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Highlights Impact and implications

� Sex-independent vs. sex-biased CAR-dependent

hepatic pathways were defined.

� CAR activation influenced circulating lipoproteins
in a sex-independent manner.

� CAR activation influenced liver metabolism in fe-
male mice more than in males.

� CAR activation inhibited TMAO synthesis, which
could influence platelet aggregation.
https://doi.org/10.1016/j.jhepr.2023.100930
CAR is activated by many drugs and pollutants. Its
pharmacological activation had a stronger impact on
hepatic gene expression and metabolism in females
than in males, and had a specific impact on liver
toxicity and trimethylamine metabolism. Sexual
dimorphism should be considered when testing and/
or prescribing xenobiotics known to activate CAR.
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Background & Aims: The constitutive androstane receptor (CAR) is a nuclear receptor that binds diverse xenobiotics and
whose activation leads to the modulation of the expression of target genes involved in xenobiotic detoxification and energy
metabolism. Although CAR hepatic activity is considered to be higher in women than in men, its sex-dependent response to
an acute pharmacological activation has seldom been investigated.
Methods: The hepatic transcriptome, plasma markers, and hepatic metabolome, were analysed in Car+/+ and Car-/- male and
female mice treated either with the CAR-specific agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or with
vehicle.
Results: Although 90% of TCPOBOP-sensitive genes were modulated in a sex-independent manner, the remaining 10% showed
almost exclusive female liver specificity. These female-specific CAR-sensitive genes were mainly involved in xenobiotic
metabolism, inflammation, and extracellular matrix organisation. CAR activation also induced higher hepatic oxidative stress
and hepatocyte cytolysis in females than in males. Hepatic expression of flavin monooxygenase 3 (Fmo3) was almost abol-
ished and was associated with a decrease in hepatic trimethylamine-N-oxide (TMAO) concentration in TCPOBOP-treated
females. In line with a potential role in the control of TMAO homeostasis, CAR activation decreased platelet hyper-
responsiveness in female mice supplemented with dietary choline.
Conclusions: More than 10% of CAR-sensitive genes are sex-specific and influence hepatic and systemic responses such as
platelet aggregation. CAR activation may be an important mechanism of sexually-dimorphic drug-induced liver injury.
Impact and implications: CAR is activated by many drugs and pollutants. Its pharmacological activation had a stronger
impact on hepatic gene expression and metabolism in females than in males, and had a specific impact on liver toxicity and
trimethylamine metabolism. Sexual dimorphism should be considered when testing and/or prescribing xenobiotics known to
activate CAR.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
The liver is a highly sexually dimorphic organ. There is increasing
evidence for sexually-dimorphic regulation of xenobiotic clear-
ance, responses to drugs and drug-induced liver injury. We
postulated that the mechanisms underlying such dimorphism
may involve the constitutive androstane receptor (CAR, NR1I3).
CAR is a liver-enriched member of the nuclear receptor
Keywords: Sexual dimorphism; Hepatic xenobiotic metabolism; Lipoprotein meta-
bolism; Platelet aggregation; Trimethylamine-N-oxide.
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superfamily that controls ligand-dependent regulation of gene
expression. Upon ligand-binding, CAR translocates to the nu-
cleus, heterodimerises with retinoid X receptor a, and binds the
xenobiotic response element located on DNA, upstream of the
promoter sequences of its target genes. CAR was first described
as a xenobiotic receptor that recognises a wide variety of drugs,
foods, and environmental pollutants.1,2 Later studies then un-
veiled that CAR can also be activated by endobiotics such as
bilirubin, bile acids, and steroid hormones.3,4 Upon activation,
CAR regulates the expression of critical enzymes involved in
phase I, II, and III xenobiotic metabolism pathways,5,6 thereby
playing a central role in xenobiotic detoxification and clearance.
Moreover, CAR is involved in glucose and lipid homeostasis,
although its exact role in hepatic metabolism remains
controversial.7
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Hepatic expression of Car and its main target genes Cyp2b9
and Cyp2b10 is higher in female mice than in males.8,9 Moreover,
treatment with nonylphenol, a moderate CAR activator, induced
expression of cytochromes P450 (CYPs) more strongly in the
female mouse liver than in males.10 Similarly, treatment with
1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), the pro-
totypical pharmacological agonist of murine CAR (mCar),11

increased liver proliferation in female more than in male
mice.12 Our previous study showed that deletion of CAR
expression had a stronger impact on female hepatic gene
expression than on males; however, CAR-deleted males devel-
oped spontaneous steatosis during ageing while females did
not.13 Therefore, CAR is thought to impact rodent liver gene
expression in a sex-dependent manner, with higher CAR activity
and higher sensitivity to CAR activation in females. Interestingly,
in humans, the expression and activity of CYP2B6, the proto-
typical target gene for human CAR (hCAR), were higher in the
liver of women compared with men, indicating that sexual
dimorphism of CAR activity was also transposable to humans.8

Despite the recognition of its sexually dimorphic activity,
in vivo studies conducted so far on both male and female mice
have focused on the impact of CAR activation on the regulation of
CYPs,14 on genes involved in cell cycle and hepatocarcino-
genesis,15,16 or on long non-coding RNA.17 A genome-wide
comparison of the effects of CAR activation in male and female
mice is still lacking.

