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Abstract

A new mobile bed heat exchanger is presented in this work which is composed of
a flowing granular material in a rotating drum and a cylindrical pipe with poten-
tial interest in different energy applications as cooling, heating or heat recovery
processes. An optimal design of the device requires a characterisation of the phe-
nomena involved at the interface between the granular flow and the pipe. The
process is modelled by the discrete element method and a global classification
of the flow patterns around the pipe is presented with respect to the three main
control parameters of the problem: the Froude number, the diameter ratio and the
relative filling height of the drum. The second part is devoted to the character-
isation of the structure of the flow at the interface (velocity field, density field)
in particular in a so-called Biflow regime where granular motion occurs above as
well as below the pipe which is favorable to transfer by convection. A typical
behavior at the interface with the pipe consists of a zone I with high velocities
of particles at the top of the pipe, a second zone with quasistatic particles or low
velocity particles at the front and at the bottom of the pipe and a last zone III of
depletion of particles at the back of the pipe. The Froude number has a limited
effect on the features of this structure on the first layer in the range of Froude
numbers considered whereas the relative height is a more determinant parameter
to control the relative magnitude of velocities in zone I and zone II as well as the
extent of the depletion zone. This first hydrodynamical characterisation can shed
light on the dynamical regimes with improved transfer between the particles and
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the pipe boundary.
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1. Introduction

Mobile bed heat exchangers (MBHE) are indirect exchangers using a gran-
ular material flowing by gravity along a surface of transfer (tube, plate). They
received an increasing interest these last year as a low cost and efficient solution
for heat transfer in solar power plants [1, 2] or as a heat recovery process for
an alternative electric production [3]. The concern of the scientific community
for such systems increased therefore recently in a significative way [2, 4] as the
proper characterisation of the coupling between heat transfers [6] and the complex
rheological properties of dense granular flows [5] still require important efforts.
Thermal transfers in granular flows can be essentially examined through mod-
elling approaches as the discrete element method that can give access to relatively
reliable thermal field in the bulk at the grain scale [7, 8, 9, 10, 11, 12] despite
recent warnings [13] whereas experimental approaches can give access only to
measurements of effective transfer coefficients [14, 15] at the macroscopic scale
or temperature fields on a given external surface with infrared thermography as
proposed recently [16].

Concerning the characterisation of heat transfers between a simple gravity
driven granular flow and a duct, recent modelling works [4] show the major role
played by the motion of the grains along the surface of exchange. Energy effi-
ciency appears limited on one hand by the apparition of a zone of accumulation
of quasistatic particles at the front of the pipe with respect to the flow direction:
In fact thermal gradients decrease with time in the static zone of particles and
are much smaller than those imposed by the contact of new mobile particles of
the flow. Such cone shaped stagnant area have also been studied experimentally
[17, 18] and are very relevant for the design of MBHE. The modelling approach
[4] shows also that a higher velocity of the particles is associated to an increased
transfer for the same reason of more frequent renewal of the neighboorhood of
contact. On the other hand, the apparition of a zone of depletion of particles at the
back of the pipe cancel obviously the thermal transfers along this portion of pipe.
The same authors evoke also a mixing zone between different layer of particles on
the exposed part of the pipe created by the curvy outline: this is also favourable
to the transfer by allowing a possible access at the boundary of the some remote



particles. However, these interesting works show that the phenomena of jamming,
depletion and mixing are interdependant and play sometimes contrary roles with
respect to the total transfer. The work of Guo et al. [4] illustrates in particular the
strong coupling between granular mechanics around the pipe and transfer which
motivates generally a careful analysis of the flow [18].

We would like in this work to analyse the evolution of the hydrodynamic char-
acteristics of a mobile granular bed in contact with a pipe in an original MBHE
device where the granular flow is generated continuously by the surface flow of a
moving granular material partially filling a rotating drum. Our practical motiva-
tion is to identify the parametric conditions for an improved transfer between the
moving granular bed and the pipe.

