

Gene orthology detection for long noncoding RNA (lncRNA)

Fabien Degalez, Coralie Alain, Laetitia Lagoutte, Sandrine Lagarrigue

▶ To cite this version:

Fabien Degalez, Coralie Alain, Laetitia Lagoutte, Sandrine Lagarrigue. Gene orthology detection for long noncoding RNA (lncRNA). 39. Congress of the international society for animal genetics (ISAG), Jul 2023, Cape Town, South Africa., pp.61, 2023, Abstracts. hal-04217585

HAL Id: hal-04217585 https://hal.inrae.fr/hal-04217585

Submitted on 15 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GENE ORTHOLOGY DETECTION

FOR LONG NON CODING RNA (IncRNA)

F. Degalez, L. Lagoutte, F. Lecerf, C. Allain, S. Lagarrigue

fabien.degalez@inrae.fr

PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France

CONTEXT

- → Long non-coding RNAs (IncRNAs), with at least 200 nt & low potential coding capabilities are a major component of regulatory elements in genomes. More than 15,000 loci have been modeled in human.
- → However, the role of most of them remains to be clarified.
- Exploring IncRNA conservation between species is an approach to strengthen the annotation of IncRNAs by inferring function in one species from another one more studied such as human or mouse, as has been done previously for protein coding genes (PCGs).
- However, unlike PCGs, IncRNA sequences are not well conserved across species [1]. Therefore, no IncRNA orthologs are reported in reference databases such as Ensembl BioMart, regardless of species.
- In this context, we have developed a workflow combining 3 approaches (Method 1, 2 and 3) that can be used for any species of interest and have applied it on 11 species covering a large phylogenetic scale from mammals to chicken.

METHOD Gitlab – f.degalez/Incrna_orhtologfinder Method 1 – Synteny 2 PCGs 1- Identification of orthologous **PCGs** 2-Identification of correspondence between IncRNAs -Method 2 – Synteny 1 PCG & FEELnc config. 1- Classification of the IncRNAs according to the _ ____ closest **PCG** 2-Identification of orthologous **PCGs** _ ___ 3- Identification of correspondence between IncRNAs . ___ Method 3 – Alignment 1- Alignment of IncRNA individually - MP algorithm (based on patches and syntenic region) 2-Identification of known features one_to_one many_to_one one_to_many many_to_many

RESULTS - NUMBERS

(1) Table 1: Orthologous IncRNAs between HSA & 10 species (mammals, birds & fish).

* The reference Ensembl chicken gene					Source : Human						
atlas is enriched in IncRNA loci [2]				Total: 61552 - PCG: 19994 - IncRNA: 17734							
			method 1			method 2			method 3		
Total	PCG	IncRNA	Target	1to1	many	Tot	1to1	many	Tot	Match	U
55414	21884	9949	Mouse	457	876	1333	1214	3190	4404	8660	10867
31121	20500	6479	Dog	112	230	342	665	1543	2208	-	2372
30371	20912	7241	Horse	144	515	659	746	1775	2521	7684	9216
27607	21861	1480	Cow	65	99	164	260	480	740	8947	9342
27271	21343	2705	Goat	73	171	244	319	821	1140	8824	9378
31908	21280	6790	Pig	150	343	493	735	1785	2520	8885	10205
45289	17859	24835	* Chicken	244	858	1102	1368	4955	6323	4816	9142
17970	16226	1034	Turkey	18	37	55	137	275	412	-	437
22150	16619	4757	Zebrafinch	60	213	273	548	1221	1769	4835	6099
32520	25432	2222	Zebrafish	14	23	37	156	355	511	-	529

2) Fig. 1: One of the 23 IncRNAs in HSA identified as orthologous in 9 species by at least one method.

Orthologous transcripts are either antisense (1) or divergent (2) with respect to the closest PCG, suggesting partial knowledge of TSS position in some species. LncRNA capture combined with long-read sequencing is in progress.