In this study, we used hepatic microarray and metabolomics
analysis of wild-type (Car+/+) and whole-body knockout litter-
mate (Car-/-) male and female mice treated with either Corn oil
(CO, vehicle) or TCPOBOP to elucidate the potential sex-
dependent impact of CAR activation.
Materials and methods
Animal models
In vivo studies were performed in a conventional laboratory
animal room following the European Union Guidelines for Use
and Care of Laboratory Animals. This project was approved by an
independent ethics committee (CEEA-86 Toxcométhique,
authorisation number 2019123014045837). The animals were
treated humanely with due consideration to the alleviation of
distress and discomfort. All mice were housed at 22 �C ± 2 �C on a
12-h light (ZT0–ZT12) 12-h dark (ZT12–ZT24) cycle, where ZT
indicates Zeitgeber time; ZT0 is defined as the time when the
lights are turned on. Animals were allowed free access to food
(Teklad Global 18% Protein Rodent Diet) and tap water. Car-/-

mice (backcrossed on the C57BL/6J) were engineered by Wei
et al.1 and were bred for 15 years in our animal facility. Car+/-

mice were co-bred and gave birth to true Car+/+ and Car-/-

littermate mice, which were then separated by sex and genotype
at 4 weeks of age and were randomly allocated to the different
experimental groups. Nine-week-old male and female mice
included in TCPOBOP groups received a daily intraperitoneal
injection of 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPO-
BOP, Sigma Aldrich) diluted in CO used as vehicle at 3 mg/kg for 4
days, whereas CO mice received CO only (Sigma Aldrich). One
cage housing n = 6 mice per group was used. At ZT16 (6 h after
the last TCPOBOP injection), mice were anaesthetised with iso-
flurane and xylazine (2%, 2 mg/kg) then blood from the vena cava
was collected into lithium heparin-coated tubes (BD Microtainer,
Franklin Lake, NJ, USA). Plasma was prepared by centrifugation
(1,500×g, 15 min, 4 �C) and stored at −80 �C. Following euthanasia
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by cervical dislocation, the liver and perigonadal white adipose
tissue were removed, weighted and snap-frozen in liquid nitro-
gen, and then stored at −80 �C until use.

To confirm Fmo3 regulation upon TCPOBOP treatment an in-
dependent experiment was conducted using the same experi-
mental groups but with different timing of TCPOBOP treatment
leading to the same total dose of TCPOBOP: intraperitoneal in-
jection either with TCPOBOP diluted in CO at 3 mg/kg every 2
days for 10 days or with CO, at ZT10. Mice were euthanised by
cervical dislocation at ZT8 and liver was removed, weighed and
snap-frozen in liquid nitrogen and stored at −80 �C.

For thrombus formation analysis, another set of 7-week-old
C57BL/6J mice were purchased from Charles River laboratories,
acclimatised for 2 weeks, then randomly allocated to the
different experimental groups: Female Corn Oil (F CO, n = 10),
female TCPOBOP (F TCPOBOP, n = 10), male Corn Oil (M CO, n =
10), male TCPOBOP (M TCPOBOP, n = 10) (two cages per group).
Then, mice were fed with 1% choline-enriched diet (D13090101,
Research Diets) for 10 days. Mice included in the TCPOBOP
groups received an intraperitoneal injection of TCPOBOP diluted
in CO at 3 mg/kg for the last 4 days of diet, whereas CO mice
received CO only, at ZT0. Between ZT3 and ZT8 whole blood was
drawn from the inferior vena cava of anaesthetised mice
(100 mg/kg ketamine, 10 mg/kg xylazine) into heparin sodium
(10 IU/ml) and mice were euthanised by cervical dislocation and
liver was removed, weighed and snap-frozen in liquid nitrogen
and stored at −80 �C until use.

Gene expression
Gene expression profiles were performed at the GeT-TRiX facility
(GénoToul, Génopole Toulouse Midi-Pyrénées, Toulouse, France)
using Agilent Sureprint G3 Mouse GE v2 microarrays (8 × 60K,
design 074809) following the manufacturer’s instructions. Data
acquisition and statistical analyses were performed as previously
described.18 A correction for multiple testing was applied using
the Benjamini-Hochberg procedure to control the false discovery
rate (FDR). Probes with fold change (FC) >−1.5 and FDR <−0.05 were
considered to be differentially expressed between conditions.
The enrichment of Gene Ontology (GO) biological processes was
evaluated using Metascape.19 Data are available in NCBI’s Gene
Expression Omnibus and are accessible through GEO Series
accession number GSE228554.

