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Coupling plant growth model with pests and diseases (P&D) models, with consideration for the long-term 
feedback that occurs after the interaction, is still a challenging task nowadays. While a number of studies 
have examined various methodologies, none of them provides a generic frame able to host existing models 
and their codes without updating deeply their architecture. We developed MIMIC (Mediation Interface for 
Model Inner Coupling), an open-access framework/tool for this objective. MIMIC allows to couple plant 
growth and P&D models in a variety of ways. Users can experiment with various interaction configurations, 
ranging from a weak coupling that is mediated by the direct exchange of inputs and outputs between 
models to an advanced coupling that utilizes a third-party tool if the models’ data or operating cycles do 
not align. The users decide how the interactions operate, and the platform offers powerful tools to design 
key features of the interactions, mobilizing metaprogramming techniques. The proposed framework is 
demonstrated, implementing coffee berry borers’ attacks on Coffea arabica fruits. Observations conducted 
in a field in Sumatra (Indonesia) assess the coupled interaction model. Finally, we highlight the user-centric 
implementation characteristics of MIMIC, as a practical and convenient tool that requires minimal coding 
knowledge to use.

Introduction

Agroecological transition is an active research and development 
area, in which modeling agronomical system productions must 
be assessed from complex systems modeling in regard to the 
processes involved in and their interactions. As mentioned by 
Brandmeyer and Karimi [1], “complex environmental problems 
involve processes that occur both within and between environ-
mental media”; thus, both aspects must be considered to build 
efficient model couplings.

The authors underline the difficulties in handling how the 
different models interact with each other. In each field of study, 
modeling communities developed their own techniques and 
frameworks for creating efficient simulation models of the pro-
cesses they are interested in [2]. Nevertheless, certain problems 
and complications are not specific to one discipline.

In particular, the integration of the potential intertwined effects 
that the dynamics of certain models may have on each other and 
the compatibility of their architecture [3] focus our interest.

Indeed, we are interested in an application in the environ-
mental domain, more specifically, in estimating plant produc-
tion under certain conditions. In general, the productivity of a 
plant that has been attacked by a pest or a disease (pest and 
disease (P&D)) is assessed in the short term. P&D directly 
damages one or more organs of the plant by targeting them. If 

the infected organs encompass the fruits, then yield reductions 
are direct. Production projections at mid- and long term are 
seldom considered.

However, even if the fruits are not directly affected by the 
attack, the future yield and growth of the plant are usually 
affected because of the decrease in biomass production (e.g., 
an attack on the leaves reduces light interception). In addition, 
these effects alter plant growth by changing the balance between 
organs and potentially the distribution of resources; Fig. 1 illus-
trates such an effect.

These feedback effects are rarely taken into account when 
coupling descriptive models. This is, in part, due to the lack of 
mechanistic dynamic approaches reported at the organ level to 
model and simulate the interactions between plant growth and 
P&D attacks [4]. Therefore, feedback to the plant itself can 
hardly be assessed. Another critical point is that, even when 
mechanistic models are available, their coupling potential is 
not evaluated, both for computational cycles and for the data 
on which they interact with each other.

To determine more precisely the thresholds at which P&Ds 
are likely to have a important economic impact on production 
[5] and to make an appropriate treatment decision, a coupled 
model operating over the long term would be helpful.

Such a model could provide a more accurate estimation 
of the effects of climate change on plant phenology/biotic 
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development. In the last decade, Uganda has experienced a 
great resurgence of P&Ds in coffee tree fields [6,7] despite 
the important efforts of national institutes to create resistant 
clones, especially for coffee wilt disease (Fusarium xylarioides). 
In addition to this, climate change induces new environmental 
conditions affecting plant growth dynamics and the dynamics 
of pathogens and insects [8–10]. Consequently, the coffee berry 
borer (CBB) (Hypothenemus hampei) and coffee leaf rust (CLR) 
(Hemileia vastatrix) are present in Uganda, although at mod-
erate levels. However, severe cases of red blister (Cercospora 
coffeicola), which affects leaves and berries; of black twig borer 
(Xylosandrus compactus) [11]; and of coffee wilt disease [12–14] 
are now reported. This region combines multiple P&Ds that 
affect coffee trees at various organs and scales. Thus, we consider 
it as a good experimental field for an application of coupling 
framework.

Objectives and scope
Our overall goal is to assess variation in production linked to 
P&D and related mechanisms at the plant and crop scales, as 
well as the impact of crop practices. These elements can only 
be accessed through models. In other words, as suggested by 
Cerda et al. [15] and Gaunt [16], the estimated effects of P&D 
on plants are considered to result from interactions between 
dynamic models: the plant growth model (considered at least 

at the organ scale), the P&D model, and even a human inter-
vention model (treatment, harvest, etc.). We are thus facing a 
complex system involving processes that interact at different 
levels, with the possibility of collective behaviors and rela-
tionships with the environment [17].

We propose here a specific coupling framework taking into 
account (a) the specific difficulties encountered when dealing 
with complex systems (cycle synchronization, data concur-
rency and sharing, etc.); (b) the specific difficulties related to 
the nature and type of models involved for plant growth and 
P&D dynamics models; (c) the limitation of technical complex-
ity, as users are usually not specialized in automation and their 
convex domains; and (d) the possibility to add models without 
modifying other models already involved in the framework.

About plant growth models
In agronomy, process-based models (PBMs) and functional 
structural plant models (FSPMs) are 2 major frameworks to 
model plant growth dynamics.

PBMs, generally referred to as crop models, estimate the 
biomass produced mainly from the intercepted light by leaves  
per unit area (m2)[18]. The different organs are grouped into 
distinct compartments. The distribution of produced biomass 
within each compartment is differentiated, allowing yield esti-
mation. However, PBMs do not consider the organ typology 
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Fig. 1. Interactions between P&D dynamics and coffee phenology. Case of a leaf disease affecting the biomass accumulation with a cumulative effect on the long-term plant growth.
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resulting from the plant’s structure, the plant phenology, nor 
the mechanisms that occur within the plant.

