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structure, but a formal method for grouping metrics 
is still lacking.
Objectives  Our objective is to present a tool that can 
account for multiple properties of network structure, 
which can be related to model outcomes.
Methods  We develop an approach using the statis-
tical concept of moments and systematically test the 
hypothesis that this system of metrics is sufficient to 
explain variation in processes that take place on net-
works, using an ecological system as an example.
Results  Our results indicate that the moments 
approach outperforms single  summary metrics by 

Abstract 
Context  Network-theoretic tools contribute to 
understanding real-world system dynamics, such 
as species survival or spread. Network visualization 
helps illustrate structural heterogeneity, but details 
about heterogeneity are lost when summarizing net-
works with a single mean-style measure. Research-
ers have indicated that a system composed of mul-
tiple metrics may be a more useful determinant of 
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adjusted-R2 and AIC model fit criteria, and accounts 
for a majority of the variation in process outcomes.
Conclusions  Our scheme is helpful for indicating 
when additional structural  information is needed to 
describe system process outcomes such as survival or 
spread.

Keywords  Network theory · Graph theory · 
Weighted networks · Statistical moments · Species 
spread and survival · Dominant eigenvalue

Introduction

Network theory is ubiquitous across the applied sci-
ences (Boccaletti et  al., 2006; Barthélemy, 2011; 
Blonder et  al., 2012). Networks are appealing 
because they provide clear visualizations of inter-
linked systems, and networks preserve heterogenei-
ties and local information. The motivating hypothesis 
implicit in network analysis is that by understand-
ing the underlying structure of linkages, researchers 
gain predictive power about processes taking place 
on networks, such as the dispersal and persistence 
of organisms (Urban et  al., 2009), infectious dis-
ease dynamics (May, 2006), neuron communication 
(Laughlin and Sejnowski, 2003), and the diffusion of 
ideas (Watts, 2002).

Networks are often described using summary sta-
tistics such as mean degree, mean shortest path, and 
mean clustering coefficient (Albert and Barabasi, 
2002; Newman, 2003; Estrada and Bodin, 2008). 
Summary statistics give an overview of the network 
linkages, but the relationship between summary 
statistics and processes is unclear ex ante. Further-
more, details about heterogeneities among networks 
vanish when summarizing networks with a single 
mean-style metric. An approach composed of mul-
tiple metrics could aid research in the analysis of 
network structures, but few studies group network 
metrics together in a formal way (Estrada and Bodin, 
2008; Shanafelt et al., 2017). We address this gap in 
the literature by applying a set of network metrics 
(Shanafelt et al., 2017) to the problem of prairie dog 
conservation in North America. In doing so, we test 
the hypothesis that a set of simple metrics can suf-
ficiently explain the variation in processes playing 
out on networks, better explaining model outcome 
than a single metric alone. The nested nature of our 

approach is motivated by the statistical concept of 
moments, where a set of numerical features are sys-
tematically calculated and used to describe the struc-
ture of a distribution—or, in the case of a network, 
a set of connections among nodes—in increasingly 
cumulative detail.

Network science is awash with approaches for 
measuring the properties of networks (Albert and 
Barabasi, 2002; Newman, 2003; Rayfield et  al., 
2011). For example, Barrat et al. (2004) use the mean 
clustering coefficient, a measure of local cohesion 
defined by node degree and edge weights, to study 
the effects of topology and node interaction strength 
in a scientific collaboration network and the world-
wide air-transportation network. Liu et  al. (2013) 
use global efficiency, the inverse of the harmonic 
mean of the total number of pairwise shortest paths, 
to parse  out the effects of Alzheimer’s disease on 
human brain networks. Thompson et al. (2017) study 
the effects of node removal—either randomly or by 
shortest path criteria (betweenness centrality)—on 
the functioning and stability of ecological systems. 
Rayfield et  al. (2011) highlight the popularity of 
summary indices in ecology, asserting that the num-
ber of publications using network theory to quantify 
habitat networks has grown tenfold over the past three 
decades. Many established metrics for measuring 
network connectivity are strongly correlated (Bag-
gio et  al., 2011), but less is known about how met-
rics complement each other to describe the complete 
structure of a network.