For real-time quantitative polymerase chain reaction (RT-
qPCR), 2 lg RNA samples were reverse-transcribed using the
High-Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Foster City, CA, USA). Table S1 presents the SYBR Green
assay primers. Amplifications were performed using an ABI
Prism 7300 Real-Time PCR System (Applied Biosystems). RT-
qPCR data were normalised to TATA-box-binding protein (Tbp)
mRNA levels.

Proton nuclear magnetic resonance (1H-NMR)-based
metabolomics
Plasma samples and liver polar extracts were prepared and
analysed using 1H-NMR-based metabolomics. All spectra were
obtained on a Bruker DRX-600-Avance NMR spectrometer
(Bruker) on the AXIOM metabolomics platform (MetaToul). De-
tails on experimental procedures, data pre-treatment and sta-
tistical analysis were described previously.18 Parameters of the
final discriminating orthogonal projection on latent structure-
discriminant analysis (O-PLS-DA) are indicated in the figure
legends. To identify metabolites responsible for discrimination
2vol. 6 j 100930



between the groups, the O-PLS-DA correlation coefficients (r2)
were calculated for each variable. Correlation coefficients above
the threshold defined by Pearson’s critical correlation coefficient
(p <0.05; |r| >0.7; for n = 6 per group) were considered signifi-
cant. For illustration purposes, the area under the curve of
several signals of interest was integrated and significance tested
with two-way ANOVA as described below. For metabolite iden-
tification 1H–13C heteronuclear single quantum coherence
(HSQC) spectra were obtained on one representative sample for
each biological matrix. Lists of metabolites measured are pre-
sented in Table S2 and S3.

Multi-omics analyses
Bidirectional correlations between plasma metabolites and he-
patic transcripts were investigated using N-integration discrim-
inant analysis with DIABLO, an algorithm that aims to identify a
highly correlated multi-omics signature discriminating several
experimental groups using the R package Mixomics v6.10.9.20

We used two components in the models, and for the estima-
tion of model parameters, the cross-validation procedure
method was used. For the correlation networks, only correlations
with a Spearman’s rank correlation coefficient >0.96 were
plotted.

Analyses of plasma markers
Alanine aminotransferase (ALT), phosphatase alkaline (ALP), total
cholesterol, high-density lipoprotein (HDL-cholesterol), tri-
glycerides, and free fatty acids were determined using an ABX
Pentra 400 biochemical analyser (Anexplo facility, Toulouse,
France). Blood glucose levels were measured from the vena cava
with an AccuCheck Performa glucometer (Roche Diagnostics).

Trimethylamine-N-oxide targeted LC-MS/MS measurement
For trimethylamine-N-oxide (TMAO) extraction and measure-
ment, see details in the supplementary methods.

Publicly available datasets and databases
Four independent gene expression datasets were found on the
Gene Expression Omnibus data repository accessed in September
2019. GSE149229 compared hepatic transcriptome of humanised
CAR mice (hCAR) fed a control diet or a phenobarbital (PB)-
enriched diet. GSE98666 compared hepatic transcriptome of
hCAR mice treated with CO, TCPOBOP or 6-(4-chlorophenyl)
imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-
dichlorobenzyl)oxime (CITCO). GSE149228 and GSE57056
compared the hepatic transcriptome of chimeric mice with most
human hepatocytes fed a control diet or a PB-enriched diet.
Values for Fmo3 gene expression were calculated using the
GEO2R tool for microarray data and using GREIN21 for RNA
sequencing data.

Thrombi formation under flow
Biochips microcapillaries (Vena8Fluoro+, Cellix) were coated
with a collagen fibril suspension (50 lg/ml) and saturated with a
solution of 0.5% bovine serum albumin in phosphate-buffered
saline without Ca2+/Mg2+. Mouse blood was transferred into
heparin (10 IU/ml), and DIOC6 (2 lM) was used to label platelets
in whole blood. Using a syringe pump (PHD-2000; Harvard
Apparatus) to apply a negative pressure, labelled blood was then
perfused through a microcapillary for indicated time at a wall
shear rate of 1,500 s-1 (67.5 dynes/cm2). Thrombus formation
was visualised with an ×40 oil immersion objective for both
JHEP Reports 2024
fluorescent and transmitted light microscopy; the light source
was provided by Colibri (Zeiss) and was recorded in real-time
(one frame every 20 s). Thrombi volumes were calculated by
thresholding of the surface covered by thrombi on a slice of Z-
stack images using IMARIS software.22