The FSPM aims at modeling the establishment of the plant 
structure and the functioning of the organs. In FSPM, the prop-
erties and functions of each organ are taken into account [19]. 
In particular, the distribution of biomass produced by the dif-
ferent organs is followed at the scale of each organ in the whole 
plant. Such models operate on the individual plant scale and 
generate an explicit 3D geometric representation of the plant. 
However, using FSPM formalism requires calibrations of the 
model parameters that are often cumbersome.

Nevertheless, with a limited number of assumptions and the 
use of certain PBM formalisms, it is possible to factorize the pro-
cesses involved in FSPM, based on the attributes of the organ 
structural criterion, and generate a model with a reduced com-
plexity [20]. Such a design is illustrated by the GreenLab formal-
ism [21]. It applies the notion of a common biomass pool, assessed 
on several crops of interest [22]; uses the traditional light inter-
ception model of PBM; and operates with cohorts of organs 
defined from chronological and physiological ages [23,24]. 
Furthermore, this style of formalism allows to move from the 
individual plant level to the crop level.

About P&D models
There are numerous ways to design and qualify P&D models. 
We distinguish here 2 categories, statistical models and mech-
anistic models.

Statistical models are developed from data and statistical 
correlations between model variables. These models are capa-
ble of prediction but are difficult to transfer; they are difficult 
to project beyond the spatial and temporal boundaries of their 
underlying data [25].

Mechanistic P&D models include explicit hypothesis on bio-
logical mechanisms that influence the dynamics of the P&Ds. 
These models can be used to simulate the P&Ds on different 
scales (plots, regions, countries, etc.) [26,27]. Notions of cohorts 
are also often inherent in these approaches, quantifying popu-
lations of similar age and behavior.

Plant and P&D model coupling
Conceptually, coupling 2 or more processes together falls into 
one of the following categories, inspired by [28]:

1. � Sequential coupling or loose coupling: Models are com-
pletely decoupled or models exchange data through inputs/
outputs (I/O).

2. � Shared coupling: (a) GUI (graphical user interface): 
Models share a common GUI or (b) Data: Models 
share the full I/O database.

3. � Embedded or integrated: One model is fully contained 
within the other (usually as a subroutine) or model 
codes are merged into a single coherent model.

4. � Framework coupling: Use of a global modeling frame-
work, where the models are coupled using a third-party 
tool commonly called “Coupler,” based on a combina-
tion of the previous methods.

The literature on coupling plant and P&D models to estimate 
plant production agrees that this is a challenge, requiring more 
physiological and field studies [29]. Studies are still scarce on 

the subject today. The most popular categories of coupling are 
loose coupling and integrated coupling.

The DynACof coffee plant model [30] is a dedicated PBM. In 
a recent study, it was linked to a rust model, with a loose coupling 
defined by the ratio of healthy to damaged leaf area [31].

Interaction through data is easy to manage, but this type 
of coupling requires some synergy between models. It is dif-
ficult to generalize to multiple models or interaction cases 
if the I/O do not match the requirements of each model. To 
circumvent this type of problem, a modeling environment 
may be mobilized such as OpenAlea [32]. This platform pro-
vides users an interface to create interactions between plant 
(sub)models and their environments. OpenAlea allows cou-
plings ranging from simple sequential to shared coupling; 
users can simply define model sequences or build graphs to 
connect I/O models with a generic graphical interface: VisuAlea. 
The platform also provides multiple analysis and visualiza-
tion tools. However, even if users are able to produce inter-
acting models, this still requires coding to adjust or add other 
components [33].

The theoretical study conducted by Qi et al. [34] models the 
palm tree under pest attack, whose population is also con-
strained by auxiliary insects; the population dynamics and 
attack models of P&D integrate the plant growth model. This 
is a case of embedded and integrated coupling. Here, the feed-
back on biomass and plant populations is well evaluated over 
the long term, but while the plant model is generic, the insect 
models and interactions are not: Attacks are limited to leaf 
damage, and synchronization is implicit and climate conditions 
are supposed to be stable.

Recently, Motisi et al. [35] propose an integrated approach 
to such a system by decomposing the P&D model (leaf rust) 
and the growth model (coffee) into smaller models, acting as 
submodels embedded in each other, building an integrated 
coupling.

Le Chevalier et al. [36] developed a framework, inspired by 
the DEVS (Discrete Event System Specification) mathematical 
formalism [37], involving a simple big leaf implementation of 
the GreenLab model with a climate model (rainfall and tem-
perature) and a water diffusion model (runoff, soil diffusion, 
and plant uptake); this framework allows modeling growth 
variability related to plant competition for water and local con-
ditions such as altitude and orientation.

A common drawback of these examples is their lack of gen-
erality, especially regarding adding/changing P&D models or 
changing plant species. This is reflected in the limited literature 
that combines abiotic (climate) and biotic (P&D and/or farmer) 
influences on the plant [4]. Classically, model interactions are 
assessed by mutually coupling models together. However, this 
method is case specific and difficult to generalize even using a 
platform such as OpenAlea, as highlighted by Garin et al. [38].

The work presented here is part of a study focusing on P&D 
attacks on Robusta coffee in Uganda and, more specifically, on 
fruits with red blister and CBB; on leaves with CLR; and on 
young branches with black twig borer. We address modeling 
the interactions occurring at various levels of the plant with 
different P&D models over a large period (theoretically, the 
entire life span of the plant). To this end, our proposal is based 
on a “framework coupling” that encompasses the various cou-
pling categories outlined previously [28].

In the following contribution, the rationales and compo-
nents of the proposed model coupling framework are presented 
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first. The framework’s architecture and implementation are 
then explained. We then present a case study including the 
CBB and a fructification model. Before concluding, the frame-
work structure genericity and assumptions are discussed.

Materials and Methods

Framework design assumptions
Although our applications are dedicated to the evaluation of cof-
fee production under P&D attacks, we aim to develop a generic 
approach, adapted to many interactions mobilizing agronomical 
models, but not as generic as an implementation under DEVS 
(some arguments are given in the discussion) [37]. The latter 
would strongly put constrains on how to define the models and 
their inner mechanisms, particularly with regard to their syn-
chronization procedure.