Specifically for landscape ecology, network theory 
has found a home with applications for habitat frag-
mentation, habitat management, and species con-
servation (among others). For example, Bunn et  al. 
(2000) and Urban and Keitt (2001) build habitat 
graphs from spatial land cover data and develop a 
node removal algorithm to identify important nodes 
for network connectivity and species persistence. 
Pascual-Hortal and Saura (2006) test the effects of 
node removal on a suite of network properties. Mou-
quet et  al. (2013) adopt the notion of node removal 
to develop the “keystone patch” concept. Urban and 
Keitt (2001), Minor et  al. (2008), and Schick and 
Lindley (2007) combine network and metapopulation 
theory to model Mexican spotted owl, wood thrush, 
and Salmonid populations respectively. Friesen et al. 
(2019) use networks to inform marine protected area 
management in relation to regional hotspots; Phillips 
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et  al. (2008) take a network approach to finding the 
optimal connectivity of a species habitat network, 
minimizing number of connections between habi-
tat reserves while maximizing the area of connected 
habitat. For a general discussion of network theory 
in ecology and a brief overview of its many appli-
cations, we would direct the reader to Minor and 
Urban (2008), Urban et al. (2009), and Rayfield et al. 
(2011). For a more broad overview of network theory 
across the sciences, see Albert and Barabasi (2002) 
and Newman (2003). However, in landscape ecology, 
most studies reduce the network to a specific of spe-
cific summary metrics which, though they may cap-
ture general properties of landscape structure, lack a 
formal grouping.

We demonstrate our approach to measuring net-
work structure using the statistical moments of 
“eigenvector centrality” (Borgatti, 2005; Shanafelt 
et al., 2017). The spectral radius of a matrix is a fun-
damental measure in the analysis of social, biological, 
and infrastructure networks (van Mieghem, 2011). 
Spectral radius faces the same limitations as any other 
single metric because it summarizes global network 
structure. However, derivation of the spectral radius 
also yields the eigenvector centrality, which normal-
izes the information on all the linkages in a network. 
Though it preserves a great deal of local information, 
a drawback of eigenvector centrality is that it does 
not provide a simple summary statistic. We jointly 
use spectral radius and eigenvector centrality, col-
lectively known as eigenmetrics, to demonstrate our 
nested approach to measuring network structure. Spe-
cifically, we apply the concept of moments by treat-
ing the eigenvector centrality as a distribution of node 
connectivity scores. Different moments (e.g. mean, 
variance, skewness) of the resulting distribution high-
light different topological properties of networks. The 
interplay among these network “moments” is useful 
for describing, and potentially predicting, processes 
occurring on networks.

In this paper, we present a general modelling 
approach to evaluate the impact of network structure 
on model outcomes such as spread or survival. First, 
we briefly outline the theoretical underpinnings of the 
approach. Then, we apply the framework to model 
prairie dog metapopulation dynamics. Prairie dog 
management is a vital component for the conservation 
of the black-footed ferret, a critically endangered spe-
cies of the southwest United States (USFWS, 2013). 

Prairie dog metapopulations can be represented as 
a network of multiple habitats with distance as the 
dominating factor for successful dispersal (Roach 
et  al., 2001). Population growth is largely driven by 
variable, individual dispersal to spatially distinct 
prairie dog towns, so a simple mean field model may 
fail to capture important local information (Durrett 
and Levin, 1994). We use an agent-based modeling 
approach to capture such dynamics over a network of 
prairie dog towns. Agent-based models (ABMs) are 
widely used in relevant studies on individual behav-
ior, spatial population dynamics and conservation 
(Grimm and Railsback, 2005; West et al., 2011; Sibly 
et al., 2013; Schoon et al., 2014; Baggio et al., 2019). 
Our results demonstrate the potential for the approach 
to be a standard method for grouping networks and 
parsing outcomes.

Materials and methods

In this section, we first present our approach for dis-
tinguishing network structure, which uses the con-
cept of statistical moments to build a set of multiple, 
layered network metrics to define a clear picture of 
network structure. We hypothesize that our approach 
using multiple metrics will be able to better explain 
model outcome than an approach with a single met-
ric alone. To test this hypothesis, we generate a large 
suite of network structures, and implement an agent-
based model of a prairie dog metapopulation on these 
spatial networks. We analyze our results by com-
paring general trends in model outcomes between 
and across network metrics, and perform a series of 
regression models to investigate how different com-
binations of spectral radius and eigenvector central-
ity scores perform as predictors of prairie dog spread 
and survival. Finally, we test the robustness of our 
findings by conducting a sensitivity analysis of the 
parameters of the agent-based model.

Measuring a network using a nested moments 
approach

Consider a weighted network G with N nodes, where 
each pair of nodes is connected by an edge that rep-
resents the relative ease of movement or informa-
tion spread through the network, with lower weights 
leading to less resistance on the network and easier 
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movement. The network G can be expressed as an 
N×N adjacency matrix, denoted AG, where the edge 
weights between the N nodes of G make up the ele-
ments of AG (Fig.  1a). AG is always a zero-diagonal 
matrix, as information faces no resistance to stay at 
its current node. Edge direction can play a substantial 
role on network dynamics especially when dealing 
with issues of asymmetry (e.g., uphill and/or down-
hill transportation, (un)reciprocated contact, etc.). We 
develop our framework in the context of bidirectional 
networks, which are common in network science and 
landscape ecology (Urban and Keitt, 2001; Boit et al., 
2012), but it can be generalized to directional net-
works by modeling inflows and outflows as separate 
edges.

