the set of probability distributions over I), B a set of
actions for the Environment, and r: I × B → Rd a payoff function. We linearly extend the
payoff function r in its first variable:

r(a, b) := Ei∼a [r(a, b)] =

d∑
i=1

air(i, b), a ∈ ∆d, b ∈ B.

The game is played as follows. At time t > 1,

• the Decision Maker chooses mixed action at ∈ ∆d;

• the Environment chooses action bt ∈ B;

• the Decision Maker draws pure action it ∼ at;

• the Decision Maker observes vector payoff rt := r(it, bt).

Denote (Ft)t>1 the filtration where Ft is generated by

(a1, b1, i1, . . . , at−1, bt−1, it−1, at, bt).

An algorithm for the Decision Maker is a sequence of maps σ = (σt)t>1 where σt : (∆d ×
I × V∗)t−1 → ∆d so that action at is given by

at = σt(a1, i1, r1, . . . , at−1, it−1, rt−1), t > 1.

Regarding the Environment, we assume that its choice of action bt does not depend on it, so
that E [r(it, bt) | Ft] = Ei∼at [r(i, bt)] = r(at, bt). In this model, Blackwell’s condition writes
as follows.

Definition 28 (Blackwell’s condition for games with mixed actions) A closed con-
vex cone C of the payoff space V∗ is a B-set for the game with mixed actions (I,B, r) if

∀x ∈ C◦, ∃ a(x) ∈ ∆d, ∀b ∈ B, 〈r(a(x), b), x〉 6 0.

Such an application a : C◦ → ∆d is called a (I,B, r, C)-oracle.

We can now define the FTRL algorithms similarly as in Section 3.2. Let C be a closed
convex cone of the payoff space V∗ which is assumed to be a B-set for the game with mixed
actions (I,B, r), a : C◦ → ∆d a (I,B, r, C)-oracle, X a generator of C◦, h a regularizer on
X , and (ηt)t>1 a positive sequence. Then, the corresponding algorithm writes, for t > 1,

compute xt = ∇h∗
(
ηt−1

t−1∑
s=1

rs

)
compute at = a(xt)

draw it ∼ at
observe rt = r(it, bt).
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Theorem 29 Let ∆,M,K > 0, ‖ · ‖ be a norm on V, and ‖ · ‖∗ its dual norm on V∗. We
assume:

(i) maxx∈X h(x)−minx∈X h(x) 6 ∆,

(ii) h is K-strongly convex with respect to ‖ · ‖,

(iii) ‖r(a, b)‖∗ 6M for all a ∈ ∆d and b ∈ B.

Then the above algorithm guarantees, with the choice ηt =
√

∆K/M2t (for t > 1), against
any sequence of actions (bt)t>1 chosen by the Environment:

∀T > 1, E [I∗X (rT )] 6 2M

√
∆

KT
.

Let δ ∈ (0, 1). For all T > 1, we have with probability higher than 1− δ,

I∗X (rT ) 6
M√
T

(
2

√
∆

K
+ ‖X‖

√
2 log(1/δ)

)
.

Almost-surely,
lim sup
T→+∞

I∗X (rT ) 6 0.

Proof Like in the proof of Theorem 10, Lemma 9 gives:

I∗X (rT ) 6
1

T

(
T∑
t=1

〈rt, xt〉+ 2M

√
∆T

K

)
. (9)

Consider Xt = 〈rt, xt〉. Then, (Xt)t>1 is a sequence of super-martingale differences with
respect to filtration (Ft)t>0:

E [〈rt, xt〉 | Ft] = E [〈r(it, bt), xt〉 | Ft] = 〈E [r(it, bt) | Ft] , xt〉 = 〈r(at, bt), xt〉 6 0,

because x is a (I,B, r, C)-oracle. Therefore,

E

[
T∑
t=1

〈rt, xt〉

]
= E

[
T∑
t=1

E [〈rt, xt〉 | Ft]

]
6 0.

Injecting this in Equation (9) gives the guarantee in expectation:

E [I∗X (rT )] 6 2M

√
∆

KT
.