OpenMole could also be considered as an alternative [39]. 
However, OpenMole is not strictly a model coupling environ-
ment, and it does not provide an environment to design models 
from scratch. OpenMole shows high interest for analyzing exist-
ing interaction codes. It helps modelers to evaluate the sensitivity 
of their models’ parameters and optimize them. Once finalized, 
at exploitation stage, OpenMole offers valuable upscaling deploy-
ment mobilizing cloud or HPC.

In MIMIC (Mediation Interface for Model Inner Coupling), 
our focus is to assist the user in the creation of the basic structures 
of the interaction. We may thus consider that an interaction 
model could be first created with MIMIC and then be integrated 
into management environments such as OpenMole.

Before describing our approach, we list here the founding 
assumptions of our framework.

Because we aim to integrate feedback on the plant growth 
model, we focus on developing the framework at the individual 
plant scale. This self-imposed condition allows us to implicit 
the spatial aspect involved in many P&D attacks.

Associating the effects of the dynamics of different models 
can be complicated, especially when considering models that 
work on different time scales or natures (chronological or ther-
mal) and when considering feedback. The users must therefore 
be able to define a cycle correspondence between the third party 
and each model.

Among the different formalisms of plant growth models men-
tioned above, the adoption of a cohort-based formalism allows 
flexibility in the coupling of models by reducing the number of 
parameters required for calibration [40]. In addition, this formalism 
offers the advantage of incorporating plant growth feedback on 
organogenesis for the expression of plasticity in a competitive con-
text [41] and provides practical means for parameter evaluation 
[42], including the case of functional feedback on the plant struc-
ture [43]. The structure calculation is implicit; calculations are fac-
torized as defined by the number of organ types and cohorts (organ 
ages and physiological states), leading to short computation times 
[44] and, thus, minimizing interaction complexity. For P&D mod-
els, some correspondence with the type of plant model is necessary 
to reduce the complexity of the coupled system. For this reason, 
models using groups (cohorts) of populations are preferred.

Some P&D models are “individual-based” or based on age 
groups to take into consideration that various stages of devel-
opment do not always react the same way to environmental 
factors (sometimes called cohort). In study of Rodríguez et al. 
[45], the term “cohort” designs a group of plants and CBB that 
are all the same age.

This assumption allows to take cohorts from each model and 
to create new ones with flexible criteria (see the discussion first 
section). Thus, the users can manipulate the outputs of the mod-
els and even add new interaction-related variables to define the 
new cohorts.

The proposed approach is framework based, which means that 
all models involved interact through a third party and do not 
interact directly with each other. The models involved must be 
able to initiate a computation at a given step, reading their inputs 
and providing outputs for the requested step. The models mobi-
lized to interact should not be heavily modified, and their internal 
structure or operation must not be altered by the coupling.

MIMIC, a formal framework for interaction
In this study, the third-party tool is called MIMIC. MIMIC 
handles interactions between models in a flexible way, regard-
less of the number and types of models. In addition, while the 
development is based on the interplay between P&D and the 
plant growth model, this framework is not exclusive to P&D. 
MIMIC ensures coupling effects on the dynamics of all models 
on a long-term time scale.

MIMIC: Overview and principles
MIMIC manages the connection between models and their 
inputs and outputs. The fundamental assumption of the model 
is that each model operates and evaluates its own internal states 
in a finite amount of time, from one internal step to the next. 
MIMIC supervises the interaction through its own states and 
information, which are evaluated on the basis of the informa-
tion collected from the connected models.

On the basis of the information obtained from the output of 
the models, MIMIC manages the underlying mechanics of the 
interaction between the components; there is no limit to the num-
ber of models that can be linked together. This reduces the expected 
complexity of such system combinations and allows for easy han-
dling and independence of the models. Moreover, when develop-
ing a new application (adding elements and changing dynamics), 
no changes are required to MIMIC’s kernel. This is an advantage 
from a development point of view because each component exe-
cution process is distinct and can be modified independently, 
which sustains the correct execution of the framework.

MIMIC: The components
MIMIC can be considered as a hyper model consisting of 3 
main components, as shown in Fig. 2 in its central part. These 
components solve the problems classically encountered when 
coupling different and multiple dynamic systems, from desyn-
chronization to feedback integration.

The first component schedules the simulations according to 
the temporalities of the connected models. The Cycle Synchronizer 
(CS) executes the connected models and starts the interaction 
process between the involved models. This component prioritizes 
multiple interacting models based on users’ preferences. The sec-
ond component, the Interaction System States Server (ISS), serves 
the communication protocols used to create the MIMIC state 
variables (variables used for interactions). Finally, the third com-
ponent, the Interaction State and Data Recorder (ISDR), ensures 
the integrity of the interaction and the state variables of the cou-
pling interface connecting the interacting models. It also manages 
data and other dynamics that are not required for interaction but 
can be requested by the users for observation purposes.

Cycle Synchronizer (CS)
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The CS component is built around a specific behavior design 
pattern called Mediator (Fig. 3), which describes how objects 
interact with each other. The Mediator promotes loose coupling 
by preventing objects from referring to each other explicitly and 
allows some independence between them [46]. A so-called 
“behavioral model” reduces chaotic dependencies between com-
ponents. It forbids direct communication between them and 
requires them to collaborate only through the Mediator.

The activities of each model and component are scheduled 
using this Mediator-based component. Thus, it addresses the prob-
lems related to desynchronization. An essential point concerns the 
definition of scheduling. Typically, as defined in the DEVS formal-
ism [47], a temporal base reference must be addressed to each 
connected model, and each model must be able to return its own 
cycle conversion step in the temporal reference.

For example, many P&D models operate by generations 
resulting from climate data (and other parameters), but plant 
models typically define their cycle from organogenesis (from 
a thermal calendar). In this case, an effective method is to have 
the users set the default time cycle in the interface based on 
the smallest cycle of the models available during the initiali-
zation phase and then mobilize a function (e.g., a function 
related to climate data) to retrieve the average daily tempera-
ture from which the interface calculates the date of the next 
plant growth stage.