The spectral radius, λG, is the dominant eigenvalue 
of AG and measures the overall traversability across a 
network (Jacobi and Jonsson, 2011). In our context, 
where edge weight has a specific meaning (e.g., the 
distance that an individual of a species needs to go 
from node A to node B), a network with low spec-
tral radius is less resistant and highly connected. An 
increase in the spectral radius indicates a decrease 
in connectivity. Spectral radius is a mean measure, 
so information—such as the distribution of poorly 
or highly connected nodes—is lost when it is used 
to summarize network characteristics. This may be 
acceptable for some analyses, but unacceptable for 
others. For a network with a given number of nodes 
and weighted edges, there is an infinite set of network 
configurations for any spectral radius, and these dif-
ferent configurations can lead to different outcomes 
(Fig.  1b). This problem is not unique to spectral 
radius. For example, many different disease outcomes 
are possible on networks with the same mean degree 
(May, 2006; Ames et al., 2011).

The adjacency matrix can also be used to calculate 
the eigenvector centrality scores (EC) of G, which 
describes the importance of an individual node within 
a network. The EC is the N × 1 eigenvector ( �⃗vG ) asso-
ciated with the spectral radius whose elements are 
rescaled such that the Euclidean norm of �⃗vG is 1. The 
ith component of the EC ranks the importance of the 
ith node as donor and recipient of information within 
the network and describes its contribution to network 
connectivity (Borgatti, 2005; Urban et  al., 2009). A 
node with a low EC score is highly connected rela-
tive to other nodes in the network. Note again that 
this interpretation is in the context of a network that 

assesses the costs of movement and distance. It may 
not be the same for networks whose weight has a 
different meaning. Therefore, in our context, the EC 
provides a value for each node, but this does not help 
summarize the network. To summarize the EC, we 
treat the elements of an N-dimensional EC as N data 
points and use the statistical moments of the corre-
sponding empirical distribution.

By building a network based on spectral radius as 
well as the statistical moments of the EC, we obtain 
a clearer picture of overall network structure. Indeed, 
this approach is similar to a taxonomic hierarchy, 
where as we move up the hierarchy from kingdom 
to phylum to class, all the way to species and sub-
species, we refine the classification of an organism. 
Similarly, suppose that our view of the structure of 
the network is represented by a tree. If we start at the 
base (a mean measure of connectivity), then we have 
a limited view of the structure of the network. As we 
jointly add metrics, we move up the tree and obtain a 
more complete picture of the network, which we can 
relate to model outcome. While the concept is appli-
cable to all network metrics, we specifically use the 
second and third moments of the eigenvector central-
ity scores. We discard the mean, the first moment, 
because there is a one-to-one relationship between EC 
mean and the second moment (Supplemental Mate-
rial A). We build our picture of the network using two 
moments of the EC distribution, in addition to spec-
tral radius as a base. In an unweighted network, one 
could do so from the mean, variance, and skewness of 
the degree distribution.

Variance (the second moment) measures the 
spread in a dataset. In a network context, EC variance 
( var(�⃗vG) ) measures the spread in node contribution 
across the network and provides a measure of heter-
ogeneity among nodes. A zero EC variance implies 
that all nodes contribute equally to global connec-
tivity (Fig. 1b). Networks with nonzero EC variance 
contain at least two nodes that contribute unequally 
(Fig. 1b).

Skewness, the third moment, indicates whether 
deviations from the mean of a dataset are systemati-
cally positive or negative and measures the level of 
asymmetry in data. In a network context, EC skew-
ness ( skew(�⃗vG) ) captures the net ratio of relatively 
strong to weak contributors. Networks with nega-
tive EC skewness possess a larger proportion of 
weak contributors (Fig.  1c), zero EC skewness, a 
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Fig. 1   Illustration of a different spatial networks. Panel a 
presents a weighted 4-node network denoted G and its cor-
responding adjacency matrix ( AG ). The weights, denoted 
numerically and by edge width, act as facilitators/inhibitors 
of movement along some dispersal corridor between nodes. 
Panel b depicts two networks with equal spectral radius 
( λG = 80km ), but different eigenvector centrality (EC) vari-
ance. Solid nodes represent a network with a zero EC vari-

ance ( var
(

�⃗vG
)

= 0 ); hollow nodes represent a network with 
a nonzero EC variance ( var

(

�⃗vG
)

= 0.026 ). Panel c depicts 
two networks with equal spectral radius and EC variance 
( λG = 65km and var

(

�⃗vG
)

= 0.0086 ), but different EC skew-
ness. Solid nodes indicate a network with a negative EC skew-
ness ( skew

(

�⃗vG
)

= −1.79 ); hollow nodes indicate a network 
with a positive EC skewness ( skew

(

�⃗vG
)

= 1.086)
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one-to-one ratio of weak to strong contributors, and 
network structures with positive EC skewness have a 
higher proportion of strong contributors (Fig. 1c). Our 
approach of using EC moments could be extended to 
higher order moments, but it is hard to produce clear 
interpretable meanings for statistical moments past 
the third (Casella and Berger, 2002).

