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Abstract 

 

This article introduces an application of the Granger causality test in precision agriculture. 

Originally developed to address economic issues, this statistical test aims at determining 

whether one time series is useful to forecast another time series. In this study, the test was 

applied to two time series of data available at within field level in viticulture: sentinel-2 

satellite images and Apex growth monitoring (iG-ApeX method). Results show that time 

series obtained by Sentinel-2 satellite imagery can be used to predict vegetation growth 

both at the field scale and at the within-field scale. The Granger causality test could find 

many applications in precision agriculture, especially with the development of high 

temporal resolution data acquisition methods. 
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Introduction 

 

Over the past few decades, new data sources have emerged in precision agriculture, 

particularly new sensors (Jawad et al. 2017) and new remote sensing tools (Sishodia et 

al. 2020). These new data sources have enabled acquisitions with better temporal 

resolution making it easier to monitor agronomic variables over the time. As a result, 

spatialized time series are becoming more and more common in precision agriculture. 

Analysing these time requires suitable methods to account for their temporal structure. 

Several methods, specifically dedicated to time series analysis, have been proposed and 

successfully applied in precision agriculture for example to evaluate soil erosion (Meinen 

& Robinson 2021) or for irrigation management (Kashyap et al. 2021). However, most 

of these methods are often complex, difficult to implement or require significant 

computational capabilities. Another limitation of these approaches is their lack of 

generality as they are implemented in a specific context to answer a specific problem. 

Other fields of application have long been confronted with temporal series of 

observations. For example, in economy where many methods have already been proposed 

to model, analyse, estimate and predict the temporal evolution of economic variables 

(Hamilton, 1994). Among these methods, the Granger causality test (Granger, 1969) has 

been designed to determine whether one time series is useful for better predicting another 

one. This statistical test is, in the authors’ opinion, of most interest for applications in 

agriculture. Indeed, the Granger causality test uses a linear model to detect whether a time 

series improves the prediction of another time series values. This test, initially developed 

in the field of economics, relies on a general formalism which has allowed its application 

in other disciplines such as ecology (Detto et al., 2012) or medicine (Grande et al., 2022) 

among others. Like any statistical test, its usefulness to the practitioner is to produce a 

probability with a first and second order risk of error, which is interesting information for 



decision making on variable selection. To the authors’ knowledge, the Granger causality 

test has never been applied to agriculture and precision agriculture questions. 

The objective of this paper is to evaluate the interest of the Granger causality test in the 

precision agriculture context. This study proposes an application of the test to a case study 

to identify if remote sensing NDVI time series can be used to improve the prediction of 

vine growth measurements in the field, vine growth measurements being used as a 

surrogate to estimate the spatial variability of plant water restriction. The objective is also 

to test Granger causality test at two different spatial scales (field and within-field scale) 

on a vineyard field in the South of France. 

 

Materials and methods 

 

The Granger causality test 

The notion of causality introduced by Wiener (1956) and Granger (1969) is one of the 

foundations of the analysis of dynamic relationships between time series. The basic idea 

of the Granger causality is that a time series X would cause another series Y, when the 

knowledge of the past values of X leads to a better prediction of Y than that based only 

on the past values of Y. In other words, the series X “Granger-causes” the series Y, if 

conditionally on the past values Xt-j (j≥1), the mean square prediction error of Yt is smaller 

than that obtained without the information about the past values Xt-j. 𝑗 represents the time 

lag between Xt-j and Yt. Granger-causality is tested in the context of linear regression 

models (Granger, 1969). The main idea is to fit a linear model for Yt based on the p past 

values Xt-j and Yt-j (j=1, ..,p), and to test whether the coefficients associated with the 

variables Xt-j are zero or not with a Fisher test. A model selection criteria, such as the BIC 

(Bayesian Information Criterion) or the AIC (Akaike Information Criterion) can be used 

to determine the appropriate model order p. 
To properly use the Granger test, it is required that time series share the same spatial 

footprint and temporal resolution. In this study, the Granger causality test was applied to 

the prediction of vine growth with NDVI obtained from remote sensing and with the 

derivative of NDVI times series. 𝑝 was set at 1 as the degrees of freedom were not 

sufficient to test higher values. The Granger causality test was performed with the 

“grangertest” function, provided in the “lmtest” R-package (Zeilis and Hothorn, 2002). 