Interaction System States Server (ISS)
When one of the models is active (running), its state varia-

bles pass through this component and are converted to MIMIC’s 
state variables. This operation creates a state variable that can 
be understood by any other model involved in the interaction. 
The definition and translation of the ISS state variables are the 
responsibility of the users, based on their knowledge of the 
interacting models and the desired observations. State variables 
are of 3 types: (a) state variables considered as output copies of 
the connected models, (b) state variables specific to the internal 

operations of MIMIC, and (c) state variables defined by the 
users to encode the interaction between models and MIMIC.

Interaction State and Data Recorder (ISDR)
In this component, in addition to interaction-relevant states, 

data collected from connected models and internal data result-
ing from computations within the interface are recorded and 
stored at each event (when any model is executed) processed 
in the schedule. The storage of state variables and data from the 
coupling model interface makes stop-and-go simulation avail-
able. In a broader sense, storing interaction state and data allows 
users to access a simulation from a previous date in the sched-
uler, rerun it, and simulate different scenarios by dynamically 
adjusting the simulation parameters. The results of the inter-
action simulation are accessible directly from MIMIC, without 
going through the associated models. The results are adaptable, 
independent of the simulation itself, and can be read backward 
and forward (to the last event of the simulation).

To illustrate the MIMIC framework, a simple attack case is 
considered below.

A case study: The CBB and Arabica coffee
In this simple example, we consider the CBB that attacks coffee 
berries. We assume that, at the time scale considered, there is 
no visible effect on plant growth.

The CBB model
H. hampei (Ferrari) is a pest known as CBB, belonging to the 
order Coleoptera, family Curculionidae, and subfamily Scolytinae 
[48]. This small beetle originates from Central Africa and is pres-
ent in all coffee-producing countries of the world.

A CBB hatches from an egg in the seed of a coffee berry. 
When the fertilized females leave the fruit, they colonize another 

MIMIC

Plant 
growth 
model 

Kernel components

Cycle 
Synchronizer (CS)

Interaction 
System States 
Server (ISS)

Interaction State 
and Data Recorder 

(ISDR)

Plant model 
states

Plant growth 
cyclesP&D cycles

P&D model’s 
states

Pest and 
disease 
model 

Fig.  2.  The “Mediation Interface for Model Inner Coupling” (MIMIC) schematics, 
illustrating the kernel components (in blue) on a coupling example with a P&D model 
(left green box) and a plant growth model (right green box).
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Larva

Pupa

Adult

Fruit 
colonization

Egg laying

15
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2

Fig.  3.  Female CBB life cycle representation. Circles stand for the stages. Arrows 
stand for transitions with their average duration in days. Light-colored arrow means 
the restart of the cycle for another generation.
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one and start their own colony (Fig. 3). The factors triggering 
the exit from the fruit are the age of the insect and the climate 
(temperature, humidity, and rain). CBB is attracted to by red 
(ripe) fruits and green fruits (if they are large enough). The 
insect is more attracted by red than green fruits; however, if the 
number of attractive fruits is small, then CBB will colonize over-
ripe fruits or fruits that have fallen to the ground. The average 
life span of a female CBB is nearby 45 d [49].

Fruits are grouped into 3 distinct categories. “Very attractive 
fruits” (VAp) are ripe fruits, from the moment they turn red. 
“Attractive fruits” (Ap) are well-developed green fruits. This 
category includes green fruits larger than 5 mm, with seeds 
capable of hosting the CBB, to fruits that turn yellow. “Ground 
fruits” (G) are all fruits fallen to the ground, whatever the for-
mer category they belonged to. In the proposed model, each of 
the above fruit categories has an attraction factor that influ-
ences whether CBB chooses to colonize a fruit or not.

Population monitoring is based on the grouping of different 
individuals within a population having the same oviposition 
day. Male CBBs are not considered in monitoring of populations 
as they do not play any role in the epidemic propagation (they 
represent only 

1

10 of the individuals in a colony and are not 
disseminated). As already mentioned, population dynamics 
depend on temperature, relative humidity, and precipitation.

The cohorts of the model are built by crossing the groups 
of individuals and the categories of fruits where these individ-
uals live.

On each simulation step, the results of new attacks are grouped 
into 2 categories: population data and fruit data. The population 
data contain information about each population group for a 
given day. It contains the date when this group left its original 
fruit to colonize other fruits, the number of flying CBB, the 
number of dead CBB, and so on. The fruit data include the 
fruit categories presented above. In addition, they are divided 
into 2 subgroups, healthy and colonized fruit. The result is a 
cohort of fruit categories attacked by a quantity of CBB hatched 
on a given day.

The coffee fruit cohort model
In the Sumatra region of Indonesia, Arabica coffee trees pro-
duce coffee berries throughout the year. With the presence of 

rainfall throughout the year and an average daytime temper-
ature between 22 and 30 °C, the equatorial climate provides 
the necessary conditions for the trees to flower. A plant growth 
model is created as a reduced model to simulate fruiting only. 
We designed a cohort fruit model inspired by the GreenLab 
cohort assumption: Fruits with the same parameters (chron-
ological age, physiological age, and sink power) are merged 
into the same cohort. An automaton is created that build fruit 
cohorts on the basis of the obseved numbers of berries har-
vested. Then, the model estimates the age of the fruits accord-
ing to the harvest frequencies and the climatic data.

Human intervention model
Human intervention is represented here as a simple harvest 
model. This model simulates harvesting of red berries at dates 
that correspond to observed data, which is useful for valida-
tion by comparing simulated data to actual data.

Integration of the coffee–CBB interaction
When CBB attacks a fruit on the tree, the inner seed is damaged, 
but the fruit continues to develop and the biomass is still dis-
tributed. We therefore consider that the feedback on the plant 
is negligible. Thus, in this case, the interaction focuses on the 
state of the fruits (attacked or healthy).