While we focus on spectral radius and eigenvec-
tor centrality, our approach is by no means limited to 
them (Fig. 2, Table 1). One could build a system with 
more than three levels, or use a broad range of net-
work metrics to capture specific, desirable aspects of 
a network’s structure such as clustering or modularity 

(Barrat et  al., 2004; Newman, 2006). Many network 
metrics are correlated with each other (Estrada and 
Bodin, 2008; Rayfield et  al., 2011). For example, 
spectral radius is positively correlated with the mean 
strength and the mean clustering coefficient of a net-
work (Table  1; Supplemental Material B). By using 
a rescaling argument to derive the mathematical rela-
tionship between spectral radius and mean strength, 
one can relate mean strength to mean clustering 
coefficient by a constant factor. The latter implies a 
connection between spectral radius and mean clus-
tering coefficient via transitivity. Additionally, EC 
variance is closely related to common metrics not 

Fig. 2   Relating eigenmetrics to other popular network metrics. 
Note that many of the above relationships arise from the fact 
that adjacency matrices considered in this study are fully con-
nected, zero-diagonal, nonnegative and symmetric. For details 
of their derivation, see Supplemental Material B. Correlations 

between metrics are presented in Table  1. Network metric 
abbreviations are given by:  w = mean strength, Eglob = global 
efficiency, l(G) = mean shortest path length, Eloc = mean local 
efficiency, c = mean clustering coefficient
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highly correlated to spectral radius, e.g., mean short-
est path length, global efficiency, and local efficiency 
(Table  1; Supplemental Material B). This supports 
the notion that our approach extends to other network 
metrics, avoids redundancy, and is useful for organiz-
ing information from a large set of available summary 
indices.

Agent‑based model design

We illustrate the nested nature of network metrics 
using an example from ecology. In this discipline, 
a common use of network analysis is the measure-
ment of habitat connectivity for species conservation 
(Urban and Keitt, 2001; Dixon et al., 2006). We use 
a metapopulation model of animal movement on a 
physical landscape to limit the variability of network 
structure and illustrate our approach.

In a network formulation, nodes represent habitat 
patches and edges represent corridors that facilitate 
individual dispersal. A desirable feature of a general 
approach is that it is robust to multiple outcomes. 
Therefore, we consider two ecological processes: 
spread and survival. Spread is measured as the time 
needed for an initial population on one randomly 
chosen node to occupy the last uninhabited node 
(i.e., time to full network occupation). Survival 
is measured as time to global extinction (i.e., no 
individuals are left on any patch). These two pro-
cesses represent important objectives for species 

conservation programs: the spread and dispersal of 
the target species, which makes their global popula-
tion more resistant to collapse (Gotelli, 1995; Han-
ski, 1999), and supports the long-term persistence 
of the species population à la population viability 
analysis (Beissinger and Westphal, 1998; Morris 
and Doak, 2002).

The data are drawn from agent-based represen-
tations of single-species habitat networks. In the 
absence of extensive data on the ecology of species 
and interactions with the landscape, model simulation 
is a useful tool for analyzing the ecological implica-
tions of landscape structure (Urban et al., 2009; Moil-
anen, 2011; Rebaudo et al., 2013). The actions of the 
agents are probabilistic and provide a scenario where 
the predictive power of the chosen metrics is assess-
able amid stochastic population dynamics.

The ABMs are calibrated using data on prairie 
dogs (Cynomys spp.). Prairie dog conservation is a 
vital part of the conservation of the black-footed fer-
ret, a critically endangered species in North America 
(USFWS, 2013). Indeed, black-footed ferrets are obli-
gate predators, with prairie dogs making up over 90% 
of their diet (Sheets et  al., ; Campbell et  al., 1987). 
Prairie dog metapopulations can be represented as 
a network of multiple complexes consisting of mul-
tiple prairie dog families, with low-lying drainages, 
roadways and other landscape features serving as cor-
ridors (Roach et al., 2001). Distance is a dominating 
factor in successful prairie dog dispersal, supporting 

Table 1   Correlation between eigenmetrics and other popular network metrics

* All Spearman coefficients are significant at the 5% confidence level. Correlations were calculated from adjacency matrices used in 
the agent-based model (see the main text). Analytically-derived relationships between eigenmetrics can be seen in Fig. 2 and Sup-
plemental Material B. Network metrics are abbreviated as:  avg

(

�⃗vG
)

 = mean of the eigenvector centrality, w = mean strength, Eglob = 
global efficiency, l(G) = mean shortest path length, Eloc = mean local efficiency, c = mean clustering coefficient

Spearman Correlation*

�G var
(

v⃗G
)

var
(

�⃗vG
)

skew
(

v⃗G
)

w̄ Eglob l(G) Eloc c̄

�G 1.00
avg

(

v⃗G
)