 

Experimental data 

Experimental data were collected in 2020 on a 0.8 ha non-irrigated Syrah grapevine field 

(Figure 1.A) in South of France (latitude=43.1777, longitude= 2.5903, WGS 84) under 

Mediterranean climate. The vine field was planted in 1995 with a plantation density of 

4000 vines.ha-1.. The northern part of the field presented a higher elevation and a higher 

proportion of missing vines (Figure 1.B). 

Vine shoot growth was measured on 101 sampling sites using index of Growing Apex 

(iG-Apex). The sampling sites location were based on set of 10 consecutives vines every 

15 vines. As missing vines were not considered, the distribution of the measurement sites 

on the field was not regular (Figure 1.B). iG-Apex was measured by observing 5 apex per 

vine for a total of 50 apex per sampling site. The iG-Apex index varies from 1 (full shoot 

growth) to 0 (total cessation of shoot growth) and is considered as a surrogate for vine 

water restriction (Rodriguez Lovelle et al., 2009; Pichon et al. (2021)).  

Observations were collected by a single operator using the ApeX-Vigne smartphone 

application (Brunel et al., 2019). Sampling sites were georeferenced by recording the 

http://www.scholarpedia.org/article/Bayesian_statistics


position of the central vine using a GNSS receiver (R1, Trimble, Sunnyvale, USA) with 

a SBAS/EGNOS correction service. Observations were carried out weekly at every 

sampling site from flowering (week 24) to veraison (week 34).  

 
Figure 1. Location of the fields in southern France (A) and location of iG-APEX sampling 

points within the fields (B) 

 

Normalized Difference Vegetation Index (NDVI) was computed based on Band-4 

(664.5nm) and Band-8 (835.1nm) reflectance from the Sentinel-2 Multispectral Imager. 

Images were extracted and processed with Google Earth Engine (GEE) (Gorelick et al. 

2017). The spatial resolution was 10𝑚 and the total number of pixels covering the study 

field was 53. Images obscured by clouds were filtered via GEE Javascript API using 

decision trees and Bayesian models proposed by Hollstein et al. (2016). 17 images out of 

48 potentially available were used after the filtering.  

 

Spatial interpolation 

The aim of spatial interpolation was to obtain the same spatial footprint for both iG-Apex 

and NDVI data. iG-Apex observations were downscaled to NDVI observations spatial 

grid. Interpolation was performed with inverse distance weight method. It was 

implemented using R 4.0.0 with the “idw” function from the “gstat” package (Pebesma, 

2004). 

 

Temporal interpolation 

The objective of temporal interpolation was to obtain times series that share the same 

observation dates and time intervals between two observations. NDVI and its local 

derivative value were estimated at each dates on which iG-Apex was measured. To obtain 

these values, two interpolation methods were tested. 

The first one, called linear interpolation, consisted in a direct linear interpolation between 

each pair of observations. The NDVI values at a given date were interpolated from the 

equation of the line connecting the previous observation to the next observation. The 

derived value at the same date was the slope of the line. The NDVI was not interpolated 

on dates where it was already measured. The linear interpolation is therefore not derivable 

at these dates. In these cases, the value used as derivative was the slope between the 

previous and the next observation. For clarity purpose, these values for linear 

interpolation are still improperly called derivative hereafter. 