Interaction between the 2 models is achieved by converting 
the numbers of attacked fruits provided by the CBB model into 
the cohorts of the plant model An additional state variable ISS is 
created in MIMIC: the status of the cohort. This additional data 
is Boolean, indicating whether the cohort is colonized by the CBB.

Validation data
To validate the functioning of the interface, we used climatic, 
fruiting, and attack data on 2 coffee trees in Indonesia for 
almost a year [50]. The observations were not made daily but 
separated by slightly irregular periods of time (about 20 d 
between each observation). This implies a daily operation of 
the model and an estimated chronological age of the initial 
populations. The solution chosen was to consider maturation 
occured exactly between 2 observations. A CBB colony is 
established at the start of the simulation and begins its devel-
opment. The number of colonized fruits is initialized by the 
observed data. Because there is no data for fruit on the ground, 
this category was discarded from the simulation.

The study case and simulation results are presented below, 
after detailing the overall implementation aspects.

Implementation and Results

We present here the implementation of MIMIC, starting with 
the architecture before detailing the components and some 
specific features and functions.

Architecture (kernel, pseudo-models, and models)  
of MIMIC
Using MIMIC, to integrate models into an interaction structure, 
results in a software architecture composed of 3 layers (Fig. 4). 
The first layer consists of the models involved in the coupling. 
These models are independent and external to MIMIC. They 
are only linked to MIMIC through the second layer: the pseudo-
model’s layer.

Table 1. CBB’s cohort distribution based on population hatching 
day and colonized fruit category.

CBB popu-
lation/fruit 
category

Hatched the 
1st day

Hatched the 
2nd day

…
Hatched 

the nth day

Very Appeal-
ing fruits

Cohort (1, 
VAp)

Cohort (2, 
VAp)

… Cohort (n, 
VAp)

Appealing 
fruits

Cohort (1, 
Ap)

Cohort (2, 
Ap)

… Cohort (n, 
Ap)

Fruits on the 
grounds

Cohort (1, 
G)

Cohort (2, 
G)

… Cohort (n, 
G)
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The pseudo-models (red blocs in Figs. 4 and 5) are wrappers 
of the interacting models of the first layer. This association is 
unique and bijective. This layer is automatically created by 
MIMIC at the initialization stage. The pseudo-models provide 
all the information about the models, which are requested at 
run time. The third layer (blue blocs in Figs. 4 and 6) is the core 
of the MIMIC protocol. Composed of 3 components, it sched-
ules, manages tasks, and manages data exchanges. The 3 specific 
components are described below.

Functioning of MIMIC’s components
Models’ layer
Models are independent of MIMIC. They exchange only data 
with MIMIC (state variables, cycles, etc.) each time an execu-
tion call is processed.

Pseudo-models’ layer
Pseudo-models are automatically generated by MIMIC in an ini-
tialization process, from parameters and information related to the 
models, provided by the user (Fig. 5) filling a YAML file (see the 
User layer here under) [51]. The generated pseudo-model’s variables 
host the data requested for simulation and interaction (state varia-
bles, arguments, step size, and path to the model code), as well as 
the current model cycle and state (running, pending, or unsolic-
ited). The “mediator” field links the pseudo-model to the kernel.

MIMIC also generates the pseudo-models’ functions. “Call 
model” refers to the function used to call the related model. 

The 2 other functions are the constructor of the link to the 
MIMIC kernel (using “Addmediator”) and the constructor of 
the notifications to the kernel (using “Notifymediator”).

MIMIC’s kernel layer
The 3 components of the MIMIC’s kernel (CS, ISS, and ISDR) 
are directly connected to one another through a shared com-
munication bus (Fig. 6).

The CS controls how MIMIC manages and runs processes 
(Fig. 6, top). The function “UpdatesSchedule” is called each 
time a model or component is requested to close an event; it 
updates the list of scheduled tasks (Table 2), stored in the var-
iable “Schedule.” This type of dynamic scheduling allows inter-
action between models with different and varying step times 
or time natures, e.g., calendar and thermal time.

At each event, the “NotifyUser” function send messages to 
the console in a log file, allowing the user to follow the simu-
lation step by step.

The ISDR stores interaction-relevant state variables and 
simulation data (task schedule, last model run, etc.) step by 
step. This simulation data logging is convenient for stop-
and-go implementation. The ISDR is also appropriate when 
using a model with numerous outputs, from which a subset 
is requested to interact with variables in other coupled mod-
els. This component delivers the simulation results to the 
user.

 Models 
------------------- 

Model 1 
------------------- 

... 
------------------- 

Model n 

Cycle
Synchronizer

Scheduling

Interaction
System States

Server 

Interaction
State and Data
Recording 

Model layer

MIMIC layer

Pseudo-models

Pseudo-models layer

Fig. 4. MIMIC’s and models’ layer composition. The framework is composed of 3 layers: layer 1 (in green) stands for the external models, layer 2 bloc (in red) contains the 
pseudo-models, and layer 3 (in blue) contains MIMIC’s functioning components.
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Each time a pseudo-model is executed, the ISS is solicited to 
convert or translate the state variables (the output) of the 
pseudo-model to MIMIC state variables (the ones used in the 
interaction codes). Thus, they can be used as inputs for the other 
pseudo-models.

The user’s layer or how the users communicate  
with MIMIC
Interactions in MIMIC are generated from the users’ instruc-
tions, covering the following 2 aspects: (a) the interaction code 
itself written by the user and so-called UIM (user interaction 
model) and (b) the control of the simulation, the so-called UC 
(user simulation control).

In both cases, the instructions are processed through the 
“User–MIMIC communication” component. Indeed, we want 
the kernel being untouched and safe from external process to 
guarantee the platform integrity.

In MIMIC, we consider the UIM and UC as pseudo-models. 
This offers numerous interests. It keeps the architecture consistent 
as a whole; the state variables of the interaction can be kept and 

made available easily; it gives the potential to build a hierarchical 
embedding of applications; the user can define active observers 
(acting as controllers operating according to results gained in the 
interaction code).