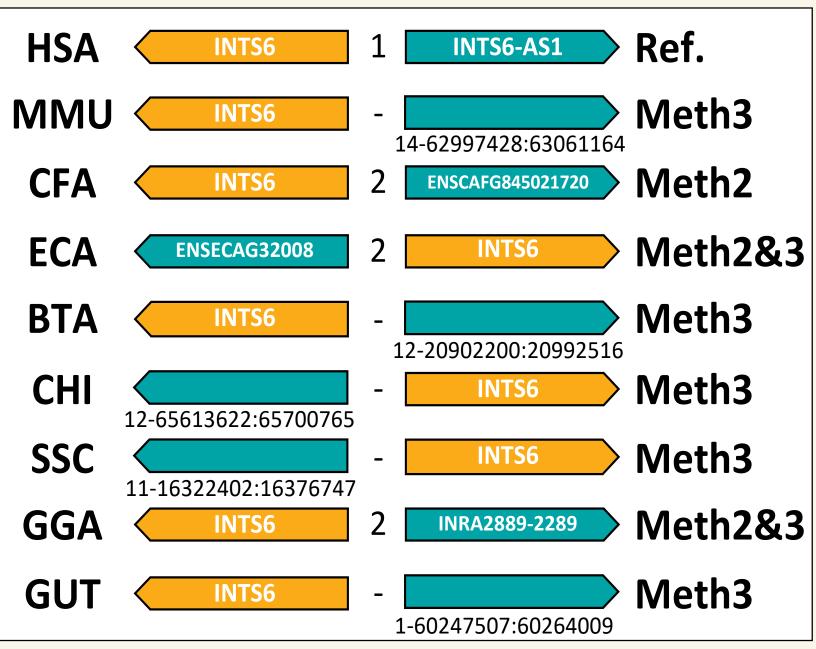
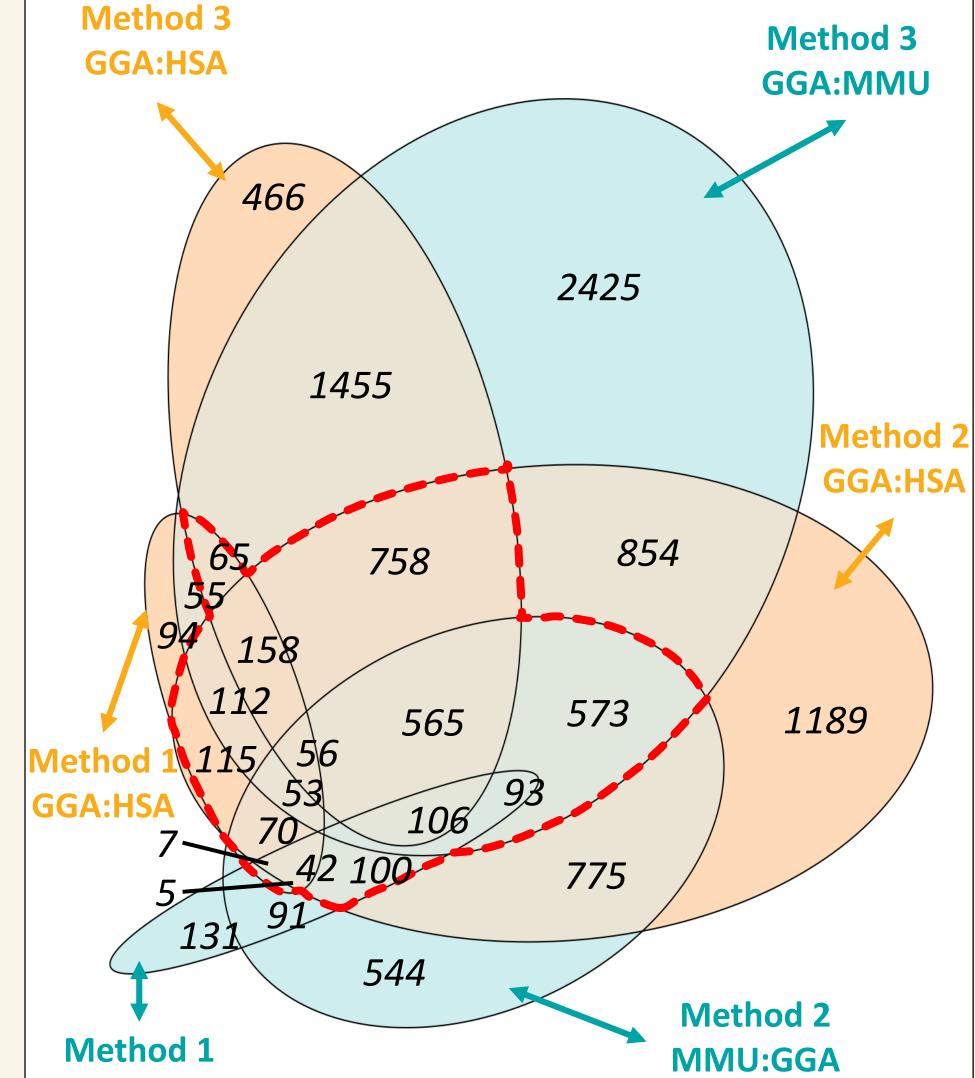