A second interpolation method was introduced in order to catch the general trend of the 

time series by removing the noise that could arise from the variability of the satellite 

images acquisition conditions. This second method, called “locfit” interpolation, is based 

on polynomial functions fitted to the neighbourhood of each observation. This 

interpolation is easily derivable and has a continuous derivative. It has been implemented 

with the R package locfit (Loader, 2020). Polynomials were chosen of degree 3 and the 

smoothing parameter based on nearest neighbours (nn) was set at 0.7. These values 

provided a convincing fit of the interpolation to the observed data. The two interpolations 

method were both applied to the field mean and to each pixel of the NDVI time series. 

Resulting time series had the same time steps as those of iG-Apex with one measurement 

per week. The Granger causality test was then applied to these time series to test whether 

NDVI was informative to predict an iG-Apex time series. 

A common variographic analysis was performed afterward to evaluate the spatial 

autocorrelation of the Granger test results. The nugget-to-sill ratio was used to describe 

the proportion of spatially unstructured variability compared to the total variability. 

 

Results 

 

For every pixel of the field, NDVI value increased during the season (Figure 2.A). It 

started from around 0.2 in May, at the beginning of the vegetative season, and reached 

the value of 0.45 in late September, after the harvest. The difference between highest and 

lowest NDVI values also increased over the season, indicating an increase in the within-

field variability. iG-Apex decreased during the season for every observation site (Figure 

2.B). It started from 1 in early June, indicating a full vegetative growth, towards around 

0.15 in mid-August, indicating a total cessation of growth at this date. This decrease in 

growth is strongly related to the occurrence of the water restriction during the summer 

period. 

 
Figure 2. Time series of NDVI (A) and iG-Apex (B) over the season. Each time series 

represent one Sentinel2 pixel. NDVI is increasing while iG-Apex is decreasing. 

 

When interpolating NDVI time series, the linear interpolation goes through all 

observations and connects them in a linear way without any smoothing (Figure 3). The 

locfit interpolation, based on polynomial functions, is smoothed and does not necessarily 

include all points. It thus reflects the general trend of the time series (Figure 3). 

 



 
Figure 3. Example of temporal interpolation result with the mean field NDVI times-series. 

 

According to the Granger causality test, at the field scale, NDVI does not provide 

significant information for the prediction of iG-Apex time series regardless of the time-

interpolation method (Table 1). However, with the derivative of NDVI, the test is 

significant at p<0.05 with the linear interpolation and significant at p< 0.1 with the locfit 

interpolation. The derivative of NDVI therefore Granger-causes iG-Apex and may be 

relevant to forecast its values. 

 

Table 1. p-values of the Granger causality test applied at the field level (pixels mean). 

NDVI was interpolated with both linear and locfit interpolation methods. Significance (p-

value <0.05) in bold font. Best significance is achieved for the NDVI derivative values. 

Interpolation method With NDVI  With NDVI derivative 

Linear 0.8611 0.0083 

Locfit 0.9869 0.0771 

 

When performed at the within field scale (Figure 4), the test is more significant when the 

NDVI time series derivatives (B and D) are used to forecast the iG-Apex time series at 

the pixel scale. The tests based on the NDVI values (A and C) are almost all non-

significant for all the within field pixels. The largest number of significant pixels is 

obtained with linear interpolation derivative values (Figure 4B). On this map, the p-values 

obtained with the Granger test are spatially structured (nugget-to-sill ratio = 0). The most 

significant pixels are concentrated in the South-West and in the center of the field, while 

the pixels in the North-East have higher p-values. This phenomenon is also found, to a 

lesser extent, with the locfit interpolation (Figure 4D). 

 

Discussion 

 

The decrease of the iG-Apex time series observed is coherent and highlights the 

occurrence of a water restriction that affects vine growth over the summer: plant vines go 

from a period of strong growth at the end of spring to a near-stop of growth a few weeks 

before harvest (Pichon et al. 2021; Martinez-De-Toda et al. 2010). At the same time, the 

NDVI increases irregularly. The variability coming from these irregularities is shown in 



the linear interpolation method, while the general trend of the time series is better 

reflected in the locfit interpolation. 