Fig. 5. Representation of pseudo-models as Unified Modeling Language (UML) (red 
bloc in Fig. 4). The structure of a pseudo-model (generated by MIMIC) with its variable 
and function fields. Mediator fields link the pseudo-model with the kernel, while the 
“CallModel” function links to its “external model.” Note that in this UML diagram (and 
the following one), variables are values (input/output) used by the component, while 
functions are specific programs related to the component.

Fig. 6. MIMIC’s kernel UML representation (blue bloc in Fig. 4), describing the data 
structure of MIMIC’s main components (Cycle Synchronizer, Interaction State and 
Data Recorder, and Interaction System States Server) linked through a communication 
bus (blue cylinder).
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The user–MIMIC communication component is, in fact, a 
parser that creates metadata for building the pseudo-models 
and the connections to the kernel (Fig. 7).

User interaction model (UIM)
Users write in Julia language, the code describing the interaction 
between the models, using the pseudo-model’s state variables and 
pseudo-model’s calls. However, using Julia to encode the UIM is 
not a requirement: (a) The interaction code can also be an “exter-
nal” model, belonging to the model layer. This method leads to a 
higher level of complexity and lower performance since requesting 
to be wrapped in a pseudo-model. (b) Next, if the level of coupling 
is weak, operating only on the inputs and outputs of the models, 
forming a “shared coupling” as defined in [23], then the user is not 
requested to provide any UIM. The simulation starts directly from 
the initial schedule and runs from the explicit cycle input and 
output definitions described for the pseudo-model generation.

User simulation control (UC)
The UC defines the information related to the execution of 
models for simulation. These descriptions are presented in the 
form of a file in YAML format. The UC is used to parse the 
model metadata and create the variables to be mobilized dur-
ing the interaction execution process. An example of such a 
file is given in Table 3. Some input fields are required, while 
others, left by the user, are filled with a default value. In the 
table, the name given to the model is “Tree.” However, if no 
value was provided, then “model_n,” where n is the rank of 
the model in the file,would have been the default value.

The model rank, i.e., the order in which the model is described, 
sets the model priority. The order of models is essential, because 
the models’ priority is based on their location in the list defini-
tion. This priority is considered when several model calls must 
be processed on the same event date.

Executing MIMIC
MIMIC executes in a 2-step process. The first one, “MIMICinit,” 
runs the initialization of MIMIC and generates the pseudo-model 
codes and the initial schedule. The second one, “MIMICmain,” 
launches the schedule. MIMIC generates by default a CSV 
(comma-separated values) file containing the values of all variable 
states at each simulation step.

Development and dissemination
This framework is primarily aimed at scientists and engineers 
in the agricultural and environmental sectors looking to esti-
mate P&D effects on plants on long term to assess possible 
resilience of plants. We intend that this implementation be a 
user-friendly tool, with an open access code for further devel-
opment. The modular structure of the architecture should pro-
vide the flexibility to adjust and refine the interactions. Finally, 
its parameterization is easy to understand and is adapted to 
users who are not specialists in software development.

The tool was developed in Julia, an open-source high-level 
dynamic programming language [52]. It offers the advantage 
of calling scripts written in other languages popular in the 
plant science modeling community (MATLAB, R, etc.), and 
Julia remains close to them in its syntax. This choice is also 

Table 2. The case study tasks list and the schedule after 10 simulation steps. (A) List of events submitted to the scheduler. (B) The events 
agenda of the scheduled tasks. On both lists, parameters are the following, from left to right: name of model (Model3 stands here for the 
human model), step size for the model, last time executed, next time to be executed, and status in the schedule.

A.Submitted event list

Rank Process Id (name) Step size Order time Exec time Status

1 Tasks_Desk «CBB» 3.0 0.0 3.0 «Completed»

2 Tasks_Desk 
«Coffee_tree»

4.0 0.0 4.0 «Completed»

3 Tasks_Desk «CBB» 3.0 3.0 6.0 «Completed»

4 Tasks_Desk «Model3» 8.0 0.0 8.0 «Completed»

5 Tasks_Desk 
«Coffee_tree»

4.0 4.0 8.0 «Completed»

6 Tasks_Desk «CBB» 3.0 6.0 9.0 «Completed»

7 Tasks_Desk 
«Coffee_tree»

4.0 8.0 12.0 «In Queue»

8 Tasks_Desk «Model3» 8.0 8.0 16.0 «In Queue»

9 Tasks_Desk «CBB» 3.0 9.0 12.0 «In Queue»

B.Tasks scheduled at time 10

1 Tasks_Desk 
«Coffee_tree»

4.0 8.0 12.0 «In Queue»

2 Tasks_Desk «CBB» 3.0 9.0 12.0 «In Queue»

3 Tasks_Desk «Model3» 8.0 8.0 16.0 «In Queue»
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dictated (a) by the possibility to use existing codes (models) 
without direct rewriting; (b) by the performances, especially 
in terms of speed of the language; and (c) by a growing num-
ber of libraries produced by a growing community of contrib-
utors. This argument reflects concerns of many scientists in 
numerous fields [53].

In the user layer, translating variables from one model to another 
using variable manipulation with ISS or/and arithmetic operation 
is straightforward, even in Julia. The code is written in a file using 
a notepad, with a “.jl” extension or through a code editor. In the 
YAML file, the name of the functions and the path to the code are 
listed. The advantage of YAML over other file formats is its sim-
plicity to be read. Writing instructions for this file type is simple 
and understandable for users of all professional backgrounds.

Access to the source code is free via GitHub: https://github.com/
Houssem-Triki/MIMIC. The kernel code can be found there 
including the case study. The tool is coded as a package that can be 
downloaded using the Julia REPL command line. Users will find 
the templates for the YAML input files. These documents can be 
edited using notepad software or any code editor. The Git provides 
documentation on MIMIC and the case study example, for which 
a template sheet data file is provided for the fruiting data, allowing 
users to test different tree production and harvesting situations.

Study case: Sumatra, Indonesia  
(data used for simulation)
The case study example involving the CBB, fructification, 
and human models described in the previous section enables 

us to illustrate a simple application mobilizing MIMIC and 
its performances.