The first section of this article is devoted to the presentation of the new device,
its potential benefits and the computational methodology to model the flow. The
second section presents the results of the study: First, a global classification of
the different flow patterns that appear around the pipe is established according to
the main control parameters of the problem: The Froude number Fr, the diame-
ter ratio 1% and the effective height of the packing sy = Br, where B is a scale
parameter. These results can be summarised in a bed behavior diagram. Second,
the structuration of the flow around the pipe is quantified through the calculation
of the average velocity and average density field of particles on the first layer at
the contact with the pipe with respect to the control parameters. We discuss at last
some implications for the transfer at the light of these previous results.

2. Materials and methods

2.1. Presentation of the device

The device consists in a horizontal rotating drum (radius R, length P) and a
fixed pipe (radius R)) located along the rotation axis of the drum. The drum is
filled with a granular material (particle radius r) at a certain height sy measured
from the centre of drum as a fraction 8 of the pipe radius R,. The rotation of the
drum at a velocity @ will generate a granular flow at the surface that we want to
study in order to maximize the heat transfer between the granular material and the
pipe. Figure 1 shows the principle of the new mobile bed heat exchanger and the
dimensions of the device are detailled on Table 1.



Dimensions Value

Drum radius R, 0.2m

Drum length P 40r =0.16 m

Pipe radius R, 3/10Ry; Ry/5; Ry/10; Ry /15
Particle radius r 0.004m £10%

Rotation velocity @ 10 rpm ; 20 rpm ; 30 rpm ; 40 rpm

Table 1: Numerical values of the dimensions in the device

The configuration of rotating drum is widely used in the chemical engineering
of divided matter, in numerous industries for mixing, drying, grinding, coating,
granulation, chemical and biochemical reaction and so on from large particles of
minerals to food powders and pharmaceutical ingredients. Heat transfer plays a
significant role in many of these processes in which granular materials are gener-
ally heated indirectly through the rotating wall [20]. By increasing the angular ve-
locity of the drum,the surface flow goes from of a regime of intermittent avalanche
then to a continuous regime of avalanches and to a flow regime of curved surface
involving a thicker active layer [21]. This last cascading regime although poorly
studied provides suitable operational conditions for industrial mills and granula-
tors for instance [22]. In particular, the active flowing layer thickness is an im-
portant quantity for these processes. Our exchanger will be mostly exploring the
cascading regime because of the expected thicker width of the active layer where
it allows also a continuous recirculation of the flow along the pipe. Compared
to classical gravity driven mobile bed heat exchangers, the continuous motion of
recirculation of the particles along the pipe, created by the rotating drum, allows
to control the amount of heat transferred towards a reduction of the temperature
differential between the pipe and the particles. Simplicity of installation and en-
ergy savings may also be more reachable compared to indirect rotary coolers for
instance because a simple pipe embedded in the granular flow along the drum axis
is necessary and there is no need to dive the entire drum in a thermostated bath. At
last, the regular recirculation of the granular material around the pipe by rotation
may also create a possible mixing effect of the particles in the drum after several
rotations eventually through transient granular vortices [19] potentially relevant
to transfers [23]. However these favorable conditions have to be analysed and
clarified in more details.
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Fig. 1: Principle of the mobile bed heat exchanger in a rotating drum - front view (left) and sketch
of the flow in the Biflow regime (right)

2.2. Computational methodology

We chose to model the granular flow in the new device and in particular the
mechanical properties of the flow in contact with the pipe with the discrete ele-
ment method. The discrete element method is a successful technique developped
by Cundall and Strack in 1970 in order to model the dynamics of granular mat-
ter in different contexts [24]. Its principle consists in modelling each particle
as a discrete unit where its dynamic under external forces (frictional collisional
contacts with neighbouring particles and boundaries) is resolved using Newton’s
second law of mechanics. The present model has been implemented on the Open-
source software Yade-dem [25]. In this frame, the choice of the constitutive law
for the model of contact is crucial to be able to describe the physics at the par-
ticle scale. We chose in this work a visco-elastic contact law in the normal and
tangential direction with Coulomb friction in the tangential direction. This law
is simple enough and able to describe energy dissipation for dense granular flows
[26]. Input mechanical parameters for using this law are: Young modulus, Pois-
son coefficient and normal and tangential restitution coefficients. The stiffness
coefficient as the damping constants are deduced from the value of the normal
coefficient of restitution that can be determined experimentally. We used as ref-
erence materials for the particles and the boundaries (inner cylinder, drum walls)
respectively glass and plexiglass. It is important to precise that the values of the
Young moduli chosen do not correspond to the real values of the materials. Indeed
a practical way to decrease the computational time is to choose smaller values for
the Young moduli (softer beads) so that the time step of the simulation is longer.
Nevertheless we checked that the interpenetration between particles remains weak