Other statistical analyses
All univariate statistical analyses were performed using Graph-
Pad Prism v.9 (GraphPad Software, San Diego, CA, USA). Outliers
were identified using the ROUT method. The Kolmogorov–
Smirnov test of normality was applied to all data. Two-way
ANOVA was performed within each genotype using sex (male
or female) and treatment (CO or TCPOBOP) as fitting factors for
the models and a p value representing interactions were re-
ported. If psex*treatment was significant, Sidak’s multiple compari-
sons test was used as a post-hoc test to determine which group
differed from its appropriate control, otherwise p values repre-
senting the main effects from the ANOVA model (namely sex or
treatment) were reported. For platelet aggregation measures, a
mixed-effect model was fitted using time and treatment as fixed
effects. A p <0.05 was considered significant. Results are given as
the mean ± SEM.
Results
Analysis of hepatic transcripts revealed a majority of sex-
independent CAR-target genes upon TCPOBOP treatment
To investigate the potential sex-dependent consequences of CAR
activation, we treated Car+/+ and Car-/- male and female mice
with TCPOBOP (Fig. 1A). TCPOBOP did not affect the total body,
decreased perigonadal white adipose tissue and increased liver
weights in Car+/+ male and female mice (Fig. 1B). We confirmed
Car deletion and observed increased expression of Cyp2b10 and
Cyp2c55, two prototypical CAR target genes, in TCPOBOP-treated
Car+/+ males and females. Cyp2c55 induction by TCPOBOP was
significantly higher in females (Fig. 1C). We characterised the
impact of CAR activation by TCPOBOP on hepatic gene expression
using microarrays. TCPOBOP was a very specific CAR agonist
since there was no significantly regulated gene in Car-/- male
mice, and only two in Car-/- female mice (Fig. S1), we thus
continued our analysis using Car+/+ mice only. Principal compo-
nent analysis (PCA) of the entire expression data set from Car+/+

mice revealed that individuals clustered separately according to
treatment on the first axis and to sex on the second axis (Fig. 1D),
illustrating a major effect of CAR activation on the liver tran-
scripts. Comparison of the lists of differentially expressed genes
(DEGs) upon TCPOBOP treatment in males vs. females Car+/+

demonstrated that more than half of TCPOBOP-modulated genes
were common to males and females (Fig. 1E and Fig. S2). Using
all 4663 TCPOBOP-sensitive genes, we highlighted two gene
clusters that exhibited sex-independent responses (Fig. 1F).
Genes upregulated upon TCPOBOP (cluster 1, 2,366 genes) were
mainly involved in the ‘cell cycle’ (p = 10-46) and ‘cellular
response to xenobiotic stimulus’ (p = 10-25, Fig. 1F and Table S4B),
whereas downregulated genes (cluster 2, 2297 genes) were
enriched for ‘carboxylic acid catabolic process’ (p = 10-17) and
‘regulation of lipid metabolic process’ (p = 10-14, Fig. 1F and
Table S4D). We focused on well-described CAR target genes
involved in the cell cycle (Fig. 1G) and carbohydrate and lipid
metabolism (Fig. 1H) and confirmed that regulation upon
TCPOBOP treatment was similar in both males and females
(Table S5).
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Results are given as the mean ± SEM. *Treatment effect, #sex effect. * or #p <0.05, ** or ##p <0.01, *** or ###p <0.001 (two-way ANOVA). (E) Multi-omic integrative
analysis performed on plasma metabolomic and hepatic transcriptomic datasets (DIABLOmodel). (F) Correlation network between hepatic transcripts and plasma
metabolites (R2 > 0.97, DIABLO model). (G) Fold-change (TCPOBOP- vs. CO-treated Car+/+ mice) of hepatic expression for genes involved in lipoprotein metabolism.
*Treatment effect, #sex effect. *padj <0.05, **padj <0.01, ***padj <0.001 (linear model). CAR, constitutive androstane receptor; CO, corn oil; PB, phenobarbital; PCA,
principal component analysis; PLS-DA, orthogonal projection on latent structure-discriminant analysis; TCPOBOP, 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene;
Vldr, very low-density protein receptor.
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Role of CAR in sexually-dimorphic regulation of hepatic gene
expression in response to TCPOBOP
TCPOBOP impacted a much higher number of genes in the liver
of females vs. males (�40% more DEGs in females vs. males,
Fig. 1E). Accordingly, PCA of the microarray data projected on the
second and third principal components showed a distinct clus-
tering of TCPOBOP- and CO-treated females, whereas males from
both groups were merged (Fig. 2A). To identify genes with sex-
dependent regulation upon TCPOBOP, we next focused on the
DEGs with a significant interaction between sex and treatment
(Table S6). These 486 sex-specific DEGs clustered within four
distinct expression profiles (Fig. 2B and C). Female-specific
upregulated genes (cluster 1, 215 genes) were involved in
xenobiotic metabolism (p = 10-12) and extracellular matrix
remodelling (p = 10-6) and contained genes encoding for colla-
gens (Col4a1), extracellular matrix degrading metalloproteinases
(Mmp12, Mmp13) and proteinases involved in the processing of
procollagens (Adamst2, Adamst4, Adamst14, and Adamst15),
whereas female-specific downregulated genes (cluster 3, 170
genes) were involved in phase I xenobiotic metabolism (p = 10-8)
and flavin monooxygenase (FMO)-dependent oxidations (p = 10-
6) (Fig. 2D–F). As indicated above, male-specific CAR target genes
were fewer. The male-specific upregulated genes (cluster 4, 37
genes) were involved in ‘steroid metabolism’ (p = 10-5.5), whereas
no significantly enriched metabolic pathway was found using the
male-specific downregulated genes (cluster 2, 64 genes) (Fig. 2D
and E and Table S6). Overall, this analysis provided evidence that
10% of the TCPOBOP-sensitive genes were regulated in a sex-
dependent manner (Fig. 2G).