Fig. 2: Subset of 3609 orthologous

HSA:GGA IncRNAs considered more reliable
by combining several methods.

Out of the **9142** HSA:GGA orthologous IncRNAs detected by at least 1 method (Table 1), **3609 (39%)** IncRNAs were selected (red section) as more reliable because found orthologous by at least 2 methods (2765 cases) or by the method 1 or method 2 secured by 2 methods for GGA:MMU (1873 cases)

The results presented here consider annotations and/or genome assemblies that may have been updated, such as the enriched annotation for the chicken genome (see poster P63). New analyses are currently in progress to include the major modifications.

RESULTS — FUNCTIONAL ANNOTATION

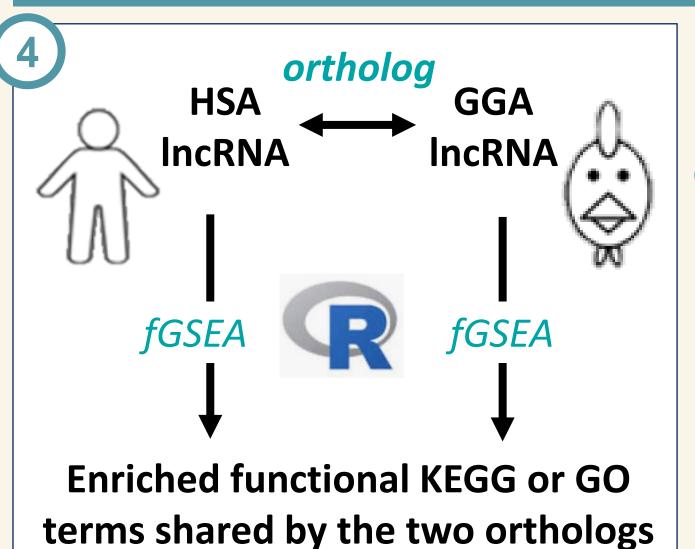
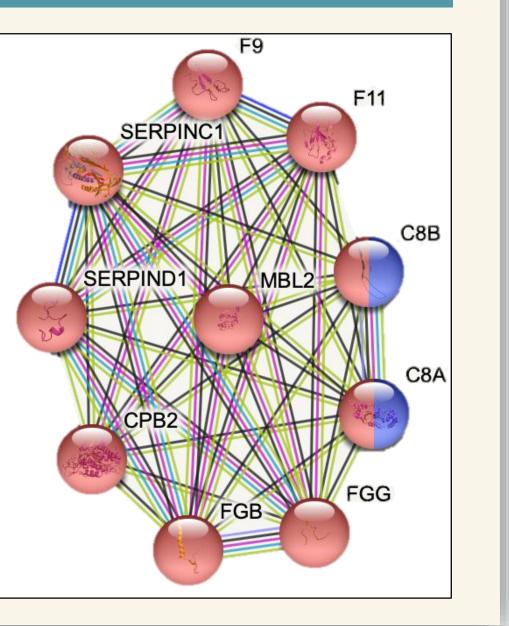



Fig. 4: Several tissue-specific orthologous IncRNAs had co-expressed genes associated to the same enriched terms related to the tissue function.

Here, the case of liver-specific IncRNA orthologs in GGA and HSA associated to "Complement and coagulation cascades" (10 / 82); FDR: 1.29 e-14.

INRAO

MMU:GGA