(interpenetration less than 1% of the particle size). The numerical values of ma-
terial properties are presented on Table 2. Parameters of the model in DEM are
deduced from the material properties of each participant of the interaction (wall
or particle): for the stiffness as the stiffness of two springs in serial configuration
or for other parameters by taking the average of material parameters [25].

Material property Value
Wall density 1190 kg/m 3
Wall Poisson ratio 0.37
Wall Young modulus 10° Pa
Particle density 2500 kg/m *
Particle Poisson ratio 0.3
Particle Young modulus 10° Pa
Wall normal coefficient of restitution 0.920
Particle normal coefficient of restitution 15/16
Wall tangential coefficient of restitution 1
Particle tangential coefficient of restitution 1

Wall coefficient of friction 0.8
Particle coefficient of friction 0.7

Table 2: Numerical values of the material properties

In a first step, flow patterns have been qualitatively analysed through a repre-
sentation of the velocity field that are obtained from Yade-dem tools (yade module
yade.post2d) for the projection of 3D points to 2D with an autoscaling algorithm
based on average vector length and number of vectors [25]. In order to char-
acterize the hydrodynamic behavior at the contact with the pipe boundary, we
calculated in a second step through different python scripts the mean density field
(particle volume fraction) and velocity field discretized in bins in a cylindrical
ring of interest of one particle width around the pipe (20 bins constituting the
mesh corresponding to an angular step of {;). We performed a further averaging



of these physical quantities over one drum rotation and over different rotations
in order to smooth small scale fluctuations of particle dynamics. The calculation
of the effective packing fraction (density) can be delicate because of the complex
detection of portions of beads at the boundaries of one bin. We used a voxel al-
gorithm to treat this issue. This calculation method consists in dividing the whole
volume into a dense grid of voxels (at given resolution), and count the voxels that
fall inside any of the spheres. This method allows one to calculate porosity in any
given sub-volume of a whole sample and is properly excluding a part of a sphere
that does not fall inside a specified volume [25].

2.3. Dimensional analysis

Dimensional analysis garantees that system properties expressed as non di-
mensional physical quantities depend only on non dimensional combinations of
the physical parameters of the problem which limit advantageously the extent of
the parametric study. Non dimensional parameters of the problem can be ex-
pressed as geometrical parameters: R;/r; Ry/R) ; P/r ; the height of the pile
B = ho/R, ; dynamical parameter as the Froude Number R,®?/g as well as the
mechanical parameters (Poisson, restitution and friction coefficients) and the stift-
ness number that measures the degree of deformation on a particle [27]. The
present study is limited to the influence of three main parameters:

* Froude number
The Froude number is the classical parameter used to classify flow regimes
in simple rotating drums. it measures the relative importance of centrifugal
forcing to gravity. The values of the Froude number are such that 2.24 x
1072 < Fr < 3.57% 10! corresponding to rotation velocities  (Table 1).
This range of values corresponds to the cascading regime and the beginning
of cataracting regime in simple rotating drums [21].

* Relative height 3
B is a scale parameter which quantifies the filling height A of the packing
obtained by iy = BR,,. The height of the packing scaled by the radius of the
pipe is supposed to be determinant to control the flow in this problem. A
range of values —1 < 8 < 2 has been chosen in this work.