0.68 1.00

var
(

v⃗G
)

−0.67 −0.99 1.00

skew
(

v⃗G
)

−0.75 −0.47 0.46 1.00
w̄ 0.98 0.80 −0.80 −0.74 1.00
Eglob −0.71 −0.90 0.90 0.52 −0.82 1.00
l(G) 0.72 0.92 −0.92 −0.40 0.82 −0.94 1.00
Eloc −0.74 −0.90 0.90 0.57 −0.84 0.99 −0.93 1.00
c̄ 0.97 0.82 −0.82 −0.76 0.99 −0.85 0.83 −0.87 1.00
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the assumption of symmetry (Garrett and Franklin, 
1988; Bevers et al., 1997; Holmes, 2008).

Building spatial networks of prairie dog complexes

First, we apply the algorithm as in Shanafelt et  al. 
(2017) to build 6 × 6 adjacency matrices with pre-
determined spectral radius, EC variance, and EC 
skewness. The matrices represent 6 connected 
nodes, which is comparable to networks of prai-
rie dog complexes (Antolin et  al., 2006). ABMs 
of prairie dogs are simulated on these constructed 
networks. Lower and upper bounds of edge weights 
are consistent with the minimum and maximum dis-
tances between prairie dog complexes (Bevers et al., 
1997; Holmes, 2008). We choose twenty spectral 
radii, spanning the spectrum of potential spectral 
radii in our system, to generate adjacency matrices. 
For each spectral radius we specify ten EC variance 
measures, and then repeat the process with eleven 
levels of EC skewness. After accounting for net-
works that have an EC variance of 0, there are 2200 
networks configurations. Adjacency matrices were 
constructed in MatLab R2019b.

Prairie dog dynamics

We then construct an agent-based model of prairie 
dog dynamics, which includes births, deaths, and 
dispersal events, all of which are stochastic. Prai-
rie dogs exhibit density-dependent growth (Gar-
rett et  al., 1982; Knowles, 1982; Hoogland et  al., 
1987; Reading, 1993; Miller et al., 1996), with evi-
dence of a carrying capacity (Hoogland et al., 1987; 

Johnson and Collinge, 2004; Holmes, 2008). At 
each time-step, a prairie dog on node i produces fx 
offspring with probability,

where r is the intrinsic growth rate of prairie dogs and 
Dx,i denotes prairie dog density on node i. It is com-
puted as Dx,i = xi/Ki, where xi is the absolute number 
of prairie dogs and Ki represents prairie dog carrying 
capacity of node i. Prairie dog mortality on node i 
occurs with probability qx.

Intraspecific competition influences prairie dog 
dispersal (Garrett and Franklin, 1988; Hof et  al., 
2002). We divide dispersal into the decision to dis-
perse and the likelihood of successful dispersal 
(Amarasekare, 2004; Tang and Bennett, 2010), 
where prairie dogs disperse from node i with density-
dependent probability

where DU,x is a fixed density threshold indicator. The 
decision to disperse is random but increasingly likely 
with higher prairie dog density. Above DU,x, dispersal 
is certain.

After dispersing, the probability of successful 
arrival at another node is a function of distance and 
inversely related to the edge weight between two 
nodes (Hof et  al., 2002). A dispersing animal com-
pletes a move from node i to node j if Exp(Mx) > Wij. 
The term Exp(Mx) represents a random variable 
drawn from an exponential distribution with mean 
Mx, which denotes the mean dispersal ability of 

(1)1 − exp
[

−r
(

1 − D
x,i

)]

(2)
D

x,i

D
U,x

if D
x,i < D

U,x

1 if D
x,i ≥ D

U,x

Table 2   Summary of parameters used in the agent-based model

Approximated from: aKlebanoff et al. (1991), bHoogland et al. (1987), cSalau et al. (2012), dGarrett and Franklin (1988). Parameters 
are compiled from several different regions and are intended to bound the parameter space rather than outline a specific case study

Symbol Description Value

Nx Initial number of prairie dogs on a patch 150
r Prairie dog growth rate 0.74a

fx Prairie dog litter size 3b

qx Prairie dog mortality probability 0.575
DU,x Prairie dog density threshold affecting own dispersal 0.9c

Mx Average dispersal distance of prairie dogs (km) 2d

Ki Prairie dog carrying capacity on patch i 150
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prairie dogs. The edge weight Wij is the corridor dis-
tance between nodes i and j.

