
HAL Id: hal-04218531
https://hal.inrae.fr/hal-04218531

Submitted on 26 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Coupling Plant Growth Models and Pest and Disease
Models: An Interaction Structure Proposal, MIMIC

Houssem E M Triki, Fabienne Ribeyre, Fabrice Pinard, Marc Jaeger

To cite this version:
Houssem E M Triki, Fabienne Ribeyre, Fabrice Pinard, Marc Jaeger. Coupling Plant Growth Models
and Pest and Disease Models: An Interaction Structure Proposal, MIMIC. Plant Phenomics, 2023, 5,
pp.0077. �10.34133/plantphenomics.0077�. �hal-04218531�

https://hal.inrae.fr/hal-04218531
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 1

DATABASE/SOFTWARE ARTICLE

Coupling Plant Growth Models and Pest and
Disease Models: An Interaction Structure
Proposal, MIMIC
Houssem E. M. Triki 1,2,3,4*, Fabienne Ribeyre 3,4, Fabrice Pinard 4,5,
and Marc Jaeger 1,2

1CIRAD, UMR AMAP, F-34398 Montpellier, France. 2AMAP, University of Montpellier, CIRAD, CNRS, INRAE,

IRD, Montpellier, France. 3CIRAD, UMR PHIM, F-34398 Montpellier, France. 4PHIM, University of Montpellier,

CIRAD, INRAE, Institut Agro, IRD, Montpellier, France. 5CIRAD, UMR PHIM, 00100 Nairobi, Kenya.

*Address correspondence to: houssem.triki@cirad.fr

Coupling plant growth model with pests and diseases (P&D) models, with consideration for the long-term
feedback that occurs after the interaction, is still a challenging task nowadays. While a number of studies
have examined various methodologies, none of them provides a generic frame able to host existing models
and their codes without updating deeply their architecture. We developed MIMIC (Mediation Interface for
Model Inner Coupling), an open-access framework/tool for this objective. MIMIC allows to couple plant
growth and P&D models in a variety of ways. Users can experiment with various interaction configurations,
ranging from a weak coupling that is mediated by the direct exchange of inputs and outputs between
models to an advanced coupling that utilizes a third-party tool if the models’ data or operating cycles do
not align. The users decide how the interactions operate, and the platform offers powerful tools to design
key features of the interactions, mobilizing metaprogramming techniques. The proposed framework is
demonstrated, implementing coffee berry borers’ attacks on Coffea arabica fruits. Observations conducted
in a field in Sumatra (Indonesia) assess the coupled interaction model. Finally, we highlight the user-centric
implementation characteristics of MIMIC, as a practical and convenient tool that requires minimal coding
knowledge to use.

Introduction

Agroecological transition is an active research and development
area, in which modeling agronomical system productions must
be assessed from complex systems modeling in regard to the
processes involved in and their interactions. As mentioned by
Brandmeyer and Karimi [1], “complex environmental problems
involve processes that occur both within and between environ-
mental media”; thus, both aspects must be considered to build
efficient model couplings.

The authors underline the difficulties in handling how the
different models interact with each other. In each field of study,
modeling communities developed their own techniques and
frameworks for creating efficient simulation models of the pro-
cesses they are interested in [2]. Nevertheless, certain problems
and complications are not specific to one discipline.

In particular, the integration of the potential intertwined effects
that the dynamics of certain models may have on each other and
the compatibility of their architecture [3] focus our interest.

Indeed, we are interested in an application in the environ-
mental domain, more specifically, in estimating plant produc-
tion under certain conditions. In general, the productivity of a
plant that has been attacked by a pest or a disease (pest and
disease (P&D)) is assessed in the short term. P&D directly
damages one or more organs of the plant by targeting them. If

the infected organs encompass the fruits, then yield reductions
are direct. Production projections at mid- and long term are
seldom considered.

However, even if the fruits are not directly affected by the
attack, the future yield and growth of the plant are usually
affected because of the decrease in biomass production (e.g.,
an attack on the leaves reduces light interception). In addition,
these effects alter plant growth by changing the balance between
organs and potentially the distribution of resources; Fig. 1 illus-
trates such an effect.

These feedback effects are rarely taken into account when
coupling descriptive models. This is, in part, due to the lack of
mechanistic dynamic approaches reported at the organ level to
model and simulate the interactions between plant growth and
P&D attacks [4]. Therefore, feedback to the plant itself can
hardly be assessed. Another critical point is that, even when
mechanistic models are available, their coupling potential is
not evaluated, both for computational cycles and for the data
on which they interact with each other.

To determine more precisely the thresholds at which P&Ds
are likely to have a important economic impact on production
[5] and to make an appropriate treatment decision, a coupled
model operating over the long term would be helpful.

Such a model could provide a more accurate estimation
of the effects of climate change on plant phenology/biotic

Citation: Triki HEM, Ribeyre F,
Pinard F, Jaeger M. Coupling Plant
Growth Models and Pest and Disease
Models: An Interaction Structure
Proposal, MIMIC. Plant Phenomics
2023;5:Article 0077. https://doi.
org/10.34133/plantphenomics.0077

Submitted 31 March 2023
Accepted 10 July 2023
Published 4 August 2023

Copyright © 2023 Houssem E. M.
Triki et al. Exclusive licensee
Nanjing Agricultural University. No
claim to original U.S. Government
Works. Distributed under a Creative
Commons Attribution License 4.0
(CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077
mailto:houssem.triki@cirad.fr
https://doi.org/10.34133/plantphenomics.0077
https://doi.org/10.34133/plantphenomics.0077
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fplantphenomics.0077&domain=pdf&date_stamp=2023-08-04

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 2

development. In the last decade, Uganda has experienced a
great resurgence of P&Ds in coffee tree fields [6,7] despite
the important efforts of national institutes to create resistant
clones, especially for coffee wilt disease (Fusarium xylarioides).
In addition to this, climate change induces new environmental
conditions affecting plant growth dynamics and the dynamics
of pathogens and insects [8–10]. Consequently, the coffee berry
borer (CBB) (Hypothenemus hampei) and coffee leaf rust (CLR)
(Hemileia vastatrix) are present in Uganda, although at mod-
erate levels. However, severe cases of red blister (Cercospora
coffeicola), which affects leaves and berries; of black twig borer
(Xylosandrus compactus) [11]; and of coffee wilt disease [12–14]
are now reported. This region combines multiple P&Ds that
affect coffee trees at various organs and scales. Thus, we consider
it as a good experimental field for an application of coupling
framework.

Objectives and scope
Our overall goal is to assess variation in production linked to
P&D and related mechanisms at the plant and crop scales, as
well as the impact of crop practices. These elements can only
be accessed through models. In other words, as suggested by
Cerda et al. [15] and Gaunt [16], the estimated effects of P&D
on plants are considered to result from interactions between
dynamic models: the plant growth model (considered at least

at the organ scale), the P&D model, and even a human inter-
vention model (treatment, harvest, etc.). We are thus facing a
complex system involving processes that interact at different
levels, with the possibility of collective behaviors and rela-
tionships with the environment [17].

We propose here a specific coupling framework taking into
account (a) the specific difficulties encountered when dealing
with complex systems (cycle synchronization, data concur-
rency and sharing, etc.); (b) the specific difficulties related to
the nature and type of models involved for plant growth and
P&D dynamics models; (c) the limitation of technical complex-
ity, as users are usually not specialized in automation and their
convex domains; and (d) the possibility to add models without
modifying other models already involved in the framework.

About plant growth models
In agronomy, process-based models (PBMs) and functional
structural plant models (FSPMs) are 2 major frameworks to
model plant growth dynamics.

PBMs, generally referred to as crop models, estimate the
biomass produced mainly from the intercepted light by leaves
per unit area (m2)[18]. The different organs are grouped into
distinct compartments. The distribution of produced biomass
within each compartment is differentiated, allowing yield esti-
mation. However, PBMs do not consider the organ typology

Produced
biomass

Produced biomass

Produced
biomass

Produced
biomass

Healthy tree

Attacked tree

Sufficient biomass
 production

Reduced biomass
 production

Primary losses Secondary losses

Reduced biomass
 production

Diseased leaves

Fig. 1. Interactions between P&D dynamics and coffee phenology. Case of a leaf disease affecting the biomass accumulation with a cumulative effect on the long-term plant growth.