* Ratio of the radius of the pipe to the radius of drum
The ratio Ilg—z is also crucial for the determination of the influence of the size
of the inner pipe on the flow. Following values 10/3;5(C1);10(C2);15(C3)
have been considered in this work.
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3. Results and discussions

3.1. Bed behavior typology

In order to get a qualitative overview of the different flow patterns around
the pipe, we represented for each configuration the velocity field of the granular
flow around the pipe. We observed a similar pattern for the different layer depths
considered in the flow. For a global overview of the flow, we chose to represent
the velocity field including all the particles in the drum on the same graph. In the
range of parameters considered, we checked furthermore the global stationarity
of the flow field in each configuration by observation of the different patterns at
different times on one round. We represent in Appendix A a summary of the
different flow patterns in the parameter space (Fr, 3, %)'
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Fig. 2: Illustration of three main patterns observed: Monoflow-up(left) - Biflow (middle) -
Monoflow-down (right)

The observation of the different configurations shows three main patterns for
the flow around the pipe with respect to the control parameters that we called
respectively Monoflow-up ; Monoflow-down and Biflow (Figure 2).

* Monoflow-up (MU)

In this regime we observe a flow around the pipe that is essentially localised
on the upper part of the pipe. The flow can have a plane surface or being
curvy.

e Monoflow-down (MD)



In this regime, the surface flow is localised on the lower part of the pipe.
An important zone of depletion of particles is observed at the top and on the
back side of the pipe.

« Biflow (BF)

This regime is characterized by a notable flow on both sides of the pipe (top
and bottom). This is a relevant regime for our concerns because convection
at the surface is thus maximized which is favorable to transfers.

The initial height of the bed appears to be a determinant parameter of the flow
around the pipe: As the pile recovers entirely the interior duct (8 > 1), we observe
a regime Monoflow-up without any zone of depletion.As the initial height of the
packing decreases, the flow relocate partly below the pipe; we enter in the regime
called Biflow. As the initial height decreases, the flowing layer on the upper part
of the pipe becomes thinner till we reach a transition to the regime Monoflow-
down with an important zone of depletion. We note also that central zone shrinks
progressively as the granular band in motion at the edges of the drum enlarges
slightly.

The Froude number has an influence on the shape of the surface of the flow
specially visible in the regime Monoflow-up. As the Froude number increases,
we observe the apparition of curvy shape of the surface. This is consistent with
classical observations in rotating drums when the filling ratio is higher that 10%
and the Froude number 1073 < Fr < 10~! and known as the cascading regime
[21]. We observe also that for higher sizes of the pipe, the curved shape appears
for a lower Froude number. As for the effect of height, there is in fact also the
contribution of the deviation of particle trajectories by the curvy surface of the
pipe. At last, we note an increase of the width of the flowing layers with the
Froude number also more quantitative characterization would be necessary. In
cascading granular flows, the active flowing layer on top of the granular bed is
indeed fed by the upward motion of particles driven by the rotation [22]. This
trend is in agreement with previous results on the active layer in rotating drums
[28] and might be also an interesting feature for transfer optimisation. The relative
size of the pipe plays also an important role in the transition between the different
regimes. For higher sizes of the pipe, the Biflow regime appears for lower 3. This
is consistent with the simple fact that higher depths of the flow have to be involved
for higher pipe sizes in order to mobilize the lower layer at the bottom of the pipe.
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Fig. 3: Bed behavior diagram in the 3 parameters space (Froude number, relative height 3, relative
diameter ratio R;/R),)

A bed behavior diagram is represented on Figure 3 that summarizes our ob-
servations concerning the flow patterns.

3.2. Quantitative analysis - Biflow regime

As observed previously, the Biflow regime identified is certainly the most rel-
evant regime for our purpose as it will maximize convection at the contact with the
surface of the pipe. First observations of the global flow structure in this regime
show the presence of a zone of strong slow down and nearly jamming of particles
on the side of the pipe facing the flow because of the geometrical obstruction of
the pipe. Particles in this zone are submitted to strong fluctuations and their tra-
jectory seem to result from the competition between two main flows (Figure 1,
right):

- The gravity granular flow getting past the top of the pipe: It is mainly fed by
the layers of beads the closest from the drum circonference. It is a free surface
gravity flow at a higher velocity and only constrained by the lower layers and the
curved outline of the pipe.

- The gravity granular flow going downwards below the pipe. It involves the
layers of beads closer to the centre of the drum. It is a downward gravity flow
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at a lower velocity starting from a lower height and constrained on both sides by
the curved outline of the pipe and the friction with the upward bulk motion of
particles driven by the rotation of the drum (passive layer).