Table  2 provides a summary of agent attributes 
and parameters. Parameter values were calibrated 
from the empirical literature. In order to isolate the 
effects of network structure on model outcome, we 
assume that parameter values are homogenous across 
individuals and patches. A detailed description of the 
sequence of agent events for each ecological process 
is available in Supplemental Material C. Source code 
and simulation data can be found on the Open Science 
Framework (osf.io/5y7fu). ABMs were originally in 
NetLogo (Wilensky, 1999), but then were re-coded in 
MatLab 2019b. Finally, due the need to run a large 
number of simulations, the ABM was re-coded into R 
3.6.2 and run on the MIGALE bioinformatics facility 
(https://​doi.​org/​10.​15454/1.​55723​90655​34329​3E12). 
The agent-based model is applied to each network 
configuration, with 100 realizations per configuration 
for each ecological process (spread and survival).

Analysis of model outcomes

In order to test the capability of our approach to 
explain model outcomes, we first visually evalu-
ate general trends in model outcome between and 
across network metrics. We then turn to regression 
models to investigate how different combinations of 
spectral radius, EC variance, and EC skewness per-
form as predictors of prairie dog spread and survival. 
Specifically, we regress median time to full network 
occupation (spread) and median time to single-spe-
cies extinction (survival) on a set of network metrics 
as dependent variables. We conduct a full factorial 
experiment for each model outcome, using differ-
ent combinations of each network metric individu-
ally, as well as their squared and interaction terms, as 
dependent variables. We use adjusted-R2 and AIC 
model fit criteria to measure how much of the vari-
ation in the data is explained by the sets of network 
metrics. Each statistical metric is a widely-used cri-
terium for evaluating model fit, and measuring both 
provides multiple perspectives of model fit while still 
penalizing additional parameters (in contrast to R2, 
which increases with the number of parameters in the 
model).

Sensitivity analysis

Parameter choice can bias results from computational 
models and hamper general claims of statistical sig-
nificance. ABMs are a boon in this regard because 
they allow for repeated scenario testing and targeted 
assessment of parameter effects in a controlled envi-
ronment. Therefore, we perform sensitivity analy-
sis on the population parameters of the prairie dog 
ABM and re-assess whether multi-metric regression 
models outperform single metric models. We give 
each default parameter value a ten percent increase/
decrease, collect new simulation data, and document 
the change in adjusted-R2 and AIC values for the 
regression models.

Results

Single metrics and ecological outcomes

Single metrics collapse networks and, more generally, 
systems, into a single dimension, allowing for coarse 
comparisons. Therefore, we investigate the relation-
ships between single metrics and ecological scenarios 
in order to describe the relationship between network 
structure and model outcomes. In the next section 
we will compare results with single metrics to those 
which jointly consider multiple metrics (e.g., our 
nested moments approach).

We first focus on the relationship between network 
structure and spread. A high spectral radius repre-
sents low traversability across the network, which 
limits successful dispersal through the landscape 
(Fig. 3a). Spread is faster in networks with high EC 
variance because network structures with greater 
node heterogeneity contain a strongly connected node 
which, once inhabited, facilitates spread to all nodes 
(Fig. 3b). EC skewness does not have a clear relation-
ship with spread (Fig. 3c).

A prominent working hypothesis in conservation 
is that connectivity is important for conservation. 
Indeed, this is the rationale for maintaining connec-
tivity between habitat patches (Gilbert et  al., 1998; 
Hanski, 1998; Dixon et  al., 2006). Our simulations 
support this claim. Networks with low spectral radii 
coincide with greater survivability as measured by 
persistence time (Fig.  3d). Greater connectivity, 

https://doi.org/10.15454/1.5572390655343293E12
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indicated by lower spectral radius, allows greater 
mobility for foraging, securing refuge, and re-colo-
nization. Networks with greater EC variance coin-
cide with longer persistence times; in this case, the 
strongly connected node is the source of re-coloniza-
tion and provides a rescue effect (Fig.  3e). As with 
spread, EC skewness does not have a clear relation-
ship with survivability.

Grouping multiple metrics when evaluating model 
outcome

In contrast to looking at general trends in the data 
with respect to single network metrics, we now 

evaluate the spread and survival results by jointly 
considering a system of metrics. We sort our results 
in the same order that the metrics are derived above. 
The sorting helps develop a narrative on how the 
combined effects of the metrics better elucidate the 
structure of the network and dictate model outcome. 
We highlight regions in the spread and survival sce-
narios when a single metric may be sufficient and 
ones where single metrics might tell an incomplete 
story. In doing so, it is useful to use qualitative terms 
such as “fast” or “slow” spread to describe regions in 
the space of model outcomes, or “low”, “intermedi-
ate”, or “high” values of a network metric to highlight 
areas of the network parameter space. We define them 

Fig. 3   Relating single indicators to ecological outcome. Each row pertains to the spread (a–c) and survival (d–f) scenarios. Data are 
presented as median measures of each model outcome. The solid red line in each plot represents a fitted linear trend in the data
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arbitrarily with respect to our set of simulations; the 
exact values of the boundaries will change with the 
agent-based model parameters (for example, a region 
of fast spread or high survivability would shrink as 
the species growth rate is reduced). They are not 

meant to reflect actual prairie dog scenarios, but 
rather to help us relate properties of network structure 
to model outcomes.

