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Abstract: In context of increasing observation of the earth by satellites and airborne sensors, this con-
tribution investigates information extraction from those data combined with in situ data for hydrological-
hydraulic modeling of river networks. This work is based on recent multi-satellite datasets over two rel-
atively large catchment river networks with contrasted and complex hydrological variabilities and flow
features (anabranching reaches, confluences, tidal effects) : the Maroni River basin in French Guyana
(SWOT Cal/val site) and the Adour River basin in metropolitan France. The dataset contains Multi-
mission altimetry, optical and radar image of rivers in addition to in situ data and recent SWOT data.
The forward modeling approach consists in dynamic shallow water flow models of river networks, in 1D
following or multi-D inflowed by catchment scale hydrological models. The inverse modeling approach
uses variational data assimilation and enables to optimize spatially distributed bathymetry-friction pat-
terns to reduce the misfit to in-situ and satellite observables as well as to optimize simultaneously inflow
hydrographs.

Keywords: River networks, hydrological model, hydraulic model, coupling, data assimilation,
multi-source observations

Vers une meilleure régionalisation des modèles hydrologiques et hydrauliques des
réseaux fluviaux grâce à l’assimilation de données multi-sources et à la visibilité hy-
draulique SWOT

Résumé : Dans le contexte de l’observation croissante de la terre par des satellites et des capteurs
aéroportés, cette contribution étudie l’extraction d’informations à partir de ces données combinées avec
des données in situ pour la modélisation hydrologique-hydraulique des réseaux fluviaux. Ce travail
est basé sur des ensembles de données multi-satellites récentes sur deux réseaux fluviaux relativement
importants avec des variabilités hydrologiques et des caractéristiques d’écoulement contrastées et com-
plexes (tronçons anabranchés, confluences, effets de marée) : le bassin du fleuve Maroni en Guyane
française (site SWOT Cal/val) et le bassin de l’Adour en France métropolitaine. Le jeu de données



contient des images altimétriques, optiques et radar multi-missions des fleuves ainsi que des données
in situ et des données SWOT récentes. L’approche de modélisation consiste en des modèles ydraulique
de réseaux fluviaux, en 1D ou multi-D, alimentés par des modèles hydrologiques à l’échelle du bassin
versant. L’approche de modélisation inverse utilise l’assimilation variationnelle des données et permet
d’optimiser les la bathymétrie-friction distribués dans l’espace afin de réduire l’inadéquation aux observ-
ables in-situ et satellitaires ainsi que d’optimiser simultanément les hydrogrammes amonts et latéraux.

Mots-clefs : réseaux hydrographiques, modélisation hydrologique-hydraulqiue, assimilation de
données, observations multi-sources

1. Introduction
A variety of satellites and sensors allows to observe, with increasing spatio-temporal resolution,
the variability of continental water surfaces and hydrological components over catchments. In
particular, satellite altimetry and images bring interesting hydraulic visibility (Garambois et al.,
2017), i.e. “the potential to depict a hydrological response and hydraulic variabilities within
a river section or network via remote sensing”. Observations at an unprecedented spatial res-
olution with interesting temporal revisits of worldwide rivers surface properties started to be
collected by the SWOT wide swath and nadir altimetry mission launched in December 2022
(cf. (Rodriguez, 2012; Rodrı́guez et al., 2020)).

Satellite observations, combined with in situ measurements, represent a very interesting
source of information for hydrological and hydraulic modeling. Nevertheless, the exploitation
of such data requires integrated models of adapted complexity as well as adequate data assim-
ilation methods. These forward-inverse approaches must be capable of ingesting multi-source
heterogeneous data while solving high dimensional ill-posed inverse problems as encountered
with non-linear and dynamic flow models involving spatio-temporal state-fluxes and parame-
ters. We focus here on the use of flow observables over river networks and floodplains.