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 3

resulting from the plant’s structure, the plant phenology, nor
the mechanisms that occur within the plant.

The FSPM aims at modeling the establishment of the plant
structure and the functioning of the organs. In FSPM, the prop-
erties and functions of each organ are taken into account [19].
In particular, the distribution of biomass produced by the dif-
ferent organs is followed at the scale of each organ in the whole
plant. Such models operate on the individual plant scale and
generate an explicit 3D geometric representation of the plant.
However, using FSPM formalism requires calibrations of the
model parameters that are often cumbersome.

Nevertheless, with a limited number of assumptions and the
use of certain PBM formalisms, it is possible to factorize the pro-
cesses involved in FSPM, based on the attributes of the organ
structural criterion, and generate a model with a reduced com-
plexity [20]. Such a design is illustrated by the GreenLab formal-
ism [21]. It applies the notion of a common biomass pool, assessed
on several crops of interest [22]; uses the traditional light inter-
ception model of PBM; and operates with cohorts of organs
defined from chronological and physiological ages [23,24].
Furthermore, this style of formalism allows to move from the
individual plant level to the crop level.

About P&D models
There are numerous ways to design and qualify P&D models.
We distinguish here 2 categories, statistical models and mech-
anistic models.

Statistical models are developed from data and statistical
correlations between model variables. These models are capa-
ble of prediction but are difficult to transfer; they are difficult
to project beyond the spatial and temporal boundaries of their
underlying data [25].

Mechanistic P&D models include explicit hypothesis on bio-
logical mechanisms that influence the dynamics of the P&Ds.
These models can be used to simulate the P&Ds on different
scales (plots, regions, countries, etc.) [26,27]. Notions of cohorts
are also often inherent in these approaches, quantifying popu-
lations of similar age and behavior.

Plant and P&D model coupling
Conceptually, coupling 2 or more processes together falls into
one of the following categories, inspired by [28]:

1. � Sequential coupling or loose coupling: Models are com-
pletely decoupled or models exchange data through inputs/
outputs (I/O).

2. � Shared coupling: (a) GUI (graphical user interface):
Models share a common GUI or (b) Data: Models
share the full I/O database.

3. � Embedded or integrated: One model is fully contained
within the other (usually as a subroutine) or model
codes are merged into a single coherent model.

4. � Framework coupling: Use of a global modeling frame-
work, where the models are coupled using a third-party
tool commonly called “Coupler,” based on a combina-
tion of the previous methods.

The literature on coupling plant and P&D models to estimate
plant production agrees that this is a challenge, requiring more
physiological and field studies [29]. Studies are still scarce on

the subject today. The most popular categories of coupling are
loose coupling and integrated coupling.

The DynACof coffee plant model [30] is a dedicated PBM. In
a recent study, it was linked to a rust model, with a loose coupling
defined by the ratio of healthy to damaged leaf area [31].

Interaction through data is easy to manage, but this type
of coupling requires some synergy between models. It is dif-
ficult to generalize to multiple models or interaction cases
if the I/O do not match the requirements of each model. To
circumvent this type of problem, a modeling environment
may be mobilized such as OpenAlea [32]. This platform pro-
vides users an interface to create interactions between plant
(sub)models and their environments. OpenAlea allows cou-
plings ranging from simple sequential to shared coupling;
users can simply define model sequences or build graphs to
connect I/O models with a generic graphical interface: VisuAlea.
The platform also provides multiple analysis and visualiza-
tion tools. However, even if users are able to produce inter-
acting models, this still requires coding to adjust or add other
components [33].

The theoretical study conducted by Qi et al. [34] models the
palm tree under pest attack, whose population is also con-
strained by auxiliary insects; the population dynamics and
attack models of P&D integrate the plant growth model. This
is a case of embedded and integrated coupling. Here, the feed-
back on biomass and plant populations is well evaluated over
the long term, but while the plant model is generic, the insect
models and interactions are not: Attacks are limited to leaf
damage, and synchronization is implicit and climate conditions
are supposed to be stable.

Recently, Motisi et al. [35] propose an integrated approach
to such a system by decomposing the P&D model (leaf rust)
and the growth model (coffee) into smaller models, acting as
submodels embedded in each other, building an integrated
coupling.

Le Chevalier et al. [36] developed a framework, inspired by
the DEVS (Discrete Event System Specification) mathematical
formalism [37], involving a simple big leaf implementation of
the GreenLab model with a climate model (rainfall and tem-
perature) and a water diffusion model (runoff, soil diffusion,
and plant uptake); this framework allows modeling growth
variability related to plant competition for water and local con-
ditions such as altitude and orientation.

A common drawback of these examples is their lack of gen-
erality, especially regarding adding/changing P&D models or
changing plant species. This is reflected in the limited literature
that combines abiotic (climate) and biotic (P&D and/or farmer)
influences on the plant [4]. Classically, model interactions are
assessed by mutually coupling models together. However, this
method is case specific and difficult to generalize even using a
platform such as OpenAlea, as highlighted by Garin et al. [38].

The work presented here is part of a study focusing on P&D
attacks on Robusta coffee in Uganda and, more specifically, on
fruits with red blister and CBB; on leaves with CLR; and on
young branches with black twig borer. We address modeling
the interactions occurring at various levels of the plant with
different P&D models over a large period (theoretically, the
entire life span of the plant). To this end, our proposal is based
on a “framework coupling” that encompasses the various cou-
pling categories outlined previously [28].

In the following contribution, the rationales and compo-
nents of the proposed model coupling framework are presented

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 4

first. The framework’s architecture and implementation are
then explained. We then present a case study including the
CBB and a fructification model. Before concluding, the frame-
work structure genericity and assumptions are discussed.

Materials and Methods

Framework design assumptions
Although our applications are dedicated to the evaluation of cof-
fee production under P&D attacks, we aim to develop a generic
approach, adapted to many interactions mobilizing agronomical
models, but not as generic as an implementation under DEVS
(some arguments are given in the discussion) [37]. The latter
would strongly put constrains on how to define the models and
their inner mechanisms, particularly with regard to their syn-
chronization procedure.

OpenMole could also be considered as an alternative [39].
However, OpenMole is not strictly a model coupling environ-
ment, and it does not provide an environment to design models
from scratch. OpenMole shows high interest for analyzing exist-
ing interaction codes. It helps modelers to evaluate the sensitivity
of their models’ parameters and optimize them. Once finalized,
at exploitation stage, OpenMole offers valuable upscaling deploy-
ment mobilizing cloud or HPC.

In MIMIC (Mediation Interface for Model Inner Coupling),
our focus is to assist the user in the creation of the basic structures
of the interaction. We may thus consider that an interaction
model could be first created with MIMIC and then be integrated
into management environments such as OpenMole.

Before describing our approach, we list here the founding
assumptions of our framework.

Because we aim to integrate feedback on the plant growth
model, we focus on developing the framework at the individual
plant scale. This self-imposed condition allows us to implicit
the spatial aspect involved in many P&D attacks.

Associating the effects of the dynamics of different models
can be complicated, especially when considering models that
work on different time scales or natures (chronological or ther-
mal) and when considering feedback. The users must therefore
be able to define a cycle correspondence between the third party
and each model.

Among the different formalisms of plant growth models men-
tioned above, the adoption of a cohort-based formalism allows
flexibility in the coupling of models by reducing the number of
parameters required for calibration [40]. In addition, this formalism
offers the advantage of incorporating plant growth feedback on
organogenesis for the expression of plasticity in a competitive con-
text [41] and provides practical means for parameter evaluation
[42], including the case of functional feedback on the plant struc-
ture [43]. The structure calculation is implicit; calculations are fac-
torized as defined by the number of organ types and cohorts (organ
ages and physiological states), leading to short computation times
[44] and, thus, minimizing interaction complexity. For P&D mod-
els, some correspondence with the type of plant model is necessary
to reduce the complexity of the coupled system. For this reason,
models using groups (cohorts) of populations are preferred.

Some P&D models are “individual-based” or based on age
groups to take into consideration that various stages of devel-
opment do not always react the same way to environmental
factors (sometimes called cohort). In study of Rodríguez et al.
[45], the term “cohort” designs a group of plants and CBB that
are all the same age.