We now turn to the high probability bound. Let δ ∈ (0, 1). From Equation (9), we deduce
that

I∗X (rT ) 6 2M

√
∆

KT
+

1

T

T∑
t=1

Xt.
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Since we have |Xt| = |〈r(it, bt), xt〉| 6 ‖r(it, bt)‖∗ ‖xt‖ 6 M ‖X‖ for all t > 1, the Azuma–
Hoeffding inequality assures that with probability higher than 1− δ,

1

T

T∑
t=1

Xt 6M ‖X‖
√

2 log(1/δ)

T

and thus

I∗X (rT ) 6
M√
T

(
2

√
∆

K
+ ‖X‖

√
2 log(1/δ)

)
.

The almost-sure guarantee follows from a standard Borel–Cantelli argument.

Appendix F. An algorithm for arbitrary norm global cost

Let q′ ∈ (1, 2]. We consider on X = B ∩ C◦ the `q′ regularizer introduced in Section 3.1:

hq′(x) =

{
1
2 ‖x‖

2
q′ if x ∈ X

+∞ otherwise,
, x ∈ V.

Let (ηt)t>1 a positive sequence, and a the oracle from Remark 12. The algorithm then
writes, for t > 1,

compute xt = ∇h∗q′

(
ηt−1

t−1∑
s=1

rs

)

compute at = arg min
a∈∆d

d∑
i=1

max(0, ztiai + z′ti), where (zt, z
′
t) = xt,

observe rt := r(at, bt).

Theorem 30 (Regret bound for an arbitrary norm cost function) Let q′ ∈ (1, 2]
and ∆ > 0 such that maxx∈X

1
2 ‖x‖

2
q′ 6 ∆. Then, the above algorithm with coefficients

ηt = d1/q′−1

√
∆(q′ − 1)

t
, t > 1,

guarantees, against any sequence (`t)t>1 in [0, 1]d chosen by the Environment,

∀T > 1, RegT 6 2 d1−1/q′

√
∆

(q′ − 1)T
.

Proof We aim at applying Theorem 10. According to Proposition 24, because q′ ∈ (1, 2],
regularizer hq′ is (q′−1)/d2(1−1/q′) strongly-convex with respect to ‖ · ‖1. Besides, the payoff
function r is bounded by 1 with respect to ‖ · ‖∞. Indeed, for all a ∈ ∆d and ` ∈ [0, 1]d,

‖r(a, `)‖∞ = ‖(a� `, `)‖∞ = max (‖a� `‖∞ , ‖`‖∞) 6 1.
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And because 0 ∈ X , we have the difference between the highest and the lowest values of hq′

on its domain bounded from above as

max
x∈X

hq′(x)−min
x∈X

hq′(x) = max
x∈X

1

2
‖x‖2q′ −min

x∈X

1

2
‖x‖2q′ = max

x∈X
‖x‖2q′ 6 ∆.

Therefore, applying Theorem 10 with K = (q′ − 1)/d2(1−1/q′), M = 1 and norm ‖ · ‖1, to-
gether with Proposition 13, gives the result.

Appendix G. Online combinatorial optimization

We illustrate the flexibility of our general framework by giving an alternative construction
of an optimal algorithm in the the online combinatorial optimization problem with full in-
formation feedback. It is a regret minimization problem in which the actions and the payoffs
have a particular structure. Numerous papers were written on the topic, including Gentile
and Warmuth (1998); Kivinen and Warmuth (2001); Grove et al. (2001); Takimoto and
Warmuth (2003); Kalai and Vempala (2005); Warmuth and Kuzmin (2008); Helmbold and
Warmuth (2009); Hazan et al. (2010). A minimax optimal algorithm was given in Koolen
et al. (2010). We give below an alternative construction of such an algorithm.

Let d,m > 1 be integers. Let I = {1, . . . , d} be a finite set. The set of pure actions of
the Decision Maker is a set P which contains subsets of I of cardinality m. Denote ∆(P )
the unit simplex in RP and let it be the set of mixed actions by identifying it to the set of
probability distributions over P . The game is played as follows. At time t > 1, the Decision
Maker

• chooses mixed action at ∈ ∆(P );

• draws pure action pt ∼ at;

• observes payoff vector vt ∈ Rd;

• gets payoff
∑

i∈pt vti.