CAR regulated plasma lipoprotein metabolism in a sex-
independent manner
We next explored the systemic consequences of CAR activation
using plasma metabolomics. PCA analysis of the whole plasma
metabolic profiles showed a separation of male vs. female mice
on the first principal component, illustrating a constitutive sex-
ual dimorphism in plasma metabolite levels, while TCPOBOP-
treated Car+/+ were discriminated from Car-/- mice and from
Car+/+ CO-treated mice on the second principal component,
illustrating a significant effect of TCPOBOP on plasma metabo-
lites (Fig. 3A). As seen for hepatic transcripts, there was no sig-
nificant differences between metabolic profiles from TCPOBOP
vs. CO-treated Car-/- mice (Fig. S3). In Car+/+ males, TCPOBOP
treatment decreased glucose, increased lactate levels, and had a
major impact on circulating lipoproteins: cholesterol and several
broad lipid peaks were strongly decreased upon TCPOBOP
treatment, while other lipid peaks were increased (Fig. 3B). In
Car+/+ females, cholesterol and lipid signals were changed in a
similar manner than in males (Fig. 3C). Putative assignment of
these differential peaks revealed that the decreased cholesterol
peak reflected HDL-cholesterol, decreased lipid peaks belonged
to LDLs and increased lipids belonged to VLDLs. The area under
the curve for selected HDL-cholesterol, lipid-LDL and lipid-VLDL
signals further illustrated this CAR-dependent impact of TCPO-
BOP treatment on circulating lipoproteins in both sexes (Fig. 3D).
Total plasma-, HDL-cholesterol, plasma triglycerides, free fatty
acids, and glucose were quantified through additional classical
of platelet adhesion. (N) Quantification of platelet adhesion to a microfluidic ch
receptor; GSH, reduced glutathione; GSSG, oxidised glutathione; GSx, total gluta
latent structure-discriminant analysis; TMA, trimethylamine; TMAO, trimethylam

JHEP Reports 2024
biochemical assays and confirmed the strong CAR-dependent
impact of TCPOBOP on plasma metabolites observed by metab-
olomics (Fig. S4).

Plasma metabolomics and hepatic transcriptomic data sta-
tistical integration revealed a strong correlation between plasma
metabolites and liver transcripts (R2 = 0.94) regardless of sex
(Fig. 3E). The correlation network highlighted a strong positive
correlation between Apoc1 mRNA and plasma LDL-cholesterol
and HDL-cholesterol (Fig. 3F). This led us to investigate more
closely the hepatic expression of genes involved in hepatic
cholesterol metabolism (Fig. 3G). CAR activation significantly
decreased the expression of most apolipoproteins. Expression of
the Ldl receptor (Ldlr), which is responsible for LDL clearance was
unchanged; however, the expression of Vld receptor (Vldlr) was
increased by a factor of four upon TCPOBOP treatment. Mttp, the
protein that transports triglycerides and cholesterol esters in the
endoplasmic reticulum for VLDL synthesis was also significantly
increased. Moreover, TCPOBOP treatment impacted cholesterol
and bile acid metabolism with decreased expression of genes
involved in cholesterol transport, decreased expression of genes
involved in bile acid synthesis and increased expression of genes
involved in bile acid detoxification and transport. All significant
changes in hepatic mRNA and plasma metabolites related to
cholesterol metabolismwere CAR-dependent and were similar in
both sexes (Fig. S5 and S6). Altogether, these results illustrate
that CAR activation deeply modulates hepatic and systemic
cholesterol metabolism in a sex-independent way.