This assumption allows to take cohorts from each model and
to create new ones with flexible criteria (see the discussion first
section). Thus, the users can manipulate the outputs of the mod-
els and even add new interaction-related variables to define the
new cohorts.

The proposed approach is framework based, which means that
all models involved interact through a third party and do not
interact directly with each other. The models involved must be
able to initiate a computation at a given step, reading their inputs
and providing outputs for the requested step. The models mobi-
lized to interact should not be heavily modified, and their internal
structure or operation must not be altered by the coupling.

MIMIC, a formal framework for interaction
In this study, the third-party tool is called MIMIC. MIMIC
handles interactions between models in a flexible way, regard-
less of the number and types of models. In addition, while the
development is based on the interplay between P&D and the
plant growth model, this framework is not exclusive to P&D.
MIMIC ensures coupling effects on the dynamics of all models
on a long-term time scale.

MIMIC: Overview and principles
MIMIC manages the connection between models and their
inputs and outputs. The fundamental assumption of the model
is that each model operates and evaluates its own internal states
in a finite amount of time, from one internal step to the next.
MIMIC supervises the interaction through its own states and
information, which are evaluated on the basis of the informa-
tion collected from the connected models.

On the basis of the information obtained from the output of
the models, MIMIC manages the underlying mechanics of the
interaction between the components; there is no limit to the num-
ber of models that can be linked together. This reduces the expected
complexity of such system combinations and allows for easy han-
dling and independence of the models. Moreover, when develop-
ing a new application (adding elements and changing dynamics),
no changes are required to MIMIC’s kernel. This is an advantage
from a development point of view because each component exe-
cution process is distinct and can be modified independently,
which sustains the correct execution of the framework.

MIMIC: The components
MIMIC can be considered as a hyper model consisting of 3
main components, as shown in Fig. 2 in its central part. These
components solve the problems classically encountered when
coupling different and multiple dynamic systems, from desyn-
chronization to feedback integration.

The first component schedules the simulations according to
the temporalities of the connected models. The Cycle Synchronizer
(CS) executes the connected models and starts the interaction
process between the involved models. This component prioritizes
multiple interacting models based on users’ preferences. The sec-
ond component, the Interaction System States Server (ISS), serves
the communication protocols used to create the MIMIC state
variables (variables used for interactions). Finally, the third com-
ponent, the Interaction State and Data Recorder (ISDR), ensures
the integrity of the interaction and the state variables of the cou-
pling interface connecting the interacting models. It also manages
data and other dynamics that are not required for interaction but
can be requested by the users for observation purposes.

Cycle Synchronizer (CS)

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 5

The CS component is built around a specific behavior design
pattern called Mediator (Fig. 3), which describes how objects
interact with each other. The Mediator promotes loose coupling
by preventing objects from referring to each other explicitly and
allows some independence between them [46]. A so-called
“behavioral model” reduces chaotic dependencies between com-
ponents. It forbids direct communication between them and
requires them to collaborate only through the Mediator.

The activities of each model and component are scheduled
using this Mediator-based component. Thus, it addresses the prob-
lems related to desynchronization. An essential point concerns the
definition of scheduling. Typically, as defined in the DEVS formal-
ism [47], a temporal base reference must be addressed to each
connected model, and each model must be able to return its own
cycle conversion step in the temporal reference.

For example, many P&D models operate by generations
resulting from climate data (and other parameters), but plant
models typically define their cycle from organogenesis (from
a thermal calendar). In this case, an effective method is to have
the users set the default time cycle in the interface based on
the smallest cycle of the models available during the initiali-
zation phase and then mobilize a function (e.g., a function
related to climate data) to retrieve the average daily tempera-
ture from which the interface calculates the date of the next
plant growth stage.

Interaction System States Server (ISS)
When one of the models is active (running), its state varia-

bles pass through this component and are converted to MIMIC’s
state variables. This operation creates a state variable that can
be understood by any other model involved in the interaction.
The definition and translation of the ISS state variables are the
responsibility of the users, based on their knowledge of the
interacting models and the desired observations. State variables
are of 3 types: (a) state variables considered as output copies of
the connected models, (b) state variables specific to the internal

operations of MIMIC, and (c) state variables defined by the
users to encode the interaction between models and MIMIC.

Interaction State and Data Recorder (ISDR)
In this component, in addition to interaction-relevant states,

data collected from connected models and internal data result-
ing from computations within the interface are recorded and
stored at each event (when any model is executed) processed
in the schedule. The storage of state variables and data from the
coupling model interface makes stop-and-go simulation avail-
able. In a broader sense, storing interaction state and data allows
users to access a simulation from a previous date in the sched-
uler, rerun it, and simulate different scenarios by dynamically
adjusting the simulation parameters. The results of the inter-
action simulation are accessible directly from MIMIC, without
going through the associated models. The results are adaptable,
independent of the simulation itself, and can be read backward
and forward (to the last event of the simulation).

To illustrate the MIMIC framework, a simple attack case is
considered below.

A case study: The CBB and Arabica coffee
In this simple example, we consider the CBB that attacks coffee
berries. We assume that, at the time scale considered, there is
no visible effect on plant growth.

The CBB model
H. hampei (Ferrari) is a pest known as CBB, belonging to the
order Coleoptera, family Curculionidae, and subfamily Scolytinae
[48]. This small beetle originates from Central Africa and is pres-
ent in all coffee-producing countries of the world.

A CBB hatches from an egg in the seed of a coffee berry.
When the fertilized females leave the fruit, they colonize another

MIMIC

Plant
growth
model

Kernel components

Cycle
Synchronizer (CS)

Interaction
System States
Server (ISS)

Interaction State
and Data Recorder

(ISDR)

Plant model
states

Plant growth
cyclesP&D cycles

P&D model’s
states

Pest and
disease
model

Fig. 2. The “Mediation Interface for Model Inner Coupling” (MIMIC) schematics,
illustrating the kernel components (in blue) on a coupling example with a P&D model
(left green box) and a plant growth model (right green box).

Egg

Larva

Pupa

Adult

Fruit
colonization

Egg laying

15

4

7

2

Fig. 3. Female CBB life cycle representation. Circles stand for the stages. Arrows
stand for transitions with their average duration in days. Light-colored arrow means
the restart of the cycle for another generation.

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 6

one and start their own colony (Fig. 3). The factors triggering
the exit from the fruit are the age of the insect and the climate
(temperature, humidity, and rain). CBB is attracted to by red
(ripe) fruits and green fruits (if they are large enough). The
insect is more attracted by red than green fruits; however, if the
number of attractive fruits is small, then CBB will colonize over-
ripe fruits or fruits that have fallen to the ground. The average
life span of a female CBB is nearby 45 d [49].

Fruits are grouped into 3 distinct categories. “Very attractive
fruits” (VAp) are ripe fruits, from the moment they turn red.
“Attractive fruits” (Ap) are well-developed green fruits. This
category includes green fruits larger than 5 mm, with seeds
capable of hosting the CBB, to fruits that turn yellow. “Ground
fruits” (G) are all fruits fallen to the ground, whatever the for-
mer category they belonged to. In the proposed model, each of
the above fruit categories has an attraction factor that influ-
ences whether CBB chooses to colonize a fruit or not.

Population monitoring is based on the grouping of different
individuals within a population having the same oviposition
day. Male CBBs are not considered in monitoring of populations
as they do not play any role in the epidemic propagation (they
represent only

1

10 of the individuals in a colony and are not
disseminated). As already mentioned, population dynamics
depend on temperature, relative humidity, and precipitation.

The cohorts of the model are built by crossing the groups
of individuals and the categories of fruits where these individ-
uals live.

On each simulation step, the results of new attacks are grouped
into 2 categories: population data and fruit data. The population
data contain information about each population group for a
given day. It contains the date when this group left its original
fruit to colonize other fruits, the number of flying CBB, the
number of dead CBB, and so on. The fruit data include the
fruit categories presented above. In addition, they are divided
into 2 subgroups, healthy and colonized fruit. The result is a
cohort of fruit categories attacked by a quantity of CBB hatched
on a given day.