We assume that the choice by the Environment of payoff vector vt ∈ Rd does not depend
on pure action pt. The quantity to minimize is the following regret:

RegT = max
p∈P

T∑
t=1

∑
i∈p

vti −
T∑
t=1

∑
i∈pt

vti.

This problem can be seen as a basic regret minimization problem with pure action set P ,
and payoff vectors (

∑
i∈p vi)p∈P which belong to [−m,m]P as soon as we assume v ∈ [−1, 1]d.

The classical Exponential Weights Algorithm (Cesa-Bianchi, 1997) would then guarantee a
regret bound of order m

√
T log |P |. However, our goal is to take advantage of the structure

of the problem and to construct a algorithm which guarantees a significantly tighter regret
bound, of order m

√
T log(d/m), which is known to be minimax optimal (Koolen et al.,

2010). To do so, we reduce this problem to a well-chosen approachability game (with mixed
actions, as in Section E), which we now present.
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Let A be the d × |P | matrix defined by A = (1{i∈p}) i∈I
p∈P

, and for each p ∈ P , let

ep = (1{i∈p})i∈I ∈ Rd. Let P (resp. ∆(P )) be the set of pure (resp. mixed) actions for

the Decision Maker, B = [−1, 1]d the set of actions for the Environment, and consider the
following payoff function:

r(p, v) = v − 〈v, ep〉
m

1 ∈ Rd, p ∈ P, v ∈ [−1, 1]d,

where 1 = (1, . . . , 1) ∈ Rd. The payoff space is therefore V∗ = Rd. The linear extension of
the payoff function in its first variable writes

r(a, v) = v − 〈v,Aa〉
m

1, a ∈ ∆(P ), v ∈ [−1, 1]d.

We now choose the generator: let X = A(∆(P )) be the image of the simplex ∆(P ) via A
seen as a linear map from RP to Rd. Its properties are gathered in the following proposition.
In particular, property (v) demonstrates that this choice of X makes I∗X (rT ) equal to the
above regret.

Proposition 31 (i) X is the convex hull of the points ep (p ∈ P ).

(ii) X ⊂ m∆d.

(iii) ‖X‖1 = m.

(iv) X is a generator of X ◦◦ = A(∆(P ))◦◦.

(v) Let (pt)t>1 be a sequence of pure actions chosen by the Decision Maker and (vt)t>1 a
sequence of actions chosen by the Environment, and denote rt = r(pt, vt) for all t > 1
the corresponding payoffs. Then, for all T > 1,

I∗X (rT ) =
1

T
RegT =

1

T

max
p∈P

T∑
t=1

∑
i∈p

vti −
T∑
t=1

∑
i∈pt

vti

 .

Proof By definition, X is the image of simplex ∆(P ) via linear map A. It is therefore
the convex hull of the image by A of the extreme points of ∆(P ). And for p0 ∈ P ,
A(1{p=p0})p∈P = ep. Hence (i). Each point ep clearly belongs to m∆d, and (ii) is true by
convexity of m∆d. For each element x ∈ m∆d, we have ‖x‖1 = m, which implies (iii). X is
a nonempty convex compact set thanks to (i); Proposition 2 gives (iv). As for the relation
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(v), we denote A∗ the transpose of A and write

max
p∈P

T∑
t=1

∑
i∈p

vti −
T∑
t=1

∑
i∈pt

vti = max
p∈P

T∑
t=1

((A∗vt)p − (A∗vt)pt)

= max
a∈∆(P )

T∑
t=1

(
〈A∗vt, a〉 −

〈
A∗vt,

(
1{p=pt}

)
p∈P

〉)
= max

a∈∆(P )

T∑
t=1

(
〈vt, Aa〉 −

〈
vt, A

(
1{p=pt}

)
p∈P

〉)
= max

x∈A(∆(P ))

T∑
t=1

(〈vt, x〉 − 〈vt, ept〉)

= max
x∈X

T∑
t=1

〈
vt −

〈vt, ept〉
m

1, x

〉

= max
x∈X

T∑
t=1

〈r(pt, vt), x〉

= T · I∗X (rT ),

where in the fifth line, we used the fact that for all x ∈ X , 〈1, x〉 = m, which is a conse-
quence of (ii).