In order to have a clearer view of the microscale properties of the Biflow
regime at the interface with the pipe, we determined quantitatively the evolution
of the mean velocity and packing fraction of particles for 0 < 8 < 1 at the contact
with the pipe boundary which is a relevant region for the thermal transfer through
granular contacts.
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Fig. 4: Typical angular distribution of the velocity rescaled by the velocity of free fall from a height
Ry, packing fraction as a function of the angular position ey around the pipe and definition of

the three zones (Fr =0,05, B =1, 1% =10 (c2))

We show on Figure 4 a typical evolution of these physical quantities around
the pipe. We can define from the curve profiles three characteristic zone along the
outline of the pipe:

e zone |

The particles are localised at the top of the pipe. They have a high velocity
and relatively low packing fraction. The evolution follows a roughly bell
curve with respect to angular position with a maximum at around 130° —
150°.

e zone II
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The particles are localised on the bottom side of the pipe and on the side
facing the flow. The velocities are low but we note that the particles are still
moving in the Biflow regime contrary to free gravity MBHE [18]. A small
maximum velocity is observed at an angular position around 290° — 330°
below the pipe.

e zone III

This is the depletion zone where no particles are in contact with the surface
of the pipe.

We would like now to explore how these features evolve with the control pa-
rameters defined previously.

3.2.1. Influence of the Froude number
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Fig. 5: Angular distribution of the velocity around the pipe for different Froude numbers and three
different heights f = 1 (left) - § = 0.5 (middle) - B = 0 (right)

The evolution of the maximal velocity in zone I shows fluctuations and no
clear correlation with the Froude number (Figure 5). Qualitative observations of
the flow show that these particles are at contact from the jamming zone at the
front of the pipe and favourable fluctuations in this zone can bring them with a
low velocity at the top of the pipe under the drive of the high velocity upper layers
of beads in a collisional regime.
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Fig. 6: Evolution of maximal velocity in zone I (left) and in zone II (right) as a function of the
Froude number
On the contrary, the evolution of the the maximal velocity in zone II shows a
regular increase with the Froude number (Figure 6) . We relate this fact to previous
observations on cascading flows in simple drums that the width of the active layer
increases with the Froude number in cascading flows implying higher velocities
at a given depth. We note at last that the width of the different zones does not vary
significatively with the Froude number in the limit of our discretisation procedure
with a step size of discretisation of .
3.2.2. Influence of the initial height of the packing
This parameter appears to be determinant for the structure of the Biflow regime
around the pipe.
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Fig. 7. Angular distribution of the velocity around the pipe for different initial heights 3 at three
different Froude numbers Fr = 0.022 (left); Fr = 0.134 (middle) ; Fr = 0.274 (right)
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Evolutions of the maximal velocity in both zones are represented on Figure
8. Indeed, the decrease in zone I is to be associated with a higher obstruction of
the flow by the pipe; hence more energy is dissipated in the flow to get past the
pipe and less moving particles can overcome the pipe. The corresponding increase
in zone II is associated to the fact that as initial height decreases, particle layers
closer to the surface are coming into contact with the bottom of the pipe which

have a higher velocity.
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Fig. 9: Angular distribution of the packing fraction around the pipe for different initial heights 3
at three different Froude number Fr = 0.022 (left); Fr = 0.134 (middle) ; Fr = 0.274 (right)

The width of zone III presents also an interesting feature with respect to the
initial height (see Figure 9): the width of the depletion zone seems to increase
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to be able to get past the top of the pipe.

3.2.3. Influence of the relative size of the pipe

Properties at contact are also very sensitive to the relative size of the pipe.