In terms of spread outcomes, the key determinant 
of fast spread is node accessibility, where greater 

Fig. 4   Grouping spread outcomes. In a, color denotes the 
median time to full network occupation, averaged across all 
values of EC skewness. Panels c–e present median spread 
times for select values of EC skewness. (Individual plots for all 
values of EC skewness can be found in Supplemental Material 
D.) Dark blue shades correspond to regions of fast spread; yel-

low colors indicate regions of slow spread. In b, color denotes 
the standard deviation of spread time taken across all values 
of EC skewness. Dark blue shades indicate regions with lower 
variation across EC skewness; yellow colors correspond to 
regions of high variation. The dot-dashed line highlights the 
boundary between fast and more variable spread regions
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node accessibility is indicated by low spectral radius 
and high EC variance (Fig.  4). Spectral radius is a 
sufficient indicator of fast spread in networks with a 
low spectral radius or high traversability (λG ≤ 15 km) 
due to the overall closeness of nodes. In networks 
with a high spectral radius or low traversability 
(λG > 40 km), node heterogeneity becomes a deciding 
factor and a greater EC variance ( var(�⃗vG) ≥ 0.08) is 
related to faster spread times. We find that an inter-
mediate traversability (15 < λG ≤ 40 km) and interme-
diate EC variance (0.06 ≤ var( �⃗vG) < 0.08) interact to 
increase spread time.

However, spectral radius and EC variance alone 
are unable to fully capture all spread scenarios (Fig. 4; 
Supplemental Material D). Traversability and node 
heterogeneity interact, with EC skewness providing 
additional information, to explain different patterns of 
spread outcomes. Take, for example, regions of inter-
mediate traversability (15 < λG ≤ 40  km), low node 
heterogeneity ( var(�⃗vG) < 0.06), and positive propor-
tion of strong to weak contributors ( skew(�⃗vG) > 0)  
(Fig.  4; Supplemental Material D). When spread is 
slow, it is due to an extremely weak contributor in 
the network. Dispersing agents are unlikely to reach 
or escape the isolated node. This example illustrates 
the complexity of relating outcomes to specific net-
work metrics, and highlights a key advantage of our 
approach.

In terms of survival outcomes, node accessibility 
and heterogeneity are also important for persistence 
(Fig. 5; Supplemental Material D). At intermediate to 
high levels of spectral radius (λG ≥ 20 km) and low to 
intermediate levels of EC variance ( var(�⃗vG) < 0.08), 
there exists a non-linear region of low survival. Net-
work connectivity is sufficiently low to prevent re-col-
onization or support of extirpated or isolated nodes. 
However, we observe an increase in survival times at 
higher rates of EC variance ( var(�⃗vG) ≥ 0.08). Even in 
network configurations with overall low traversability 
(λG ≥ 40 km), the presence of a strong contributor (a 
node highly connected to many others) is enough to 
lengthen the persistence time of the population.

Survival outcomes are more variable when spec-
tral radius is low (λG ≤ 10 km) (Fig. 5; Supplemental 
Material D). We would expect high traversability to 
help ensure survival, but other network properties 
play a significant role in determining survival time. 
Asymmetries in node contribution strength—a 
larger proportion of weak contributors (negative EC 

skewness) or strong contributors (positive EC skew-
ness)—interact with the number of strong contribu-
tors and network traversability.

Take, for example, networks with high traversabil-
ity (λG ≤ 10 km) and positive EC skewness (Fig. 5e). 
Since there is a greater proportion of strong con-
tributors to connectivity, EC variance is an indica-
tor of the presence of weak contributors. When EC 
variance is low ( var(v⃗

G
) ≤ 0.05), the system is full of 

strong contributors and survival time declines. If not 
replaced by individuals from other patches, immigrat-
ing individuals functionally act as additional mortal-
ity on an already stressed system. This is an example 
of a potential negative effect of dispersal. Increasing 
EC variance increases the number of isolated patches 
which, for survival time, stabilizes the system. While 
isolated patches do not receive immigrating indi-
viduals from other patches, their population remains 
under carrying capacity longer and faces less disper-
sal-related mortality.

In contrast, consider networks with high travers-
ability (λG ≤ 10  km) and negative EC skewness 
(Fig. 5c). While the network is overall well-connected 
(low spectral radius), there is a larger proportion of 
weak contributors (negative EC skewness). When 
EC variance is low ( var(v⃗

G
) ≤ 0.05), nodes are more 

evenly (and weakly) contributing to connectivity, 
and survivability suffers. As EC variance increases, 
it implies more and more the presence of a strong 
contributor. Indeed, we observe increases in survival 
times with EC variance, which illustrates the positive 
effect of a strong contributor in the system.