Proposition 32 A(∆(P ))◦ is a B-set for the game with mixed actions (P, [−1, 1]d, r).

Proof Since X is a generator of A(∆(P ))◦◦, one can check that the condition that defines
a B-set only needs to be verified for x ∈ X . Let x ∈ X . By definition of X , there exists
a ∈ ∆(P ) such that x = Aa. Then for v ∈ [−1, 1]d,

〈r(a, v), x〉 =

〈
v − 〈v,Aa〉

m
1, Aa

〉
= 〈v,Aa〉 − 〈v,Aa〉 = 0,

which proves the result.

As a consequence of Proposition 31, a point x ∈ X only has nonnegative components.
We can therefore define

h(x) =


d∑
i=1

xi
m

log
xi
m

for x ∈ X

+∞ otherwise.

Proposition 33 (i) h is a regularizer on X ;

(ii) maxx∈X h−minx∈X h(x) 6 log(d/m);
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(iii) h is 1/m2-strongly convex with respect to ‖ · ‖1.

Proof For x ∈ X ⊂ m∆d, we can write h(x) = hent(x/m) < +∞. The 1-strong convexity
of hent with respect to ‖ · ‖1 implies the 1/m2-strong convexity of h with respect to ‖ · ‖1
and (iii) is proved. In particular, h is strictly convex. Besides, the domain of h is X by
definition and (i) is proved. As for (ii), h being convex, its maximum is attained at one of
the extreme points ep (p ∈ P ) of X :

max
x∈X

h(x) = max
p∈P

h(ep) = max
p∈P

∑
i∈p

1

m
log

1

m
= − logm.

As for the minimum,

min
x∈X

h(x) > min
x∈m∆d

d∑
i=1

xi
m

log
xi
m

= min
x∈∆d

d∑
i=1

xi log xi = − log d.

Therefore, maxx∈X h−minx∈X h(x) 6 − logm+ log d = log(d/m).

We can now consider the FTRL algorithm associated with regularizer h, a (P, [−1, 1]d, r, A(∆(P ))◦)-
oracle a, and a positive sequence of parameters (ηt)t>1, for t > 1,

compute xt = arg max
x∈X

{〈
ηt−1

t−1∑
s=1

rs, x

〉
− h(x)

}
choose at = a(xt)

draw pt ∼ at

observe rt = r(pt, vt) = vt −
〈vt, Aept〉

m
1.

Theorem 34 Against any sequence (vt)t>1 in [−1, 1]d chosen by the Environment, the
above algorithm with parameters ηt =

√
log(d/m)/4m2t (for t > 1) guarantees

E [RegT ] 6 4m
√
T log(d/m).

For δ ∈ (0, 1), we have with probability higher than 1− δ,

RegT 6 2m
√
T
(

2
√

log(d/m) +
√

2 log(1/δ)
)
.

Almost-surely,

lim sup
T→+∞

1

T
RegT 6 0.

Proof For all v ∈ [−1, 1]d and p ∈ P ,

‖r(p, v)‖∞ =

∥∥∥∥v − 〈v,Aep〉m
1

∥∥∥∥
∞

6 ‖v‖∞ +
‖1‖∞
m

∑
i∈p
|vi| 6 2.