The coffee fruit cohort model
In the Sumatra region of Indonesia, Arabica coffee trees pro-
duce coffee berries throughout the year. With the presence of

rainfall throughout the year and an average daytime temper-
ature between 22 and 30 °C, the equatorial climate provides
the necessary conditions for the trees to flower. A plant growth
model is created as a reduced model to simulate fruiting only.
We designed a cohort fruit model inspired by the GreenLab
cohort assumption: Fruits with the same parameters (chron-
ological age, physiological age, and sink power) are merged
into the same cohort. An automaton is created that build fruit
cohorts on the basis of the obseved numbers of berries har-
vested. Then, the model estimates the age of the fruits accord-
ing to the harvest frequencies and the climatic data.

Human intervention model
Human intervention is represented here as a simple harvest
model. This model simulates harvesting of red berries at dates
that correspond to observed data, which is useful for valida-
tion by comparing simulated data to actual data.

Integration of the coffee–CBB interaction
When CBB attacks a fruit on the tree, the inner seed is damaged,
but the fruit continues to develop and the biomass is still dis-
tributed. We therefore consider that the feedback on the plant
is negligible. Thus, in this case, the interaction focuses on the
state of the fruits (attacked or healthy).

Interaction between the 2 models is achieved by converting
the numbers of attacked fruits provided by the CBB model into
the cohorts of the plant model An additional state variable ISS is
created in MIMIC: the status of the cohort. This additional data
is Boolean, indicating whether the cohort is colonized by the CBB.

Validation data
To validate the functioning of the interface, we used climatic,
fruiting, and attack data on 2 coffee trees in Indonesia for
almost a year [50]. The observations were not made daily but
separated by slightly irregular periods of time (about 20 d
between each observation). This implies a daily operation of
the model and an estimated chronological age of the initial
populations. The solution chosen was to consider maturation
occured exactly between 2 observations. A CBB colony is
established at the start of the simulation and begins its devel-
opment. The number of colonized fruits is initialized by the
observed data. Because there is no data for fruit on the ground,
this category was discarded from the simulation.

The study case and simulation results are presented below,
after detailing the overall implementation aspects.

Implementation and Results

We present here the implementation of MIMIC, starting with
the architecture before detailing the components and some
specific features and functions.

Architecture (kernel, pseudo-models, and models)
of MIMIC
Using MIMIC, to integrate models into an interaction structure,
results in a software architecture composed of 3 layers (Fig. 4).
The first layer consists of the models involved in the coupling.
These models are independent and external to MIMIC. They
are only linked to MIMIC through the second layer: the pseudo-
model’s layer.

Table 1. CBB’s cohort distribution based on population hatching
day and colonized fruit category.

CBB popu-
lation/fruit
category

Hatched the
1st day

Hatched the
2nd day

…
Hatched

the nth day

Very Appeal-
ing fruits

Cohort (1,
VAp)

Cohort (2,
VAp)

… Cohort (n,
VAp)

Appealing
fruits

Cohort (1,
Ap)

Cohort (2,
Ap)

… Cohort (n,
Ap)

Fruits on the
grounds

Cohort (1,
G)

Cohort (2,
G)

… Cohort (n,
G)

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 7

The pseudo-models (red blocs in Figs. 4 and 5) are wrappers
of the interacting models of the first layer. This association is
unique and bijective. This layer is automatically created by
MIMIC at the initialization stage. The pseudo-models provide
all the information about the models, which are requested at
run time. The third layer (blue blocs in Figs. 4 and 6) is the core
of the MIMIC protocol. Composed of 3 components, it sched-
ules, manages tasks, and manages data exchanges. The 3 specific
components are described below.

Functioning of MIMIC’s components
Models’ layer
Models are independent of MIMIC. They exchange only data
with MIMIC (state variables, cycles, etc.) each time an execu-
tion call is processed.

Pseudo-models’ layer
Pseudo-models are automatically generated by MIMIC in an ini-
tialization process, from parameters and information related to the
models, provided by the user (Fig. 5) filling a YAML file (see the
User layer here under) [51]. The generated pseudo-model’s variables
host the data requested for simulation and interaction (state varia-
bles, arguments, step size, and path to the model code), as well as
the current model cycle and state (running, pending, or unsolic-
ited). The “mediator” field links the pseudo-model to the kernel.

MIMIC also generates the pseudo-models’ functions. “Call
model” refers to the function used to call the related model.

The 2 other functions are the constructor of the link to the
MIMIC kernel (using “Addmediator”) and the constructor of
the notifications to the kernel (using “Notifymediator”).

MIMIC’s kernel layer
The 3 components of the MIMIC’s kernel (CS, ISS, and ISDR)
are directly connected to one another through a shared com-
munication bus (Fig. 6).

The CS controls how MIMIC manages and runs processes
(Fig. 6, top). The function “UpdatesSchedule” is called each
time a model or component is requested to close an event; it
updates the list of scheduled tasks (Table 2), stored in the var-
iable “Schedule.” This type of dynamic scheduling allows inter-
action between models with different and varying step times
or time natures, e.g., calendar and thermal time.

At each event, the “NotifyUser” function send messages to
the console in a log file, allowing the user to follow the simu-
lation step by step.

The ISDR stores interaction-relevant state variables and
simulation data (task schedule, last model run, etc.) step by
step. This simulation data logging is convenient for stop-
and-go implementation. The ISDR is also appropriate when
using a model with numerous outputs, from which a subset
is requested to interact with variables in other coupled mod-
els. This component delivers the simulation results to the
user.

 Models

Model 1

...

Model n

Cycle
Synchronizer

Scheduling

Interaction
System States

Server

Interaction
State and Data
Recording

Model layer

MIMIC layer

Pseudo-models

Pseudo-models layer

Fig. 4. MIMIC’s and models’ layer composition. The framework is composed of 3 layers: layer 1 (in green) stands for the external models, layer 2 bloc (in red) contains the
pseudo-models, and layer 3 (in blue) contains MIMIC’s functioning components.

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 8

Each time a pseudo-model is executed, the ISS is solicited to
convert or translate the state variables (the output) of the
pseudo-model to MIMIC state variables (the ones used in the
interaction codes). Thus, they can be used as inputs for the other
pseudo-models.

The user’s layer or how the users communicate
with MIMIC
Interactions in MIMIC are generated from the users’ instruc-
tions, covering the following 2 aspects: (a) the interaction code
itself written by the user and so-called UIM (user interaction
model) and (b) the control of the simulation, the so-called UC
(user simulation control).

In both cases, the instructions are processed through the
“User–MIMIC communication” component. Indeed, we want
the kernel being untouched and safe from external process to
guarantee the platform integrity.

In MIMIC, we consider the UIM and UC as pseudo-models.
This offers numerous interests. It keeps the architecture consistent
as a whole; the state variables of the interaction can be kept and

made available easily; it gives the potential to build a hierarchical
embedding of applications; the user can define active observers
(acting as controllers operating according to results gained in the
interaction code).

Fig. 5. Representation of pseudo-models as Unified Modeling Language (UML) (red
bloc in Fig. 4). The structure of a pseudo-model (generated by MIMIC) with its variable
and function fields. Mediator fields link the pseudo-model with the kernel, while the
“CallModel” function links to its “external model.” Note that in this UML diagram (and
the following one), variables are values (input/output) used by the component, while
functions are specific programs related to the component.

Fig. 6. MIMIC’s kernel UML representation (blue bloc in Fig. 4), describing the data
structure of MIMIC’s main components (Cycle Synchronizer, Interaction State and
Data Recorder, and Interaction System States Server) linked through a communication
bus (blue cylinder).

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 9

The user–MIMIC communication component is, in fact, a
parser that creates metadata for building the pseudo-models
and the connections to the kernel (Fig. 7).

User interaction model (UIM)
Users write in Julia language, the code describing the interaction
between the models, using the pseudo-model’s state variables and
pseudo-model’s calls. However, using Julia to encode the UIM is
not a requirement: (a) The interaction code can also be an “exter-
nal” model, belonging to the model layer. This method leads to a
higher level of complexity and lower performance since requesting
to be wrapped in a pseudo-model. (b) Next, if the level of coupling
is weak, operating only on the inputs and outputs of the models,
forming a “shared coupling” as defined in [23], then the user is not
requested to provide any UIM. The simulation starts directly from
the initial schedule and runs from the explicit cycle input and
output definitions described for the pseudo-model generation.