The estimation of uncertain or unknown spatialized bathymetry-friction and inflows from
heterogeneous satellite observations of rivers surface deformations remains a difficult inverse
problem. The main issues encountered in hydraulic inverse problems aiming to retrieve un-
known or uncertain discharge-bathymetry-friction from WS (Water Surface) observables are:

• Despite WS observables are relatively direct observations of hydraulic states, they contain
variable measurement errors and do not give acces to friction and river bottom bathymetry
- except for penetrating Lidar over shallow and non turbid flows. WS variabilities are flow
signatures produced by hydraulic controls variabilities and the flow that acts as a low pass
filter on them in fluvial regime (Montazem et al., 2019).

• Local and spatial equifinality: different hydraulic models parameters combinations leading
locally to equivalent WS properties (Garambois & Monnier, 2015; Larnier et al., 2021)
and different parameters patterns leading to equivalent flow lines (Larnier et al., 2021;
Garambois et al., 2020), also with the issue of spatialized lateral flow exchanges (Pujol et
al., 2020); both local and spatial equifinality issues, in addition to larger modeling uncer-
tainty, are also encountered in spatially distributed hydrological model optimization from
downstream integrative discharge (Huynh et al., 2023) or even from hydraulic observables
within couplings (Pujol et al., 2022).

• The spatio-temporal sparsity of altimetric observations regarding real flow controls spa-
tialization and dynamics. This is analyzed in (Brisset et al., 2018) for inferable inflow
hydrograph frequencies with the introduction of identifiability maps, also in (Pujol et al.,
2020) with multiple inflows. Friction patterns scales, larger than the scale of bathymetric
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variability, are analyzed in (Garambois et al., 2020) and adapted physicaly-derived covari-
ance operators are proposed in (Malou & Monnier, 2022).

Local equifinality translates into sensitivity to prior even in local inversion of the Low
Froude algebraic model from WS observations. This issue can be partially overcome if suf-
ficient physical constraints are provided from ancillary database and system knowledge for
instance (cf. (Garambois & Monnier, 2015; Larnier et al., 2021; Larnier & Monnier, 2020)).

Putting in coherence catchment river-network models and flow observables, somehow per-
tains to a double regionalization problem regarding the estimation of (1) hydraulic channels
parameters influencing flow dynamics and of (2) the hydrological parameters influencing dis-
charge signals production and mass inflows into the river network hydraulic model.

The combined use of dynamic flow models of river systems and variational data assimi-
lation methods enables to solve hydrologic-hydraulic inverse problems involving high dimen-
sional spatio-temporal unknown parameters and heterogeneous in situ and satellite observations.
This contribution presents multi-dimensional river networks hydrologic-hydraulic modeling ap-
proaches based on recent multi-satellite data cocktails, used both for model geometry construc-
tion and for spatially distributed calibration performed by variational data assimilation with the
DassFlow platform (2D (Monnier et al., 2016; Pujol et al., 2022), 1D hydraulic model (Brisset
et al., 2018; Larnier et al., 2021; Pujol et al., 2020; Malou et al., 2021), multi-D with hydrology
(Pujol et al., 2022)) (cf. GitHub : https://github.com/orgs/DassHydro-dev/repositories) .

2. Hydrological-Hydraulic network model

We consider a 2D river basin domain Ωrr, on which is applied a distributed hydrological model
Mrr, that contains a sub-domain Ωhy on which is applied 1D M1D

hy or 1Dlike-2D M2D
hy hy-

draulic model of the river network, inflowed by the hydrological. The inflow points are defined
by preprocessing and correspond to upstream and lateral tributaries draining sub-catchmetns.

We only detail here for brievity our DassFlow 1D model solving the 1D Saint-Venant
equations over River networks. The 1D-like-2D model, based on the resolution of the 2D
shallow water equations with a single solver, and including semi lumped hydrological model in
DassFlow 2D is detailled in (Pujol et al., 2022).

For 1D modeling, the hydraulic domain Ω1D
hy , Ω1D

hy ⊂ Ωrr ⊂ R2, is a portion of a hydro-
graphic network plus its floodplains, described by connected segments; t ∈ ]0, T ] denotes the
physical time and x ∈ Ω1D

hy the curvilinear abscissa. Let A (x, t) [m2] be the cross-sectional
area of flow and Q (x, t) [m3/s] the flow rate such that Q = UA with U (x, t) the mean velocity
[m/s] over a cross-sectional area of flow. The Froude number for any cross-section is defined as
Fr = Uc =

√
Q2WgA3, where W is the top width, and compares the flow velocity U with the

wave velocity c; Fr2 compares the kinetic energy of the moving fluid with the potential energy
of gravity.