 

 
Figure 4. Application of the Granger causality test to the prediction of iG-Apex time series 

from Sentinel-2 images time series at the within field level. Information 

extracted from Sentinel-2 images are NDVI (A and C) and its derivative (B and 

D) interpolated in time using linear (A and B) and locfit (C and D) 

interpolations. 

 

In this case-study, the test does not show Granger causality between NDVI and iG-Apex. 

The vegetation index values at one date do not provide information about the growth 

index. In contrast, the derivative of NDVI is significant in predicting iG-Apex according 

to the Granger test. With locfit interpolation, the test is significant for about one-third of 

the pixels in the field. This shows that the global trend of the NDVI derivative provides 

valuable information for predicting the iG-Apex. This result is robust to variations in the 

choice of parameters for the locfit interpolation (results not shown). Best results are 

obtained with linear interpolation. It shows that part of the information is also contained 

in small variations of the NDVI derivative observed between two close dates. 

The Granger causality test states that this derivative can be used to improve the prediction 

of iG-Apex. It is also possible to interpret this result from an agronomic point of view. 

Indeed, the NDVI is often considered as a surrogate for the vine canopy volume (Campos 

et al. 2021). When the vine is growing (high iG-Apex), the vine produces new shoots and 

leaves and the canopy volume (NDVI) increases. Its derivative is therefore expected to 

be positive and higher with a higher vine growth. Conversely, if the growth index is low, 

there is little or no canopy development and the derivative of NDVI is expected to be low. 

The spatial organization of p-values for the Granger causality test (Figure 4.B) might also 

be interpretable. The band of insignificant pixels observed in the north-eastern zone of 



the field presents the highest proportion of missing vines (Figure 1B). The lower number 

of “active” plant vines leads to lower NDVI values on this zone over the whole season. 

In these conditions, the magnitude of variation of NDVI values over the season may not 

be high enough to allow any relationship between the dynamics of the two variables 

(NDVI-iG-Apex) to be detected. In other words, the NDVI signal-to-noise ratio being 

very low in this zone, it becomes difficult for the granger test to detect any significant 

relationship between the two time series under study. Another hypothesis related to the 

difference in elevation could explain the differences in Granger test conclusions since it 

could result in different growing conditions (thinner soil, lower water reserve etc.).  

This case-study illustrates the potential of the Granger causality test in precision 

agriculture. Its easy implementation makes it possible to quickly identify relationships 

between one or more time series that may be of different natures. In a context where more 

and more time series are available (Sishodia et al. 2020), this test could constitute a 

relevant first step to identify the potential of new information before considering more 

ambitious research in precision agriculture. Returning to the case study, the Granger 

causality test highlights promising results since NDVI changes can be related to iG-Apex 

evolution in our Mediterranean context. Remote sensing temporal series could therefore 

be an interesting covariate to interpolate the iG-Apex point observations. This result 

highlights the complementarity between spatially exhaustive data and specific point data 

for mapping vine water restriction at different spatial scales. 

 

Conclusions 

 

The application of the Granger causality test shows that the derivative of remotely sensed 

NDVI time series can be used to improve the prediction of a growth index on the studied 

field. In this study, the test gives promising results both at the field scale and at the within-

field scale where p-values reflect the spatial organisation of the field. These results 

illustrate the opportunity that the Granger causality test represents in precision 

agriculture. With its quick and easy implementation, it could be considered as first 

relevant step before more complex exploratory analyses by identifying the causal 

relations that may exist between several time series. 

 

Acknowledgements 

 

This project was co-financed by the European Regional Development Fund (ERDF) and 

the Occitanie region / Ce projet a été cofinancé par le Fonds Européen de Développement 

Régional (FEDER) et la région Occitanie. 

The ApeX-Vigne project was part of the DATI project, supported by the French National 

Research Agency under the Horizon 2020 PRIMA Program (ANR-21-PRIM-0001). 