User simulation control (UC)
The UC defines the information related to the execution of
models for simulation. These descriptions are presented in the
form of a file in YAML format. The UC is used to parse the
model metadata and create the variables to be mobilized dur-
ing the interaction execution process. An example of such a
file is given in Table 3. Some input fields are required, while
others, left by the user, are filled with a default value. In the
table, the name given to the model is “Tree.” However, if no
value was provided, then “model_n,” where n is the rank of
the model in the file,would have been the default value.

The model rank, i.e., the order in which the model is described,
sets the model priority. The order of models is essential, because
the models’ priority is based on their location in the list defini-
tion. This priority is considered when several model calls must
be processed on the same event date.

Executing MIMIC
MIMIC executes in a 2-step process. The first one, “MIMICinit,”
runs the initialization of MIMIC and generates the pseudo-model
codes and the initial schedule. The second one, “MIMICmain,”
launches the schedule. MIMIC generates by default a CSV
(comma-separated values) file containing the values of all variable
states at each simulation step.

Development and dissemination
This framework is primarily aimed at scientists and engineers
in the agricultural and environmental sectors looking to esti-
mate P&D effects on plants on long term to assess possible
resilience of plants. We intend that this implementation be a
user-friendly tool, with an open access code for further devel-
opment. The modular structure of the architecture should pro-
vide the flexibility to adjust and refine the interactions. Finally,
its parameterization is easy to understand and is adapted to
users who are not specialists in software development.

The tool was developed in Julia, an open-source high-level
dynamic programming language [52]. It offers the advantage
of calling scripts written in other languages popular in the
plant science modeling community (MATLAB, R, etc.), and
Julia remains close to them in its syntax. This choice is also

Table 2. The case study tasks list and the schedule after 10 simulation steps. (A) List of events submitted to the scheduler. (B) The events
agenda of the scheduled tasks. On both lists, parameters are the following, from left to right: name of model (Model3 stands here for the
human model), step size for the model, last time executed, next time to be executed, and status in the schedule.

A.Submitted event list

Rank Process Id (name) Step size Order time Exec time Status

1 Tasks_Desk «CBB» 3.0 0.0 3.0 «Completed»

2 Tasks_Desk
«Coffee_tree»

4.0 0.0 4.0 «Completed»

3 Tasks_Desk «CBB» 3.0 3.0 6.0 «Completed»

4 Tasks_Desk «Model3» 8.0 0.0 8.0 «Completed»

5 Tasks_Desk
«Coffee_tree»

4.0 4.0 8.0 «Completed»

6 Tasks_Desk «CBB» 3.0 6.0 9.0 «Completed»

7 Tasks_Desk
«Coffee_tree»

4.0 8.0 12.0 «In Queue»

8 Tasks_Desk «Model3» 8.0 8.0 16.0 «In Queue»

9 Tasks_Desk «CBB» 3.0 9.0 12.0 «In Queue»

B.Tasks scheduled at time 10

1 Tasks_Desk
«Coffee_tree»

4.0 8.0 12.0 «In Queue»

2 Tasks_Desk «CBB» 3.0 9.0 12.0 «In Queue»

3 Tasks_Desk «Model3» 8.0 8.0 16.0 «In Queue»

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 10

dictated (a) by the possibility to use existing codes (models)
without direct rewriting; (b) by the performances, especially
in terms of speed of the language; and (c) by a growing num-
ber of libraries produced by a growing community of contrib-
utors. This argument reflects concerns of many scientists in
numerous fields [53].

In the user layer, translating variables from one model to another
using variable manipulation with ISS or/and arithmetic operation
is straightforward, even in Julia. The code is written in a file using
a notepad, with a “.jl” extension or through a code editor. In the
YAML file, the name of the functions and the path to the code are
listed. The advantage of YAML over other file formats is its sim-
plicity to be read. Writing instructions for this file type is simple
and understandable for users of all professional backgrounds.

Access to the source code is free via GitHub: https://github.com/
Houssem-Triki/MIMIC. The kernel code can be found there
including the case study. The tool is coded as a package that can be
downloaded using the Julia REPL command line. Users will find
the templates for the YAML input files. These documents can be
edited using notepad software or any code editor. The Git provides
documentation on MIMIC and the case study example, for which
a template sheet data file is provided for the fruiting data, allowing
users to test different tree production and harvesting situations.

Study case: Sumatra, Indonesia
(data used for simulation)
The case study example involving the CBB, fructification,
and human models described in the previous section enables

us to illustrate a simple application mobilizing MIMIC and
its performances.

The models (CBB, coffee, and human) are loaded into MIMIC
using a parameter template such as in Table 3. The complete tem-
plate for this case study can be found on MIMIC’s Git.

Parameters of the coupling
MIMIC’s parameters used in the study case are shown in Table
4. The step time of the simulation will be determined from the
parameters that are entered into the time data field of MIMIC’s
model parameters. For more details, each model and, thus, each
pseudo-model are characterized by the simulation’s step time
(in cycles), the simulation’s start time (start simulation), and
the simulation’s end time.

Users need to specify the models’ state variables (CBB,
coffee, and human) that are relevant to the interaction in
MIMIC in the “variables data” field.

Results of the case study
The interaction between the coffee tree and the CBB models is
constructed around the attraction of the pest on the type of fruits
(from the CBB point of view). A specific detail concerns the way
fruit maturity is considered in both human and fruit models.

Among the datasets, 2 trees were chosen (named C52 and
C22), exhibiting dissimilar fruiting dynamics (Fig. 8, bars). Tree
C52 produced ripe fruits for nearly the entire year, whereas tree
C22 produced fruits for only the first one-third of the moni-
toring period.

User interaction
model (UIM)

User simulation
control (UC)

User–MIMIC
communication

Data parsing

Cycle
Synchronizer

Scheduling

Interaction
System States

Server

Interaction
State and Data
Recording

Pseudo-models

m

Fig. 7. Structure of the interaction between the MIMIC (functioning presented in Fig. 4) and the users. The data provided by the user are read and used to create metadata for
the construction of the interaction in the “User–MIMIC communication.” Then, the metadata is used in creating and filling the pseudo-models.

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077
https://github.com/Houssem-Triki/MIMIC
https://github.com/Houssem-Triki/MIMIC

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 11

The proportion of infested fruits among harvested fruits for
the 2 trees is the result of a MIMIC simulation in which an
initial number of CBB was introduced. MIMIC simulated the
attack dynamic accurately.

There was one significant peak in tree C22 and 2 less signifi-
cant ones. The models succeeded in their task of fitting both the
primary peak and one of the minor peaks, both in terms of
amplitude and length. There was a minor shift in the position of
the final weaker peak.

As for tree C52, there were 3 major and 2 secondary peaks.
Two of the major peaks and one of the secondary peaks were
well fitted by the model in amplitude. The last major peak was
underestimated in intensity. The first peak at the beginning of
the monitoring did not correspond to the observations, which
is due to the initial conditions. Dynamic systems may be sen-
sitive to initial conditions, and a small change can result in a
different outcome [54].

Performances and coding key figures
The MIMIC code is compact, with reduced complexity. The
complexity is linear as a function of the number of events.
Table 5 shows its performance in the study case. Most of the
simulation time is spent on initialization, which consists of
interacting with the user layer. The rest of the run time is
split between the MIMIC’s kernel components and the exter-
nal models.

Initialization clearly consumes the majority of simulation
time. This is because Julia is executing a code for the first

time. On the first run, Julia simulates a virtual machine to
compile the algorithms. Hence,the second run requires less
memory (3,720 GB with 28.9 s for the first run compared to
a 727 MB with 3.81 s for the next one).

Discussion and Perspectives

In this paper, we introduced a methodology and tool for linking
models, specifically plant and P&D models. Here, we discuss
the underlying assumptions of our proposal and present some
near-term perspectives.

Cohort assumption
Cohorts simplify the complexity of models and their associated
data. Indeed, factorization makes it easier to manipulate the
outputs/inputs of the various modeling formalisms to make
them interact. Processes are no longer treated on an individual
basis, but as homogenous sets with the same behaviors and
parameters. Cohorts are commonly used in health sciences;
their benefits are frequently addressed [55].