The 1D Saint-Venant equations taking into account a variable cross-section A with lateral
contributions ql, write as follows:

M1D
hy : ∂tU+ ∂xF(U) = S(U)

U =

[
A
Q

]
, F(U) =

[
Q

βQ2

A

]
, S(U) =

 ql

−gA
(
∂Z
∂x

− Sf

)
+ Uδlql

 (1)
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where Z(x, t) is the WSE [m] and Z = (zb+h) with zb(x) the river bed level [m] and h(x, t)
the water depth [m], Rh(x, t) = A/Ph the hydraulic radius [m], Ph(x, t) the wetted perimeter
[m], g is the gravity magnitude [m.s−2], qlat(x, t) is the lineic lateral discharge [m2.s−1] and
klat is a lateral discharge coefficient chosen equal to one here since we consider inflows only.
Let us recall the Froude number definition Fr = U/c comparing the average flow velocity U

to pressure wave celerity c =
√

gA
W

where W is the flow top width [m]. β is a dimensionless
coefficient accounting for velocity non-uniformity and set to 1 by default.
The friction term Sf is classically parameterized with the empirical Manning-Strickler law es-

tablished for uniform flows Sf =
|Q|Q

K2A2R
4/3
h

where K
[
m1/3.s−1

]
is the Strickler coefficient.

Richer formulations are also available: K(h) = γhδ, or the classical two-bed formulation
(Nicollet & Uan, 1979).

The Saint-Venant equations are solved on each segment of the river network and the conti-
nuity of the flow between segments is ensured by applying an equality constrain on water levels
and mass conservation at the confluence between two segments.
Boundary conditions are classically imposed (subcritical flows here) at boundary nodes (main
hydrological inflows here) with inflow discharges Q(t) at upstream nodes and WSE Z(t) at the
downstream node; lateral hydrographs qlat(t) at in/outflow nodes. The initial condition is set
as the steady state backwater curve profile Z0 (x) = Z (Qin (t0) , qlat,1..L (t0)) for hot-start. This
1D Saint-Venant model is discretized using the classical implicit Preissmann scheme (see e.g.
(Cunge et al., 1980)) on a regular grid of spacing ∆x using a double sweep method enabling to
deal with flow regimes changes; hourly time step ∆t here. This is implemented into the compu-
tational software DassFlow (see DassFLow documentation; accurate finite volume scheme are
also available (Brisset et al., 2018)).

3. Inverse algorithms
We denote by Y ∗

hy the set of multisource observations of hydraulic responses over the river
network domain Ωhy that we aim to assimilate.

Given a spatio-temporal flow model, either 1D or 2D shallow water models above, given
flow observables provided by in situ and airborne sensors, a VDA algorithm aims at estimating
the unknown-uncertain input parameters of the model by minimizing the misfit between the ob-
servables Y ∗

hy and model outputs U (θ). We denote by θ the unknown or uncertain parameter of
the hydraulic model, that can contain spatialized bathymetry b and friction K, spatio-temporal
boundary conditions Qin and source terms ql such that:

θ = (b(x), α(x), β(x), Qin(xin, t), ql(xl, t))
T (2)

Where xin denotes the spatial coordinates of the BC inflow points and xl the lateral inflow
points.
The VDA method can be applied to one of the model only as in 1D (Brisset et al., 2018; Larnier
et al., 2021; Garambois et al., 2020; Pujol et al., 2020) or in 1Dlike-2D (Monnier et al., 2016;
Pujol et al., 2022). The considered unknown-uncertain parameter θ is high-dimensional and
the cost gradient computation relies on the adjoint model derived by automatic differenciation
using the Tapenade software (Hascoet & Pascual, 2013).
We consider the cost function:

J(θ) = Jobs(U(θ)) + αregJreg(θ) (3)
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where Jobs(.) and Jreg(.) are differentiable, convex functions and αreg is the regularization
weight. The observation term Jobs is defined to account for multi-source (depth, discharge,
surface velocity, ...) as in e.g. (Pujol et al., 2022), through scaled and potentially weighted
terms accounting for data-model misfit.
A variable change based on a background covariance matrix B, acting as a precondition-
ning of the optimization problem in context of equifinality, is used (Larnier et al., 2021).
We define a diagonal matrix B = diag (Bb, BK , bQ) with 2 decreasing exponential kernels

(BQ)i,j = (σQ)
2 exp

(
− |tj−ti|

LQ

)
, (Bb)i,j = (σb)

2 exp
(
− |xj−xi|

Lb

)
and BK = diag

(
σ2
α, σ

2
β

)
,

where LQ and Lb act as correlation length and scalar values σ□ can be seen as variances.
In this case, the new control variable is k = B−1/2 (θ − θ∗) and the optimization problem reads:

k̂ = argmin
k

J (k) (4)

Where j(k) = J(θ) and the new optimality condition reads B1/2∇J (θ) = 0.
The optimization problem is numerically solved using the quasi-Newtion descent algorithm
L-BFGS-B (Zhu et al., 1997). For more details on the formulations and algorithms, see e.g.
(Monnier, 2020). The optimization is started from a background value denoted θ∗, that can
contain a priori physical knowledge of the system, and/or be given by a global search in lower
dimensional control spaces as done with the Low Froude model in (Larnier et al., 2021).

4. results
This section presents the construction from multi-source datasets of 2 modeling cases of various
sophistication, first of the Maroni and next of the Adour River networks. The Maroni is repre-
sentative of large and sparsely gauged rivers and a priori ”SWOT compatible”, while the Adour
is more densely gauged and known while being a priori in the limit of visibility of SWOT. Both
rivers networks present physical complexities in terms of tidal effect propagation from down-
strea, and complex geomorphological facies. Spatio-temporal model parameters are estimateed
by VDA on synthetic (real ones showable in November) SWOT data at the end.

4.1. Multisatellite dataset and construction of a 1D model of the Maroni river network
The river network portion we consider has been defined from a fixed threshold on drained area.
The inflow points simply correspond to the upstream subcatchments of those main rivers - we
here neglect some small lateral tibutaries which drain only a few percent of the total basin area.

A rich multi-source dataset has been collected and processed over the Maroni River net-
work that is discretized into 24 main reaches between main inflows. It is illustrated in Fig. 1
and is composed of:

• Water masks from Landsat optical images (Pekel water mask) and from Sentinel 1/2 radar
images (ExtractEO algorithm).

• Nadir altimetric WS elevations from Sentinel and Jason satellites, but also from the drifting
orbit ICESat-2 satellite.

• In situ limnimetric and discharge time series at sparse gauging stations (VigiCrues network)
• In situ longitudinal water surface profiles gained from boats equiped with GPS.
• Merit digital elevation model (DEM).

An algorithm has been set up (not presented) for ICESat-2 altimetric data processing based
on an high resolution average water mask that is used to crop ground tracks as depicted on the
top left of Fig. 1. The processed altimetric WS elevations compare fairly well to in situ WS
GPS profiles as illustrated on one segment among 24.

5



Figure 1. Maroni catchment and mains rivers network with SWOT cal-val groundtrack:
Multi-source (Sentinel, ICEsat, in situ, hydroSHED) dataset over the Maroni river net-
work for model construction; hydrological sub-basins in grey.

A spatial filtering approach is applied to the temporal water masks since we first want to
capture main contraction-enlargements of river channels and main hydraulic controls for our
1D model.

The hydraulic model mesh and geometry is built as follows. A ”fishbone” mesh is automat-
ically defined on top of the water mask using rivers centerline, at a fine spatial spacing of few
hundred meters (to make the most of data while ensuring accurate resolution of the hydraulic
model). A simple rectangular cross section is considered here which is reasonnable for such
rivers morphology (cf. discussion in (Pujol et al., 2020) for the ”nearby” Negro River) and its
width is given by the average water mask. The a priori channel bottom elevation b∗ is obtained
by inverting the low Froude model (cf. (Larnier et al., 2021; Pujol et al., 2020) given GPS flow
lines and assuming a constant friction of K = 30.