The result then follows from Theorem 29 applied with M = 2, K = 1/m2, the properties
of the regularizer h given by Proposition 33, and the relation (v) from Proposition 31.
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Appendix H. Internal and swap regret

We further illustrate the generality of our framework by recovering the best known al-
gorithms for internet and swap regret minimization. The notion of internal regret was
introduced by Foster and Vohra (1997). It is an alternative quantity to the usual regret.
Foster and Vohra (1997) first established the existence of algorithms which guarantees that
the average internal regret is asymptotically nonpositive (see also Fudenberg and Levine
(1995, 1999); Hart and Mas-Colell (2000, 2001); Stoltz and Lugosi (2005)). Blum and Man-
sour (2005) introduced the swap regret, which generalizes both the internal and the basic
regret. The optimal bound on the swap regret is known since Blum and Mansour (2005);
Stoltz and Lugosi (2005). Later, Perchet (2015) proposed an approachability-based optimal
algorithm. We present below the construction of an algorithm similar to Stoltz and Lugosi
(2005); Perchet (2015) using the tools introduced in Sections 2 and 3. The internal regret
is mentioned at the end of the section as a special case.

The set of pure actions of the Decision Maker is I = {1, . . . , d}. At time t > 1, the
Decision Maker

• chooses mixed action at ∈ ∆d;

• draws pure action it ∼ at;

• observes payoff vector vt ∈ Rd.

Let Φ be a nonempty subset of II . The quantity to minimize is the Φ-regret defined by

RegΦ
T = max

ϕ∈Φ

T∑
t=1

vtϕ(it) −
T∑
t=1

vtit ,

and can be interpreted as follows. For a given map ϕ ∈ Φ,
∑T

t=1 vtϕ(it) is the cumulative
payoff that the Decision Maker would have obtained if he had played pure action ϕ(i)
each time he has actually played i (for all i ∈ I). The Φ-regret therefore compares the
actual cumulative payoff of the Decision Maker with the best such quantity (for ϕ ∈ Φ) in
hindsight. The goal is to construct an algorithm which guarantees on the Φ-regret a bound
of order

√
T log |Φ|. To do so, we reduce this problem to a well-chosen approachability

game (with mixed actions as in Section E), which we now present.

Let I (resp. ∆d) be the set of pure (resp. mixed) actions for the Decision Maker and
[−1, 1]d the set of actions for the Environment. Let the payoff space be V∗ = RΦ and the
target set be RΦ

−. We choose the following payoff function:

r(i, v) =
(
vϕ(i) − vi

)
ϕ∈Φ
∈ RΦ, i ∈ I, v ∈ [−1, 1]d.

The linear extension of the payoff function in its first variable is

r(a, v) =

(∑
i∈I

ai(vϕ(i) − vi)

)
ϕ∈Φ

, a ∈ ∆d, v ∈ Rd.

35



Kwon

Proposition 35 RΦ
− is a B-set for the game with mixed actions (I, [−1, 1]d, r).

Proof Let x = (xϕ)ϕ∈Φ ∈ (RΦ
−)◦ = RΦ

+. Let us prove that there exists a ∈ ∆(I) such that
for all v ∈ [−1, 1]d, 〈r(a, v), x〉 6 0. First, the property is trivially true if x = 0. We assume
from now on that x 6= 0.

Denote

x̃ij =
∑
ϕ∈Φ
ϕ(i)=j

xϕ, i, j ∈ I

and let us first prove that there exists a ∈ ∆(I) such that:∑
i∈I

aix̃ij = aj
∑
i∈I

x̃ji, j ∈ I. (10)

Notice that for all i ∈ I we have∑
j∈I

x̃ij =
∑
j∈I

∑
ϕ∈Φ
ϕ(i)=j

xϕ =
∑
ϕ∈Φ

xϕ = ‖x‖1 .

x being nonzero, the above quantity is also nonzero and the d× d matrix (x̃ij/‖x‖1)i,j∈I is
stochastic and therefore has an invariant measure a ∈ ∆(I):

∑
i∈I

ai
x̃ij
‖x‖1

= aj , j ∈ I.

Multiplying on both sides by ‖x‖1, we get Equation(10):∑
i∈I

aix̃ij = aj ‖x‖1 = aj
∑
i∈I

∑
ϕ∈Φ
ϕ(j)=i

xϕ = aj
∑
i∈I

x̃ji, j ∈ J .