 

References 

 

Brunel, G., Pichon, L., Taylor, J.A. and Tisseyre, B. 2019. Easy water stress detection 

system for vineyard irrigation management. In Proceedings of the 12th European 

Conference on Precision Agriculture, ECPA’19, Wageningen, The Netherlands: 

Wageningen Academic Publishers. 935-942 



Campos, J. García-Ruíz, F and Gil, E. 2021. Assessment of Vineyard Canopy 

Characteristics from Vigour Maps Obtained Using UAV and Satellite Imagery. 

Sensors 21, 2363. https://doi.org/10.3390/s21072363 

Detto, M., Molini, A., Katul, G., Stoy, P., Palmroth, S. and Baldocchi, D. 2012. Causality 

and persistence in ecological systems: a nonparametric spectral granger causality 

approach. The American Naturalist, 179, 524-535. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R. 2017. 

Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote 

Sensing of Environment, 202, 18-27. 

Grande, A. F., Pumi, G., and Cybis, G. B. 2022. Granger causality and time series 

regression for modeling the migratory dynamics of Influenza into Brazil. Statistics 

and Operations Research Transactions, 46, 161-188. 

Granger, C. W. J. 1969 Investigating causal relations by econometric models and cross-

spectral methods. Econometrica, 37, 424-438. 

Hamilton. J., 1994. Time Series Analysis. Princeton, USA, Princeton University Press. 

Hollstein, A.; Segl, K., Guanter, L., Brell, M. and Enesco, M. 2016. Ready-to-Use 

Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky 

Pixels in Sentinel-2 MSI Images. Remote Sensing, 8, 666. 

Jawad, H.M., Nordin, R., Gharghan, S.K., Jawad, A.M. and Ismail, M. 2017. Energy-

Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 

17, 1781. https://doi.org/10.3390/s17081781 

Kashyap P. K., Kumar S., Jaiswal A., Prasad M. and Gandomi A. H. 2021. Towards 

Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep 

Learning Neural Network. IEEE Sensors Journal, 21 (16) 17479-17491. 

Loader C. (2020). locfit: Local Regression, Likelihood and Density Estimation. R 

package version 1.5-9.4. https://CRAN.R-project.org/package=locfit 

Martinez-De-Toda, F., Balda, P., and Oliveira, M. 2010. Estimation of Vineyard Water 

Status (Vitis Vinifera L. cv. Tempranillo) from the Developmental Stage of the 

Shoot Tips. Journal International Des Sciences de La Vigne et Du Vin, 44, 201-206.  

Meinen B.U. and Robinson D.T. 2021. Agricultural erosion modelling: evaluating USLE 

and WEPP field-scale erosion estimates using UAV time-series data. Environmental 

Modelling & Software, 137 104962. https://doi.org/10.1016/j.envsoft.2021.104962 

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & 

Geosciences, 30: 683-691. 

Pichon, L., Brunel, G., Payan, J.C., Taylor, J., Bellon-Maurel, V. and Tisseyre, B. 2021. 

ApeX-Vigne: experiences in monitoring vine water status from within-field to 

regional scales using crowdsourcing data from a free mobile phone application. 

Precision Agriculture, 22, 608-626.  

Rodriguez Lovelle B., Trambouze W. and Jacquet O. 2009. Évaluation de l´état de 

croissance végétative de la vigne par la méthode des apex. (Evaluation of vine's shoot 

growth by the apex method.) Progrès Agricole et Viticole, 126, 77-88. 

Sishodia, Rajendra P., Ram L. Ray, and Sudhir K. Singh. 2020. Applications of Remote 

Sensing in Precision Agriculture: A Review. Remote Sensing 12 (19): 3136.  

Wiener, N. 1956. The theory of prediction. In Modern Mathematics for the Engineer. 

New York, USA, McGraw-Hill. 

Zeileis A and Hothorn T. 2002. Diagnostic Checking in Regression Relationships. R 

News, 2(3), 7–10. https://CRAN.R-project.org/doc/Rnews/. 

https://doi.org/10.3390/s21072363
https://cran.r-project.org/package=locfit