TCPOBOP induced liver oxidative stress and toxicity in a sex-
biased way
We next performed metabolic profiling of hydrophilic metabo-
lites in liver tissue. PCA of the entire metabolic profile revealed a
distinct clustering of Car+/+ mice treated with TCPOBOP vs. all
other mouse groups on the first principal component, whereas
male and female mice were separated on the second component,
revealing once again a major impact of CAR activation on liver
metabolites (Fig. 4A). TCPOBOP-treated males displayed signifi-
cant changes in hepatic levels of many amino-acids (increased
glutamine and glutamate and decreased valine, leucine, and
isoleucine), energy-related metabolites (increased lactate and 3-
hydroxybutyrate, and decreased succinate), cell membrane
constituents (decreased choline and glycerophosphocholine and
increased phosphocholine) and metabolites involved in oxidative
stress (decreased hypotaurine) (Fig. 4B). In females, most of
these metabolites followed the same pattern, with perturbations
of metabolites involved in oxidative stress being more pro-
nounced than in males (significant increased levels of reduced
[GSH], oxidised [GSSG], and total [Gsx] glutathione) (Fig. 4C).
AUC for glutathione signals illustrated that TCPOBOP induced a
more pronounced hepatic oxidative stress in females than in
males (Fig. 4D). All significant changes in hepatic metabolites
related to oxidative stress upon TCPOBOP were CAR-dependent
(Fig. S7). Finally, sex-dependent TCPOBOP hepatic toxicity was
confirmed through biochemical quantification of plasmatic
markers (Fig. 4E–F). Circulating levels of ALT were significantly
higher in TCPOBOP-treated Car+/+ females vs. males, whereas
plasma ALP was significantly increased in both sexes upon
ip surface *p <0.05, **p <0.01 (one-way ANOVA). CAR, constitutive androstane
thione; PCA, principal component analysis; PLS-DA, orthogonal projection on
ine N-oxide.
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TCPOBOP with a tendency to higher levels in males (Psex*treatment

= 0.12). Overall, our results demonstrate a sex-dependent impact
of CAR activation on liver metabolism and on the toxicity profile.

CAR modulated liver trimethylamine metabolism through
regulation of Fmo3 gene expression mostly in females
Another intriguing sex-dependent hepatic impact of TCPOBOP
was the female-specific, CAR-dependent increased level of tri-
methylamine (TMA) (Fig. 4C and Fig. 5A). TMA is a gut
microbiota-dependent metabolite that is metabolised to TMAO
by the liver-specific flavin monooxygenase 3 (FMO3).23 This
result was in accordance with the female-specific decrease of
Fmo3 mRNA expression observed previously in the microarray
data (Fig. 2E) and was confirmed here with RT-qPCR (Fig. 5B).
Finally, we quantified hepatic TMAO and confirmed a twofold
decrease of this metabolite in TCPOBOP-treated Car+/+ females
compared with vehicle-treated females (Fig. 5C). Female-biased
inhibition of Fmo3 mRNA by CAR activation was reproducible
in an independent study in which mice were treated with
TCPOBOP or CO every 2 days for 10 days (Fig. 5D). Next, we
analysed Fmo3 hepatic expression in several publicly available
gene expression datasets. In the first experiment, Car-/- mice
were knocked-in with human CAR coding sequence24 and were
fed diets containing 0 (CTRL) or 1,000 ppm PB, an indirect acti-
vator of both mCAR and hCAR.25 We found that PB-fed hCAR
mice had significantly lower expression of hepatic Fmo3 mRNA
compared with control mice (Fig. 5E). The second study
compared wild-type (WT) mice treated with TCPOBOP vs. CO-
treated mice and hCAR mice treated with CITCO (a specific
agonist of hCAR) vs. CO-treated hCAR mice.26 Both TCPOBOP and
CITCO-treated mice had significantly lower Fmo3 hepatic mRNA
compared with their relative controls (Fig. 5F). Finally, the last
two studies were conducted in chimeric mice with human he-
patocytes treated with PB.25,27 Again, we found a significant
decrease in Fmo3 hepatic gene expression in response to PB in
both datasets (Fig. 5G and 5H). It is worth noting that all publicly
available studies were conducted in male mice only, which could
explain why the decrease in Fmo3 expression seen upon CAR
activation by PB or CITCO was of lower magnitude than that seen
in our own in vivo experiments in females. Finally, we took
advantage of the only available ChIP-seq analysis of hCAR bind-
ing in vivo to date28 and observed that, among the 6,364 unique
genes associated with high-confidence hCAR-binding genes,
Fmo3 was found as a hCAR-direct binding gene with a p value =
1.26 × 10-29 (Fig. 5I). Thus, in females, CAR activation by TCPOBOP
perturbated the metabolism of TMAO from TMA by inhibiting
the expression of Fmo3 (Fig. 5J) and this result might be relevant
to humans.