The models (CBB, coffee, and human) are loaded into MIMIC 
using a parameter template such as in Table 3. The complete tem-
plate for this case study can be found on MIMIC’s Git.

Parameters of the coupling
MIMIC’s parameters used in the study case are shown in Table 
4. The step time of the simulation will be determined from the 
parameters that are entered into the time data field of MIMIC’s 
model parameters. For more details, each model and, thus, each 
pseudo-model are characterized by the simulation’s step time 
(in cycles), the simulation’s start time (start simulation), and 
the simulation’s end time.

Users need to specify the models’ state variables (CBB, 
coffee, and human) that are relevant to the interaction in 
MIMIC in the “variables data” field.

Results of the case study
The interaction between the coffee tree and the CBB models is 
constructed around the attraction of the pest on the type of fruits 
(from the CBB point of view). A specific detail concerns the way 
fruit maturity is considered in both human and fruit models.

Among the datasets, 2 trees were chosen (named C52 and 
C22), exhibiting dissimilar fruiting dynamics (Fig. 8, bars). Tree 
C52 produced ripe fruits for nearly the entire year, whereas tree 
C22 produced fruits for only the first one-third of the moni-
toring period.

User interaction
model (UIM) 

User simulation
control (UC) 

User–MIMIC
communication 
---------------------- 
Data parsing 

Cycle
Synchronizer

Scheduling

Interaction
System States

Server 

Interaction
State and Data
Recording 

Pseudo-models

m

Fig. 7. Structure of the interaction between the MIMIC (functioning presented in Fig. 4) and the users. The data provided by the user are read and used to create metadata for 
the construction of the interaction in the “User–MIMIC communication.” Then, the metadata is used in creating and filling the pseudo-models.
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The proportion of infested fruits among harvested fruits for 
the 2 trees is the result of a MIMIC simulation in which an 
initial number of CBB was introduced. MIMIC simulated the 
attack dynamic accurately.

There was one significant peak in tree C22 and 2 less signifi-
cant ones. The models succeeded in their task of fitting both the 
primary peak and one of the minor peaks, both in terms of 
amplitude and length. There was a minor shift in the position of 
the final weaker peak.

As for tree C52, there were 3 major and 2 secondary peaks. 
Two of the major peaks and one of the secondary peaks were 
well fitted by the model in amplitude. The last major peak was 
underestimated in intensity. The first peak at the beginning of 
the monitoring did not correspond to the observations, which 
is due to the initial conditions. Dynamic systems may be sen-
sitive to initial conditions, and a small change can result in a 
different outcome [54].

Performances and coding key figures
The MIMIC code is compact, with reduced complexity. The 
complexity is linear as a function of the number of events. 
Table 5 shows its performance in the study case. Most of the 
simulation time is spent on initialization, which consists of 
interacting with the user layer. The rest of the run time is 
split between the MIMIC’s kernel components and the exter-
nal models.

Initialization clearly consumes the majority of simulation 
time. This is because Julia is executing a code for the first 

time. On the first run, Julia simulates a virtual machine to 
compile the algorithms. Hence,the second run requires less 
memory (3,720 GB with 28.9 s for the first run compared to 
a 727 MB with 3.81 s for the next one). 

Discussion and Perspectives

In this paper, we introduced a methodology and tool for linking 
models, specifically plant and P&D models. Here, we discuss 
the underlying assumptions of our proposal and present some 
near-term perspectives.

Cohort assumption
Cohorts simplify the complexity of models and their associated 
data. Indeed, factorization makes it easier to manipulate the 
outputs/inputs of the various modeling formalisms to make 
them interact. Processes are no longer treated on an individual 
basis, but as homogenous sets with the same behaviors and 
parameters. Cohorts are commonly used in health sciences; 
their benefits are frequently addressed [55].

In our case, the usage of cohorts reduces the complexity of 
the interaction. Consequently, factoring into cohorts simplifies 
the handling of the outputs/inputs of multiple modeling formal-
isms during interaction, due to the unit of time that characterizes 
each cohort Assumedly, we suppose that the plant models organ-
ize organs by cohort [20]. This assumption cannot always be 
mobilized. However, in the case of FSPMs, factorizations can be 
performed post hoc by establishing cohorts clustering all organs 
of same physiological stages and appearance date (thus, sharing 
similar environmental conditions). Conversely, in crop models, 
the cohorts can also be defined subdividing the PBM organ 
compartments, gradually identifying the cohorts from the num-
ber of new organs appeared [56].

Table 3. YAML model definition pattern example on a plant model.

Field name Subfiled Type of value Value

Is model active Boolean True

Name String Tree

Version Any a0.4

Language String R

Path to File Path from 
root

D:/MyPrg/
Plants/
TreeSim.R

Time data Nature Keyword (*) temperature

Unit step 
size

Value 20

End 
simulation

Value 2350

Start 
simulation

Value 0

Variables data State 
variables

Vector [Yield, 
biomass]

Inputs Vector [ RelativeTempe ]

Outputs Vector [Yield]

Interaction 
data

MyRefDir Path from 
root

/Fungus2Tree.jl

Language String C

*Day, month, or temperature.

Table 4. Parameters used for interaction in the case study in-
stancing the definition in Table 3.

Field name Subfiled Value

Is model active True
Name MIMIC

Version 0.9

Language Julia

Path to File ./MIMIC-main.jl
Time data Nature Day

Unit step size 1

End simulation 355

Start simulation 1

Variables data State variables [fruitsCohorts, Ag, 
Ar]

Inputs
Outputs [fruitsCohorts]

Interaction data MyRefDir /Interaction.jl
Language Julia
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Similarly, on P&D models, the cohorts can be defined from 
population dynamics from development stages. This allows 
compatibility between the interacting models.

About spatialization
In our proposal, we assume spatialization as an implicit aspect 
of the models. This point will not be detailed here. However, 
in some cases, geometrical (spatialization) can be related to 
aging (for instance, distance from soil or distance from crown). 
MIMIC may then be used for coupling spatialized models with 
ones that are not, providing the fact that the UIM can explicit 
the request spatialized inputs from the model implicit output 
ones.