Inflows are provided by the regionalized hydrological model MGB. Downstream hydraulic
boundary condition is imposed either as a Neumann BC or with water surface elevation from
altimetry.

4.2. Estimation of river network model parameter by assimilation of multisatellite data
A first data assimilation experiment is presented here, it is based on the hydraulic model built
above. It consists in solving inverse problem 4 by assimilating all available altimetric data over
the river domain in space and time. The control vector 3 is composed of spatially distributed
bathymetry, friction coefficients and inflow discharge time series and is of high dimension. A
simultaneous optimization of these hydraulic controls is performed using the data assimilation
algorithm presented above.

The estimates obtained after satellite altimetry (nadir) data assimilation are shown in Fig-
ure 2 for spatially distributed bathymetry over the 23 reaches (spatially distributed friction not
shown) and in Fig. 3 for the 12 inflow hydrographs. The model is also in good agreement with
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Figure 2. Estimated spatially distributed bathymetry coefficients for the 23 segments
of the Maroni River network. ité14 Theta triplet.

in situ flow depth time series at two upstream gauging stations at Papaichton and Maripasoula
(Fig. 3, right).

SWOT data assimilation could be presented at the conference.

4.3. 1Dlike and 1D2D modeling from LiDAR data, the Adour river network

A 1D-like - 2D model has been built in (Pujol et al., 2022) over the Adour River network. It is
composed of a 2D zone over the city of Bayonne, based on an operational hydraulic model, and
of a 1D-like network. Here the effective 1D-like channel geometry has been built from high
resolution Lidar DEM (Fig.4).

One particular feature of the area is the tidal control, which is set around 6km from the
2D area and impacts most the the modeled area, reaching more than 50km inland. Calibration
of the bathymetry, using limnigraph data and starting with a prior value based on the DEM,
allows to accurately model this signature propagation up to the upstream parts of the model (not
shown).

In an academic twin experiment setup, upstream hydrographs were inferred from the obser-
vation of their mixed signatures on water depth (not shown). Fair results were obtained starting
from unbiased priors. This opens the way to investigate the estimation of ungauged lateral trib-
utaries from multi-source data as well as the estimation of effective channel parameters from
multi-source flow observations. Forthcoming SWOT data (see swathes in Fig.4) will be tested
on this relatively narrow river network. A coupling with a regionalized hydrological model
model will be studied.
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Figure 3. Estimated spatially distributed hydrographs for the 12 main inflow points over
the Maroni River network. ité14 Theta triplet.

Figure 4. Adour river network upstream from Bayonne (tidal boundary), with observ-
ability from in situ stations (Banque HYDRO network) and satellite missions (altimetry
from SWOT, Sentinel 3A-B, Envisat and Jason). High resolution DEM from LiDAR used
to build 1Dlike network model and 1D2D model with urban flood at Bayonne.
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5. Conclusion and further work
This contribution presented the construction of river network flow models, in coherence with
multi-source data, over the Maroni and Adour River basins. Several preprocessing tools have
been developped to pre-process multi-source data and prepare the model inputs including mesh
and coupling with regional hydrology. Two river network hydraulic models inflowed by hy-
drological models were built. The capabilities of the data assimilation algorithm are illustrated
on a simultaneous optimization of spatially distributed bathymetry-riction and inflows over the
Maroni network using existing nadir altimetry missions. Further work consists in studying the
assimilation of SWOT satellite spatio-temporal observations, starting with the data collected
this spring on the Cal-Val track over the Maroni. This work opens perspectives for regionaliza-
tion of spatially distributed river channels parameters from multi-source data as well as model
hydrological regionalization through information feedback in the hydrological-hydraulic cou-
pling (cf. (Pujol et al., 2022) also another proceeding presented). The proposed methods are
transposable and implemented in open source softwares.

6. Authors contributions
KL and LP performed numerical results respectively on the Maroni and Adour cases. PAG su-
pervised this research and wrote the article. The design and development of the inverse method
was supervised by JM. All authors participated to data processing, discussions and manuscript
revision.
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