In our case, the usage of cohorts reduces the complexity of
the interaction. Consequently, factoring into cohorts simplifies
the handling of the outputs/inputs of multiple modeling formal-
isms during interaction, due to the unit of time that characterizes
each cohort Assumedly, we suppose that the plant models organ-
ize organs by cohort [20]. This assumption cannot always be
mobilized. However, in the case of FSPMs, factorizations can be
performed post hoc by establishing cohorts clustering all organs
of same physiological stages and appearance date (thus, sharing
similar environmental conditions). Conversely, in crop models,
the cohorts can also be defined subdividing the PBM organ
compartments, gradually identifying the cohorts from the num-
ber of new organs appeared [56].

Table 3. YAML model definition pattern example on a plant model.

Field name Subfiled Type of value Value

Is model active Boolean True

Name String Tree

Version Any a0.4

Language String R

Path to File Path from
root

D:/MyPrg/
Plants/
TreeSim.R

Time data Nature Keyword (*) temperature

Unit step
size

Value 20

End
simulation

Value 2350

Start
simulation

Value 0

Variables data State
variables

Vector [Yield,
biomass]

Inputs Vector [RelativeTempe]

Outputs Vector [Yield]

Interaction
data

MyRefDir Path from
root

/Fungus2Tree.jl

Language String C

*Day, month, or temperature.

Table 4. Parameters used for interaction in the case study in-
stancing the definition in Table 3.

Field name Subfiled Value

Is model active True
Name MIMIC

Version 0.9

Language Julia

Path to File ./MIMIC-main.jl
Time data Nature Day

Unit step size 1

End simulation 355

Start simulation 1

Variables data State variables [fruitsCohorts, Ag,
Ar]

Inputs
Outputs [fruitsCohorts]

Interaction data MyRefDir /Interaction.jl
Language Julia

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 12

Similarly, on P&D models, the cohorts can be defined from
population dynamics from development stages. This allows
compatibility between the interacting models.

About spatialization
In our proposal, we assume spatialization as an implicit aspect
of the models. This point will not be detailed here. However,
in some cases, geometrical (spatialization) can be related to
aging (for instance, distance from soil or distance from crown).
MIMIC may then be used for coupling spatialized models with
ones that are not, providing the fact that the UIM can explicit
the request spatialized inputs from the model implicit output
ones.

Feedback and ISS
Pseudo-models’ output transformation is performed by the ISS
component that allows the manipulation of the variables directly
without having to go through modifications on the intervening
models. This discharges the users to ensure complete compati-
bility between models’ outputs. It is up to them to handle the
different levels of feedback of the interaction through the UIM.
The users are given complete freedom on how to choose the
principles of the interactions outside the models. This situation
contrasts to other formalisms where inner modifications are

requested, such as in DEVS [42], and where discrete time is
driven by the models and events.

Despite DEVS formalism extensions, improvements, and
adaptation to community needs [57], this problem is not solved
including within the agronomy community [58], as illustrated
in the Record project [59], an initiative stopped recently.

In MIMIC, the users can decide to make a shared coupling
by not providing an UIM code, when the outputs between
models are used as inputs. They only need to indicate these
outputs/inputs in the UC file. Users can also explore different
concepts on the interaction with the UIM code. They can
make the interaction correspond to one of the other frame-
works proposed by Siad et al. [28].

Choosing Julia, user-friendly meta programming
Julia is a fast, dynamic, easy to use, and open-source program-
ming language; it is accessible to the modeling community. Its
syntax bears a resemblance to the common program languages
used by modelers (Python, R, and MATLAB). In addition, the
UIM does not need to be written as a complex algorithm, as
shown on our example.

When using dynamic programming (by requesting user–
MIMIC parser to produce the pseudo-models), Julia’s speed
is advantageous because MIMIC’s input (UC and UIM) is
preprocessed and an optimized code is generated. The parser
in MIMIC will take most of the time and resources at the first
run of the program. However, after it, the simulations are swift
(Table 5) and users can update the simulation parameters
without losing performance.

The interaction complexity can be analyzed according to the
number of models involved in the system and, more precisely,
to the number of operations handled by the ISS, which trans-
lates variable sets between the pseudo-models and the kernel.
Ignoring the initialization stage (that can be considered as a

Table 5. Study case runtime performance and code com-
plexity on the study case. User model and initialization;
MIMIC’s kernel; external models. The runtime and memory
allocation columns contain information for a first and sec-
ond execution (Intel Core i7-11850H @ 2.50 GHz, RAM 64 GB,
Windows 10).

Task Runtime (s) # Calls # Code
lines

Ram (MiB)

First
launch

Second
launch

First
launch

Second
launch

Init tool 8.6 0.17 1 5 1250 13,1

Pseudo-
code
generation

Parsing 3.1 1.16 1 127 292 97.6

Agenda 0.4 0.11 1 70 112 69.1

Bit-
compile

11.7 0.21 1 956 7.62

Total init 23.8 1.65 1 2610 97.6

MIMIC CS 0.66 0.60 354 201 274 263

ISS 0.07 0.06 354 48 3.4 3.4

ISDR 0.53 0.08 1 47 67.4 8.4

Others 0.55 0.17 1 24 154 26.1

Models CBB 2.44 1.13 354 382 553 321

Harvest 0.10 0.09 354 31 6.9 5.9

Fruit 0.03 0.02 354 57 1.2 0.9

Total 28.9 3.81 1 992 3720 727

A

B

Fig. 8. Simulation results compared to field data on 2 coffee trees in Indonesia.
(A) stands for tree C52 and (B) stands for the tree C22. Points represent the
recorded number of harvested fruits colonized by CBBs on 6 fruiting branches
of the tree. The line represents the results of the simulation by MIMIC at the
same date than the observation. Bars represent the total observed harvested
fruits (healthy and colonized).

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 13

constant value plus a linear cost in terms of the number of
models involved), the complexity related to the requested
model exchanges is drastically limited in MIMIC compared to
an embedded approach. With MIMIC, the number of set trans-
lations leads to a linear complexity with the number of models
involved, because for n models, n translations are required. In
the embedded case of an upfront coupling between each model
and the other, the complexity is defined by the number of mod-
els mutually coupled. For n models, there are potentially n-1
variable set translations (to connect to the other models),
which is, to say, up to n*(n-1) translations.

Perspectives
It is advantageous to have a modular structure for MIMIC when
integrating additional components and adding extra capabili-
ties. Additionally, it is designed to be compatible with other
platforms, such as OpenAlea, even if not implemented yet [33].
We do not have a specific constraint on the type or nature of
the involved models (except their ability to run in a stop and go
way, and potentially input and output variables that can be
expressed as cohort variables). Thus, the proposed approach is
versatile and generic, which increases the coupling options.

We plan to design a generic plant model implementation
within MIMIC. Users would then simply need to set plant-specific
parameters and incorporate their other models (e.g., P&D).

Conclusion

The literature on the limitations of model coupling (plants and
P&D) reveals that feedback is not taken into consideration and
that it is challenging to find an appropriate framework without
modifying the structures and logic of the models involved.

In this paper, the proposed framework was developed to
address this issue and to provide a platform to couple prebuilt
models. This framework is depicted by the tool MIMIC.

MIMIC provides the ability to couple models in a variety
of ways, ranging from direct data transmission between mod-
els to more complex interaction principles that require a third-
party tool to add a new element and modify the outputs of
the interacting models. MIMIC’s primary benefit is that it
gives users the tools and freedom to construct their own
interactions.

Given that all the coupled models and components of
MIMIC are represented as pseudo-models, the implementation
with Julia’s high-speed metaprogramming enables rapid inter-
action outcomes.

The implementation of MIMIC in Julia provides a flexible and
straightforward algorithmic environment for users with limited
coding experience and a good trade-off with other modeling-
oriented programming languages (R, Python, MATLAB, etc.).

The case study presented in this paper illustrates the MIMIC
framework, coupling a coffee tree fructification model and a
CBB model.

As a result, the proposed approach emphasizes the challenge
on coupling plant growth and P&Ds interactions’ models.