CAR activation decreased platelet hyperactivity induced by
dietary choline supplementation
FMO3 activity and TMAO levels have been shown to modulate
platelet hyper-responsiveness and thrombosis potential.29,30 We
thus wondered whether CAR activation could also influence
platelet function. To enhance platelet responsiveness, female and
male mice were fed a choline-enriched diet before treatment
with TCPOBOP (Fig. 5K). We confirmed significant hepatic CAR
activation in both sexes (Fig. 5L) and examined thrombi forma-
tion. Whole blood from female mice treated with TCPOBOP
formed smaller thrombi over time compared with blood from
control mice. In males, TCPOBOP treatment did not affect
thrombi formation. Thus, in vivo TCPOBOP treatment modulates
JHEP Reports 2024
platelet activation and reduces the thrombotic risk of females
specifically (Fig. 5M and N).
Discussion
The liver appears to be one of the most sexually dimorphic or-
gans and expression of genes involved in drug metabolism is
sexually dimorphic in rodents and humans.8,31 CAR is the target
of many drugs and is widely involved in the control of expression
of xenobiotic metabolising genes. However, a genome-wide
description of sex-specific CAR-dependent sensitive genes was
lacking. Here, we provide an exhaustive study of the tran-
scriptomic impact of acute pharmacological CAR activation in
male vs. female mice and novel insights into the metabolic
impact of this activation.

First, most TCPOBOP-modulated genes were regulated in a
similar manner in male and female livers, especially those
involved in the cell cycle. Our results are consistent with other
studies revealing that chronic activation of CAR using TCPOBOP
promotes tumour formation in rodents in a CAR-dependent
manner.32–34 The underlying mechanisms depend on direct
CAR-dependent induction of Mdm2, a primary inhibitor of P53
and induction of the transcription factor FoxM1,35 which is
essential for the initiation of carcinogen-induced liver tumours,
thus resulting in modulation of many genes implicated in cell
proliferation, cellular growth, apoptosis, and cell differentiation,
such as Gadd45b, Ccnd1, Ccnb1, C-myc, and Yap.35,36 Few studies
have highlighted that sex could influence TCPOBOP-induced liver
proliferation but showed inconsistent results. Some studies
described that female mice were more sensitive to TCPOBOP-
induced liver proliferation,12,37 whereas others showed no
tumour development in female mice treated with the genotoxin
diethylnitrosamine followed by TCPOBOP, compared with
males.38 Similarly, after a single injection of TCPOBOP, male mice
displayed a deeper disturbance of key cell cycle genes.16 Unlike
these studies, we did not reveal any sexual dimorphism on he-
patomegaly and cell cycle gene modulation upon CAR activation.
However, a long-term analysis of TCPOBOP-induced liver tu-
mours conducted in male and female mice in parallel would be
required to further investigate this discrepancy.

We next observed a strong impact of TCPOBOP treatment on
plasma lipoproteins, with decreased total-, HDL- and LDL-
cholesterol measured in both sexes. This result is consistent
with previous findings whereby TCPOBOP decreased circulating
levels of plasma HDL in both WT and transgenic mice expressing
human apolipoprotein A-1, at least in part through down-
regulation of ApoA-1 hepatic gene expression.39 Similarly, in
Ldlr-/- mice fed a Western-diet, TCPOBOP decreased circulating
levels of ApoB-containing lipoproteins (mainly VLDL and LDL)
and reduced the development of atherosclerotic lesions,40 pre-
sumably through CAR-mediated induction of the VLDL receptor,
a receptor involved in the clearance of VLDL and LDL as a backup
for the LDL receptor.41 Here, we confirm that CAR activation re-
sults in decreased ApoA-1 and increased Vldlr hepatic mRNA
levels, which could both participate to the observed decrease of
plasmatic HDL and LDL levels. Moreover, we also observed a
strong decrease in hepatic expression of other major lipoprotein-
coding genes (namely ApoB, Apoc1, and ApoE), and of Lecithin
cholesterol acyl transferase (Lcat, another constitutive component
of HDL) which could also play a role.

Another well-known function of CAR is its ability to promote
bile acid detoxification during cholestasis.42,43 As previously
10vol. 6 j 100930