Feedback and ISS
Pseudo-models’ output transformation is performed by the ISS 
component that allows the manipulation of the variables directly 
without having to go through modifications on the intervening 
models. This discharges the users to ensure complete compati-
bility between models’ outputs. It is up to them to handle the 
different levels of feedback of the interaction through the UIM. 
The users are given complete freedom on how to choose the 
principles of the interactions outside the models. This situation 
contrasts to other formalisms where inner modifications are 

requested, such as in DEVS [42], and where discrete time is 
driven by the models and events.

Despite DEVS formalism extensions, improvements, and 
adaptation to community needs [57], this problem is not solved 
including within the agronomy community [58], as illustrated 
in the Record project [59], an initiative stopped recently.

In MIMIC, the users can decide to make a shared coupling 
by not providing an UIM code, when the outputs between 
models are used as inputs. They only need to indicate these 
outputs/inputs in the UC file. Users can also explore different 
concepts on the interaction with the UIM code. They can 
make the interaction correspond to one of the other frame-
works proposed by Siad et al. [28].

Choosing Julia, user-friendly meta programming
Julia is a fast, dynamic, easy to use, and open-source program-
ming language; it is accessible to the modeling community. Its 
syntax bears a resemblance to the common program languages 
used by modelers (Python, R, and MATLAB). In addition, the 
UIM does not need to be written as a complex algorithm, as 
shown on our example.

When using dynamic programming (by requesting user–
MIMIC parser to produce the pseudo-models), Julia’s speed 
is advantageous because MIMIC’s input (UC and UIM) is 
preprocessed and an optimized code is generated. The parser 
in MIMIC will take most of the time and resources at the first 
run of the program. However, after it, the simulations are swift 
(Table 5) and users can update the simulation parameters 
without losing performance.

The interaction complexity can be analyzed according to the 
number of models involved in the system and, more precisely, 
to the number of operations handled by the ISS, which trans-
lates variable sets between the pseudo-models and the kernel. 
Ignoring the initialization stage (that can be considered as a 

Table 5. Study case runtime performance and code com-
plexity on the study case. User model and initialization;  
MIMIC’s kernel; external models. The runtime and memory 
allocation columns contain information for a first and sec-
ond execution (Intel Core i7-11850H @ 2.50 GHz, RAM 64 GB, 
Windows 10).

Task Runtime (s) # Calls # Code 
lines 

Ram (MiB) 

First 
launch 

Second 
launch 

First 
launch 

Second 
launch 

Init tool  8.6 0.17 1 5 1250  13,1 

Pseudo-
code 
generation 

Parsing 3.1  1.16 1 127 292  97.6 

Agenda 0.4 0.11 1 70 112  69.1 

Bit-
compile  

11.7 0.21 1  956  7.62 

Total init   23.8 1.65 1  2610 97.6 

MIMIC CS 0.66 0.60 354 201 274 263 

ISS 0.07 0.06 354 48 3.4 3.4 

ISDR 0.53 0.08 1 47 67.4 8.4 

Others 0.55 0.17 1 24 154  26.1 

Models CBB 2.44 1.13 354 382 553 321 

Harvest 0.10 0.09 354 31 6.9  5.9 

Fruit 0.03 0.02 354 57 1.2 0.9 

Total  28.9 3.81 1 992 3720 727 

A

B

Fig. 8. Simulation results compared to field data on 2 coffee trees in Indonesia. 
(A) stands for tree C52 and (B) stands for the tree C22. Points represent the 
recorded number of harvested fruits colonized by CBBs on 6 fruiting branches 
of the tree. The line represents the results of the simulation by MIMIC at the 
same date than the observation. Bars represent the total observed harvested 
fruits (healthy and colonized).
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constant value plus a linear cost in terms of the number of 
models involved), the complexity related to the requested 
model exchanges is drastically limited in MIMIC compared to 
an embedded approach. With MIMIC, the number of set trans-
lations leads to a linear complexity with the number of models 
involved, because for n models, n translations are required. In 
the embedded case of an upfront coupling between each model 
and the other, the complexity is defined by the number of mod-
els mutually coupled. For n models, there are potentially n-1 
variable set translations (to connect to the other models), 
which is, to say, up to n*(n-1) translations. 

Perspectives
It is advantageous to have a modular structure for MIMIC when 
integrating additional components and adding extra capabili-
ties. Additionally, it is designed to be compatible with other 
platforms, such as OpenAlea, even if not implemented yet [33]. 
We do not have a specific constraint on the type or nature of 
the involved models (except their ability to run in a stop and go 
way, and potentially input and output variables that can be 
expressed as cohort variables). Thus, the proposed approach is 
versatile and generic, which increases the coupling options.

We plan to design a generic plant model implementation 
within MIMIC. Users would then simply need to set plant-specific 
parameters and incorporate their other models (e.g., P&D).

Conclusion

The literature on the limitations of model coupling (plants and 
P&D) reveals that feedback is not taken into consideration and 
that it is challenging to find an appropriate framework without 
modifying the structures and logic of the models involved.

In this paper, the proposed framework was developed to 
address this issue and to provide a platform to couple prebuilt 
models. This framework is depicted by the tool MIMIC.

MIMIC provides the ability to couple models in a variety 
of ways, ranging from direct data transmission between mod-
els to more complex interaction principles that require a third-
party tool to add a new element and modify the outputs of 
the interacting models. MIMIC’s primary benefit is that it 
gives users the tools and freedom to construct their own 
interactions.

Given that all the coupled models and components of 
MIMIC are represented as pseudo-models, the implementation 
with Julia’s high-speed metaprogramming enables rapid inter-
action outcomes.

The implementation of MIMIC in Julia provides a flexible and 
straightforward algorithmic environment for users with limited 
coding experience and a good trade-off with other modeling-
oriented programming languages (R, Python, MATLAB, etc.).

The case study presented in this paper illustrates the MIMIC 
framework, coupling a coffee tree fructification model and a 
CBB model.

As a result, the proposed approach emphasizes the challenge 
on coupling plant growth and P&Ds interactions’ models.
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