Acknowledgment
The authors want to address special thanks to T. Arsouze (Cirad-
Amap) for help and advice on software development and to
B. Dufour for help with the case study and for providing the

validation data. Funding: This work is part of the EU (European
Union) Desira Robust project, supported by EU FOOD/2021/
427-759/DESIRA. It is also supported by a CIRAD Bios depart-
ment PhD grant and French National Research Agency under
the Investments for the Future Program, referred as ANR-
16-CONV-0004/#DigitAg programs. H.E.M.T. and M.J. have
been supported by the MaCS4Plants (Mathematics and Computer
Sciences For Plants) CIRAD network, initiated from the AGAP
Institute and AMAP joint research units. Author contributions:
H.E.M.T.: Conceptualization, implementation, and writing. M.J.:
Implementation, writing, and review. F.R.: Writing and review.
F.P.: Robust project head and review. All authors have read and
agreed to the published version of the manuscript. Competing
interests: The authors declare that they have no competing
interests.

Data Availability
The data and source code that support the findings of this study
are openly available at https://github.com/Houssem-Triki/
MIMIC.

References

	 1.	 Brandmeyer JE, Karimi HA. Coupling methodologies for
environmental models. Environ Model Softw. 2000;15(5):479–488.

	 2.	 Argent RM, Voinov A, Maxwell T, Cuddy SM, Rahman JM,
Seaton S, Vertessy RA, Braddock RD. Comparing modelling
frameworks—A workshop approach. Environ Model Softw.
2006;21(7):895–910.

	 3.	 Abel DJ, Kilby PJ, Davis JR. The systems integration problem.
Int J Geogr Inf Syst. 1994;8(1):1–12.

	 4.	 Louarn G, Song Y. Two decades of functional–structural
plant modelling: Now addressing fundamental questions
in systems biology and predictive ecology. Ann Bot.
2020;126(4):501–509.

	 5.	 Donatelli M, Magarey RD, Bregaglio S, Willocquet L,
Whish JPM, Savary S. Modelling the impacts of pests and
diseases on agricultural systems. Agric Syst. 2017;
155:213–224.

	 6.	 Wang N, Jassogne L, van Asten PJA, Mukasa D, Wanyama I,
Kagezi G, Giller KE. Evaluating coffee yield gaps and important
biotic, abiotic, and management factors limiting coffee
production in Uganda. Eur J Agron. 2015;63:1–11.

	 7.	 Matovu R, Kangire A, Phiri N, Hakiza G, Kagezi G, Musoli P.
Ecological factors influencing incidence and severity of coffee
leaf rust and coffee berry disease in major arabica coffee growing
districts of Uganda. Uganda J Agric Sci. 2013;14:87–100.

	 8.	 Parmesan C, Hanley ME. Plants and climate change:
Complexities and surprises. Ann Bot. 2015;116(6):849–864.

	 9.	 Pham Y, Reardon-Smith K, Mushtaq S, Cockfield G. The
impact of climate change and variability on coffee production:
A systematic review. Clim Chang. 2019;156(4):609–630.

	10.	 Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X,
Shen M, Zhu X. Plant phenology and global climate change:
Current progresses and challenges. Glob Change Biol.
2019;25(6):1922–1940.

	11.	 Kagezi G, Kucel P, Egonyu JP, Kyamanywa S, Karungi JT,
Pinard F, Jaramillo J, Van Asten P, Wagoire WW, Ngabirano H.
A review of the status and progress in management research
of the black coffee twig borer, Xylosandrus compactus
(Eichhoff) in Uganda. Paper presented at: ASIC 2014.

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077
https://github.com/Houssem-Triki/MIMIC
https://github.com/Houssem-Triki/MIMIC

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 14

Proceedings of the 25th International Conference on Coffee
Science; 2014 Sep 8–13; Armenia, Colombia.

	12.	 Pinard F, Makune SE, Campagne P, Mwangi J. Spatial
distribution of coffee wilt disease under Roguing and
replanting conditions: A case study from Kaweri Estate in
Uganda. Phytopathology. 2016;106(11):1291–1299.

	13.	 Luzinda H, Nelima M, Wabomba A, Kangire A, Musoli P,
Musebe R. Farmer awareness, coping mechanisms and economic
implications of coffee leaf rust disease in Uganda. Uganda J Agric
Sci. 2016;16:207.

	14.	 Buddie AG, Crozier J, Rutherford MA, Flood J, Bridge PD.
Population development within the coffee wilt pathogen
Gibberella xylarioides reflects host-related divergence. Eur J
Plant Pathol. 2015;142(2):291–304.

	15.	 Cerda R, Avelino J, Gary C, Tixier P, Lechevallier E,
Allinne C. Primary and secondary yield losses caused by
pests and diseases: Assessment and modeling in coffee.
PLoS One. 2017;12(1):Article e0169133.

	16.	 Gaunt RE. The relationship between plant disease severity and
yield. Annu Rev Phytopathol. 1995;33(1):119–144.

	17.	 Bar-Yam Y. General features of complex systems: Encyclopedia
of life support systems. Oxford (UK): EOLSS UNESCO
Publishers; 2002.

	18.	 Tan M, Gou F, Stomph TJ, Wang J, Yin W, Zhang L, Chai Q,
van der Werf W. Dynamic process-based modelling
of crop growth and competitive water extraction in
relay strip intercropping: Model development and
application to wheat-maize intercropping. Field Crops Res.
2020;246:Article 107613.

	19.	 Sievänen R, Perttunen J, Nikinmaa E, Posada JM. Invited
talk: Functional structural plant models—Case LIGNUM.
Paper presented at: PMA 2009. Proceedings of the 2009 Third
International Symposium on Plant Growth Modeling, Simulation,
Visualization and Applications; 2009 Nov 9–13; Beijing, China.

	20.	 de Reffye P, Hu BG. Relevant qualitative and quantitative
choices for building an efficient dynamic plant growth model:
Greenlab case. Paper presented at: PMA 2003. Proceedings
of the 2003 International Symposium on Plant Growth
Modeling, Simulation, Visualization and their Application;
2003 Oct 13–16; Beijing, China.

	21.	 Soualiou S, Wang Z, Sun W, de Reffye P, Collins B, Louarn G,
Song Y. Functional–structural plant models mission in advancing
crop science: Opportunities and prospects. Front Plant Sci.
2021;12:Article 747142.

	22.	 Heuvelink E. Dry matter partitioning in tomato: Validation of
a dynamic simulation model. Ann Bot. 1996;77(1):71–80.

	23.	 Rivals P. Essai Sur la croissance des arbres et Sur leurs systèmes
de floraison (application aux espèces fruitières). J Agric Tradit
Bot Appliquée. 1965;12(12):655–686.

	24.	 Barthélémy D, Caraglio Y. Plant architecture: A dynamic,
multilevel and comprehensive approach to plant form,
structure and ontogeny. Ann Bot. 2007;99(3):375–407.

	25.	 Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF,
Parnell S, Fielding AH, Bamford AJ, Ban S, Barbosa AM,
et al. Outstanding challenges in the transferability of
ecological models. Trends Ecol Evol. 2018;33(10):
790–802.

	26.	 Lessler J, Cummings DAT. Mechanistic models of infectious
disease and their impact on public health. Am J Epidemiol.
2016;183(5):415–422.

	27.	 Kirkeby C, Brookes VJ, Ward MP, Dürr S, Halasa T.
A practical introduction to mechanistic modeling of

disease transmission in veterinary science. Front Vet Sci.
2021;7:Article 546651.

	28.	 Siad SM, Iacobellis V, Zdruli P, Gioia A, Stavi I, Hoogenboom G.
A review of coupled hydrologic and crop growth models. Agric
Water Manag. 2019;224:Article 105746.

	29.	 Kropff MJ, Teng PS, Rabbinge R. The challenge of linking pest
and crop models. Agric Syst. 1995;49(4):413–434.

	30.	 Vezy R, le Maire G, Christina M, Georgiou S, Imbach P,
Hidalgo HG, Alfaro EJ, Blitz-Frayret C, Charbonnier F,
Lehner P, et al. DynACof: A process-based model to study
growth, yield and ecosystem services of coffee agroforestry
systems. Environ Model Softw. 2020;124:Article 104609.