described, we found that the expression of genes involved in
hydroxylation, sulfation, and excretion of bile acids was signifi-
cantly enhanced upon CAR activation, whereas expression of
genes involved in bile acid synthesis and cholesterol transport
was decreased in both sexes. The emerging role of CAR in
cholesterol homeostasis represents new perspectives in the
treatment of hypercholesterolaemia and atherosclerosis.39,44 The
current study confirms and extends these previous studies
reporting the effects of TCPOBOP on hepatic expression of genes
involved in bile acid, cholesterol and lipoprotein metabolism, as
well as those on lipoprotein concentrations, are sex-
independent, at least in mice. Our findings may have clinical
relevance. Indeed, a recent study combining genome-wide
analysis of cholestatic mice genetic models and data-mining of
human patient cohorts with various liver diseases unravelled a
significant enrichment of CAR-sensitive genes in cholestatic
livers specifically.45 Moreover, CAR activation in cholestasis leads
to alterations of drug metabolism with significant effects on
drug-induced hepatotoxicity. Drug-induced liver injury (DILI) is
still a serious clinical concern and one of the most common drug
adverse reactions. DILI clinical phenotype is influenced by age
and sex.46,47 Here, we found that, upon TCPOBOP, 385 genes
displayed a female-specific vs. 101 genes with a male-specific
response. Many female-specific genes were involved in extra-
cellular matrix organisation. We also observed stronger pertur-
bations of hepatic metabolites involved in glutathione
metabolism in livers of females compared with males, reflecting
higher hepatic oxidative stress. Finally, we highlighted a sexually
dimorphic impact of CAR activation on clinical markers of liver
toxicity, namely significantly higher levels of ALT in females
compared with males, and a trend toward higher ALP levels in
males. This result is consistent with the sex-influence on DILI
clinical phenotype with cytolytic damage being more frequently
observed in women, whereas cholestatic damage presented a
male predominance.46,47 It is well known that women experi-
ence higher rates,48 and more severe49 adverse drug reactions
than men. However, mechanistic explanations for these obser-
vations are often lacking. Our present results suggest that drugs
interacting with CAR may be considered with particular atten-
tion before their use in women.

Limitations of our study include the use of only one drug
(TCPOBOP), whereas DILI has been shown to depend both on
patient characteristics and on drug properties.50 Our results
therefore need to be confirmed with other drugs that act as CAR
agonists.

Another novel finding from our study was the strong increase
in hepatic TMA upon TCPOBOP administration observed in fe-
male mice specifically. TMA is a product of the gut microbial
metabolism of phosphatidylcholine, choline, and L-carnitine. It is
transported from the gut to the liver via the portal vein and N-
oxidised into TMAO by host FMO3.51 Analysis of natural genetic
JHEP Reports 2024
variation in inbred strains of mice indicate that FMO3 and TMAO
are significantly correlated and explain more than 10% of the
variation in atherosclerosis.51 Since then, it has been confirmed
that high circulating levels of TMAO are linked to increased
thrombotic and cardiovascular risks in animal and human
studies, even after adjustment for known cardiovascular risk
factors.52,53 Consistent with increased TMA, hepatic Fmo3 mRNA
expression and TMAO concentration were both strongly
decreased in Car+/+ females treated with TCPOBOP. We
confirmed the CAR-dependent regulation of Fmo3 mRNA in
publicly available cohorts that used different hCAR models and
different mCAR and hCAR agonists, therefore suggesting that the
regulation of Fmo3 expression is not dependent on the CAR
agonist used and might be relevant in humans. In rodents, he-
patic Fmo3 knockdown was sufficient to decrease diet-
dependent platelet responsiveness and thrombotic poten-
tial.29,30 Here, we observed that, in conditions of diet-induced
platelet hyper-responsiveness, CAR activation was indeed suffi-
cient to significantly modulate thrombus growth in female mice
specifically. We postulate that this effect is, at least in part,
attributable to the CAR-mediated downregulation of Fmo3
expression and activity in females. Nowadays, drugs represent
the main cause of platelet dysfunction.54,55 Our results suggest
that drugs or other xenobiotics (such as pollutants, foods) that
interact with CAR could decrease thrombus formation in a pro-
thrombotic context. These compounds may provide a beneficial
effect by modulating platelet activation and thrombosis. We,
therefore, highlight a new axis between hepatic xenobiotic
metabolism and blood haemostasis. We suggest that this axis
may be especially relevant in women. However, there are
important species-specific sex-based differences in FMO3
expression: its expression is female-specific in mice as a result of
modulation by sex steroids,56 whereas its abundance was
significantly associated with females in humans but to a much
lower extent than in rodents.57 Thus, the gender-specificity and
clinical relevance of this CAR–FMO3–TMAO–platelet axis de-
serves further investigation. In addition to platelet function and
thrombotic risk, an increase in the TMAO plasma concentration
has also been shown to increase the risk of impaired glucose
tolerance,58 colorectal cancer,59 chronic kidney disease,60 and
overall mortality.61 Whether drugs interacting with CAR could
also influence these TMAO-dependent endpoints deserves
further investigations.

In summary, the present study provides an exhaustive
description of the sex-independent and sex-dependent CAR-
sensitive genes and demonstrates a stronger impact of CAR
pharmacological activation on hepatic transcriptome and meta-
bolism of the female. Additionally, CAR activation impacted the
TMA–FMO3–TMAO pathway in females, which might link drugs
and environmental xenobiotic exposure with platelet aggrega-
tion and other TMAO-sensitive physiological responses.
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