Let v ∈ [−1, 1]d and compute 〈r(a, v), x〉:

〈r(a, v), x〉 =
∑
ϕ∈Φ

xϕ

(∑
i∈I

ai(vϕ(i) − vi)

)
=
∑
i,j∈I

ai(vj − vi)
∑
ϕ∈Φ
ϕ(i)=j

xϕ

=
∑
i,j∈I

ai(vj − vi)x̃ij =
∑
j∈I

vj
∑
i∈I

aix̃ij −
∑
i,j∈I

aivix̃ij

=
∑
j∈I

vjaj
∑
i∈I

x̃ji −
∑
i,j∈I

aivix̃ij = 0,

where we used Equation (10) for the fifth equality. In particular, 〈r(a, v), x〉 6 0 and RΦ
− is

indeed a B-set for the game with mixed actions (I, [−1, 1]d, r).
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As for the generator, we choose X = ∆(Φ) which is a generator of (RΦ
−)◦ thanks to

Proposition 2. Then the support function of ∆(Φ) evaluated at the average payoff is equal
to the average Φ-regret:

I∗∆(Φ)(rT ) =
1

T
I∗∆(Φ)

(
T∑
t=1

r(it, vt)

)
=

1

T
max
x∈∆(Φ)

〈
T∑
t=1

(
vtϕ(it) − vtit

)
ϕ∈Φ

, x

〉

=
1

T
max
ϕ∈Φ

T∑
t=1

(
vtϕ(it) − vtit

)
=

1

T

(
max
ϕ∈Φ

T∑
t=1

vtϕ(it) −
T∑
t=1

vtit

)
=

1

T
RegΦ

T .

On the simplex ∆(Φ), we choose the entropic regularizer presented in Section 3.1:

hent(x) =


∑
ϕ∈Φ

xϕ log xϕ if x ∈ ∆(Φ)

+∞ otherwise.

Then, the algorithm associated with regularizer hent, a (I, [−1, 1]d, r,RΦ
−)-oracle a and

a sequence of positive parameters (ηt)t>1 is the following. For t > 1,

compute xtϕ =
exp

(
ηt−1

∑t−1
s=1 rsϕ

)
∑

ϕ′∈Φ exp
(
ηt−1

∑t−1
s=1 rsϕ′

) , ϕ ∈ Φ

choose at = a(xt)

draw it ∼ at
observe rt = r(it, vt) =

(
vtϕ(it) − vtit

)
ϕ∈Φ

.

The expression of xt is explicit and straightforward and the computation of mixed action
at = a(xt) via oracle a consists, as shown in the proof of Proposition 35, in finding an
invariant measure of a d × d stochastic matrix, which can be done efficiently. However,
the computation of xt requires to work with |Φ| components, which can be up to dd. The
algorithm from Blum and Mansour (2005) is much more efficient computationally as its
computational cost is polynomial in d.

Theorem 36 Against any sequence (vt)t>1 in [−1, 1]d chosen by the Environment, the
above algorithm with parameters ηt =

√
log |Φ| /4t (for t > 1) guarantees

E
[
RegΦ

T

]
6 4
√
T log |Φ|.

Let δ ∈ (0, 1). With probability higher than 1− δ, we have

1

T
RegΦ

T 6
1√
T

(
4
√

log |Φ|+ 2
√

2 log(1/δ)
)
.

Almost-surely,

lim sup
T→+∞

1

T
RegΦ

T 6 0.
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Proof For every payoff vector v ∈ [−1, 1]d and pure action i ∈ I,

‖r(i, v)‖∞ =
∥∥(vϕ(i) − vi)ϕ∈Φ

∥∥
∞ 6 2.

The result then follows from Theorem 29 applied with M = 2, K = 1 and the properties of
regularizer hent given by Proposition 22.

An important special case is when Φ is the set of all transpositions of I, in other words,
the set of maps ϕ : I → I such that there exists i 6= j in I such that

ϕ(i) = j, ϕ(j) = i, and ϕ(k) = k for all k 6∈ {i, j}.

The Φ-regret is then called the internal regret and can be written

max
i,j∈I

T∑
t=1

1{it=i}(vtj − vti).

Since |Φ| = d(d − 1) in this case, Theorem 36 assures that the corresponding algorithm
guarantees a bound on the internal regret of order

√
T log d.
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