Fig. 10: Angular distribution of the velocity around the pipe for heights § = 1 (left) - B = 0.5
(middle) - B = 0 (right), a constant Froude number Fr = 0.14 and three different configurations
of relative diameter ratio C1 (Ry/R, =5); C2 (Ry/R, = 10); C3 (R4/R, = 15)

Figure 10 shows the typical velocity distribution for three different internal
diameter ratio. As the relative diameter of the pipe increases, the velocities in
zone [ tend to increase as well as the velocities in zone II decrease. Decrease in
zone Il is consistent with the fact that deeper layers of the materials are involved in
the flow downwards associated with lower velocity. Increase of velocity in zone
I is also fairly consistent with different phenomena: First, considering particles
with negligible velocity at the top of the pipe, the basic mechanical problem of
a sphere rolling on a circular outline shows that the linear velocity of the rolling
sphere in contact increases with the curvature radius because of the centrifugal
force. Second, considering that the angle of take-off of the bead from the surface
of the pipe is size independant, the distance of contact with the pipe is higher for
higher diameters such that the drive from the particles of the superior layers at
higher velocities applies on a longer distance. The evolution of the widths of the

zone doesn’t demonstrate specific correlations in the limit of the precisions of our
computational procedure.
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4. Conclusion

We proposed in this article a first contribution devoted to the characterisation
of the flow of a granular material at the contact with a pipe in a rotating drum.
This original device represents a new kind of mobile bed heat exchanger that may
be potentially interesting for heat transfer intensification in different industrial
processes as cooling, heating or heat recovery. As observed previously[18], the
numerical approach can represent a reliable tool for novel design. We explored by
the discrete element method the characteristics of the flow at the contact with the
pipe as a function of the main control parameters of the problem (Froude number,
Diameter ratio, relative height). We identified in particular a flow regime that we
called Biflow where the flow of particles occurs at the top as well as the bottom
of the pipe. This may be relevant for the transfer as it maximizes convection
of particles at the boundary. We summarized all the phenomenology in a bed
behavior diagram. In a second part, we precised the properties of the contact in
the Biflow regime through the calculation of the packing fraction and the velocity
field at the contact with the pipe. We observe in particular that the Froude number
has an influence on the magnitude of the velocity only at the bottom of the pipe
(low velocity zone) suggesting different mechanisms of transport on each side of
the pipe. The initial height is a crucial factor in order to determine the magnitude
of the velocities on the top side and the bottom side of the pipe and the properties
of the Biflow regime: As the height increases the velocity on the top of the pipe
increases and the velocity at the bottom decreases. The depletion zone is also
larger for lower heights. Also, because of a size effect, the diameter of the pipe
has a clear influence on velocities. The proper scaling of these hydrodynamical
properties should require a more complete analysis of the complex granular flow
heterogeneities in the entire drum which remains to be done beyond this first study.
The trends obtained in this work may have clearly important consequences on the
transfer in particular the width of the depletion zone. As noted previously, high
velocities of the particles may favour transfer by allowing a more frequent renewal
of particles at the boundary but the local density of particles has obviously a role
to play in terms of transfer efficiency [11]. It is thus difficult to conclude at this
stage because the zones of contact at a high velocity of particles (top of the pipe)
are associated to lower values of density compared to the zones of contact at low
velocity (bottom of the pipe) as observed on Figure 4. The relevance of the device
for heat transfers has to be confirmed experimentally which is a purpose under
way. Integration of heat transfers in the numerical model would also be a next
stage in order to identify which dynamical regime may be optimal and to be able
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to precise the correlation with the rheological properties of the granular material
in this original device. The effect of the mixing properties of the granular material
in the device after several rotations have also to be analysed as it may favour heat
transfers [23]. The interplay between the convective transfer by particle mixing
and the diffusive transfer through the contact network may be an important feature
for the efficiency of the process.
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Appendix A.

You will find in the following a summary of the typology of the different flow
patterns (velocity fields) in the parameter space (Fr, B, R4/R))

BETA>1
Rd /Rp=10/3
Kf |
Rd /Rp =10/3

¢

Rd/Rp = 10/3 Rd/Rp =5 Rd/Rp = 10
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Rd/Rp =10/3

Rd/Rp = 5

Rd/Rp = 15

BETA=-0.5

Rd/Rp = 10/3

Rd/Rp=5

Ra/Rp = 10

Ra/Rp = 15

2.24x107<Fr < 3.57x10"!

2.24x107<Fr < 3.57x10°!

2.24x107%<Fr <3.57x10"

2.24X107<Fr < 3.57x10’'

BETA<-1

Rd/Rp = 10/3

Rd/Rp=5

Rd/Rp = 10

Rd/Rp = 15

2.24%107%<Fr < 3.57x10"

21