	31.	 Leclerc G, Bommel P, Motisi N, Vezy R, Treminio E, Avelino J.
Coffee leaf rust (Hemeleia vastatrix) risk management in Central
America: Contribution of remote interactive simulations. Agron
Environ Sociétés. 2021;11(2).

	32.	 Pradal C, Dufour-Kowalski S, Boudon F, Donès N. The
architecture of OpenAlea: A visual programming and
component based software for plant modeling. Paper presented
at: FSPM 2007. Proceedings of the 5th International Workshop
on Functional-Structural Plant Models; 4–9 Nov 2007; Napier,
New Zealand.

	33.	 Pradal C, Dufour-Kowalski S, Boudon F, Fournier C,
Godin C. OpenAlea: A visual programming and component-
based software platform for plant modelling. Funct Plant Biol.
2008;35(10):751–760.

	34.	 Qi R, Cournede P-H, Lecoustre R, de Reffye P. Tri-trophic
ecosystem oil palm-pests-auxiliaries: I. Modeling and
simulation. Paper presented at: PMA 2009. Proceedings
of the 2009 Third Plant Growth Modeling, Simulation,
Visualization, and Applications; 2009 Nov 9–13; Beijing,
China.

	35.	 Motisi N, Bommel P, Leclerc G, Robin MH, Aubertot JN,
Butron AA, Merle I, Treminio E, Avelino J. Improved
forecasting of coffee leaf rust by qualitative modeling: Design
and expert validation of the ExpeRoya model. Agric Syst.
2022;197:Article 103352.

	36.	 Le Chevalier V, Jaeger M, Mei X, Cournède P-H. Simulation
and visualisation of functional landscapes: Effects of the water
resource competition between plants. J Comput Sci Technol.
2007;22(6):835–845.

	37.	 Zeigler BP. DEVS representation of dynamical systems: Event-
based intelligent control. Proc IEEE. 1989;77(1):72–80.

	38.	 Garin G, Fournier C, Andrieu B, Houlès V, Robert C,
Pradal C. A modelling framework to simulate foliar fungal
epidemics using functional–structural plant models. Ann Bot.
2014;114(4):795–812.

	39.	 Reuillon R, Leclaire M, and Rey-Coyrehourcq S, OpenMOLE,
a workflow engine specifically tailored for the distributed
exploration of simulation models. Future Gener Comp Syst.
2013;29(8):1981–1990.

	40.	 de Reffye P, Heuvelink E, Guo Y, Hu B-G, Zhang B-G. Coupling
process-based models and plant architectural models: A key
issue for simulating crop production. In: Cao W, White JW,
Wang E, editors. Crop modeling and decision support. Berlin
(Germany): Springer; 2009. p. 130–147.

	41.	 Cournède P-H, Guyard T, Bayol B, Griffon S, de Coligny F,
Borriane P, Jaeger M, de Reffye P. A forest growth simulator
based on functional-structural modelling of individual trees.
Paper presented at: PMA 2009. Proceedings of the 2009 Third
International Symposium on Plant Growth Modeling, Simulation,
Visualization and Applications; 2009 Nov 9–13; Beijing, China.

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

Triki et al. 2023 | https://doi.org/10.34133/plantphenomics.0077 15

	42.	 Kang M, Hua J, Wang X, de Reffye P, Jaeger M, Akaffou S.
Estimating sink parameters of stochastic functional-structural
plant models using organic series-continuous and rhythmic
development. Front Plant Sci. 2018;9:1688.

	43.	 Letort V, Sabatier S, Okoma MP, Jaeger M, de Reffye P. Internal
trophic pressure, a regulator of plant development? Insights
from a stochastic functional–structural plant growth model
applied to Coffea trees. Ann Bot. 2020;126(4):687–699.

	44.	 Cournède P-H, Kang MZ, Mathieu A, Barczi JF, Yan HP,
Hu BG, de Reffye P. Structural factorization of plants
to compute their functional and architectural growth.
SIMULATION. 2006;82(7):427–438.

	45.	 Rodríguez D, Cure JR, Gutierrez AP, Cotes JM, Cantor F. A
coffee agroecosystem model: II. Dynamics of coffee berry
borer. Ecol Model. 2013;248:203–214.

	46.	 Gamma E, Helm R, Johnson R, Vlissides J. Design patterns:
Elements of reusable object-oriented software. London (UK):
Pearson Education; 1994.

	47.	 Tendeloo YV, Vangheluwe H. Discrete event system
specification modeling and simulation. Paper presented
at: WSC 2018. Proceedings of the 2018 Winter Simulation
Conference; 2018 Dec 9–12; Gothenburg, Sweden.

	48.	 Damon A. A review of the biology and control of the coffee
berry borer, Hypothenemus hampei (Coleoptera: Scolytidae).
Bull Entomol Res. 2000;90(6):453–465.

	49.	 Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A,
Vega FE, Poehling HM, Borgemeister C. Thermal tolerance
of the coffee berry borer Hypothenemus hampei: Predictions
of climate change impact on a tropical insect pest. PLoS One.
2009;4(8):Article e6487.

	50.	 Dufour BP, Kerana IW, Ribeyre F. Population dynamics of
Hypothenemus hampei (Ferrari) according to the phenology
of Coffea arabica L. in equatorial conditions of North Sumatra.
Crop Prot. 2021;146:Article 105639.

	51.	 Ben-Kiki O, Evans C. YAML Ain’t Markup Language
(YAMLTM) Version 1.2.

	52.	 Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh
approach to numerical computing. SIAM Rev. 2017;59(1):65–98.

	53.	 Perkel JM. Julia: Come for the syntax, stay for the speed.
Nature. 2019;572(7767):141–142.

	54.	 Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci.
1963;20(2):130–141.

	55.	 Sedgwick P. Retrospective cohort studies: Advantages and
disadvantages. BMJ. 2014;348:Article g1072.

	56.	 Whish JPM, Herrmann NI, White NA, Moore AD, Kriticos DJ.
Integrating pest population models with biophysical crop models
to better represent the farming system. Environ Model Softw.
2015;72:418–425.

	57.	 Zeigler BP, Muzy A. From discrete event simulation to discrete
event specified systems (DEVS). IFAC-Pap. 2017;50(1):3039–3044.

	58.	 Bergez J-E, Chabrier P, Gary C, Jeuffroy MH, Makowski D,
Quesnel G, Ramat E, Raynal H, Rousse N, Wallach D, et al. An
open platform to build, evaluate and simulate integrated models of
farming and agro-ecosystems. Environ Model Softw. 2013;39:39–49.

	59.	 Chabrier P, Garcia F, Martin-Clouaire R, Quesnel G, Raynal H.
Toward a simulation modeling platform for studying cropping
systems management: The record project. Paper presented at:
MODSIM 2007. Proceedings of the International Congress
on Modelling and Simulation; 2007 Dec 10–13; Christchurch,
New Zealand.

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on A

ugust 31, 2023

https://doi.org/10.34133/plantphenomics.0077

	Coupling Plant Growth Models and Pest and Disease Models: An Interaction Structure Proposal, MIMIC
	Introduction
	Objectives and scope
	About plant growth models
	About P&D models
	Plant and P&D model coupling

	Materials and Methods
	Framework design assumptions
	MIMIC, a formal framework for interaction
	MIMIC: Overview and principles
	MIMIC: The components

	A case study: The CBB and Arabica coffee
	The CBB model
	The coffee fruit cohort model
	Human intervention model
	Integration of the coffee–CBB interaction
	Validation data

	Implementation and Results
	Architecture (kernel, pseudo-models, and models) of MIMIC
	Functioning of MIMIC’s components
	Models’ layer
	Pseudo-models’ layer
	MIMIC’s kernel layer

	The user’s layer or how the users communicate with MIMIC
	User interaction model (UIM)
	User simulation control (UC)

	Executing MIMIC
	Development and dissemination
	Study case: Sumatra, Indonesia (data used for simulation)
	Parameters of the coupling
	Results of the case study
	Performances and coding key figures

	Discussion and Perspectives
	Cohort assumption
	About spatialization

	Feedback and ISS
	Choosing Julia, user-friendly meta programming
	Perspectives

	Conclusion
	Acknowledgment
	Data Availability
	References