For networks with low spectral radius (λG ≤ 10 km) 
and zero EC skewness (indicating an equal number 
of weak and strong contribution nodes), the effects of 
each part of the network structure on survivability are 
difficult to ascertain (Fig. 5b). Our results are likely 
due to a complex relationship in how skewness inter-
acts with spectral radius and variance. In this case, 
studying higher moments may play an important role 
in determining the relationship between networks fea-
tures and model outcomes.

Single vs. multiple metrics: a statistical test of 
significance

While we observe heterogeneities in model outcomes 
within single metrics, we now turn to regression 
models to more quantitatively measure the amount 
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of variation in the spread/survival data that can be 
explained by network structure. Despite the general 
trends between single metrics and ecological out-
comes reported in Fig. 3, a large degree of variation 

in the simulated data remains unexplained when only 
considering a single metric (Figs. 4 and 5, Table 3).

The greatest amount of variation in both ecologi-
cal scenarios is explained using multiple metrics, 

Fig. 5   Grouping survival outcomes. In a, color denotes the 
median time to full network extinction, averaged across all val-
ues of EC skewness. Panels c–e present median survival times 
for select values of EC skewness. (Individual plots for all val-
ues of EC skewness can be found in Supplemental Material D.) 
Dark blue shades correspond to regions of quick extinction; 
yellow colors indicate regions of longer persistence. In b, color 

denotes the standard deviation of survival time taken across all 
values of EC skewness. Dark blue shades indicate regions with 
lower variation across EC skewness; yellow colors correspond 
to regions of high variation. The dot-dashed line highlights the 
boundary between quick extinction and more variable survival 
regions
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even when penalizing models with extra predictors 
(Table 3). Some metrics do not explain much varia-
tion as single predictors but markedly influence fit 
when controlling for other metrics. Specifically, mod-
els pairing spectral radius and EC variance produce 
the greatest predictive power (or “best-fit”) for either 
ecological outcome. According to adjusted-R2 crite-
ria, the model pairing spectral radius and EC variance 
is explains more-or-less the same amount of vari-
ation as a model with all three-network metrics. By 

AIC criteria, the spectral radius-EC variance model is 
slightly preferred.

In general, network metrics can be decent pre-
dictors of spread, an unexpected result as we would 
predict a stronger relationship as landscape struc-
ture directly determines dispersal and indirectly 
influences persistence. However, including squared 
and interaction terms in the regression can greatly 
improve model fit (Table  4). Inclusion of a quad-
ratic and interaction terms between spectral radius 

Table 3   Assessing the best-fit model indicators of spread and survival

Table of sample regression models using spectral radius ( �
G

 ), EC variance ( var
(

v⃗
G

)

 ), and EC skewness ( skew
(

v⃗
G

)

 ) as predictor 
variables and median time values from the spread and survival scenarios as response variables. Adj-R2 indicates the proportion of 
variability in outcomes explainable by a given model. AIC provides a measure of model fit that penalizes extra predictors; preferred 
models have lower AIC. ∆ AIC is a rescaling of original AIC values by the lowest AIC value in the group of models. Original AIC 
value: f12455.623, g20538.166

Ecological process Network metric(s) Adj-R2 Δ AIC Rank

Median spread time �G 0.188 2631.550 6
var

(

v⃗G
)

0.566 1251.776 3

skew
(

v⃗G
)

0.000 3091.359 7
�G var

(

v⃗G
)

0.755 0 1f

�G skew
(

v⃗G
)

0.188 2633.516 5

var
(

v⃗G
)

skew
(

v⃗G
)

0.566 1253.705 4
�G var

(

v⃗G
)

skew
(

v⃗G
)

0.755 1.875 2

Median survival time �G 0.290 2106.463 3
var

(

v⃗G
)

0.438 1593.612 5

skew
(

v⃗G
)

0.000 2860.833 7
�G var

(

v⃗G
)

0.728 0 1 g

�G skew
(

v⃗G
)

0.290 2108.453 4

var
(

v⃗G
)

skew
(

v⃗G
)

0.437 1595.598 6
�G var

(

v⃗G
)

skew
(

v⃗G
)

0.727 1.970 2

Table 4   Best-fit models from a full-factorial regression analysis with interaction and squared terms

ϯ  Difference in AIC between the model presented here and the best-fit model reported in Table 3. A full-factorial design experiment 
that includes all combinations of each variable and their interaction and squared terms represents 1023 different model variations. 
Therefore, we only present the best-fit models here. Simulation data and code to generate all regression models can be found on the 
Open Science Framework (osf.io/5y7fu)

Ecological process Network metrics Adj-R2 ΔAICϯ

Spread λG var( �⃗vG)     λG × var( �⃗vG)     
λG × skew

(

�⃗vG
)

λG × var( �⃗vG) × skew
(

�⃗vG
)

 λG
2 var( �⃗vG)

2
skew( �⃗vG)

2

0.833 –

λG var( �⃗vG)     λG × var( �⃗vG)    λG
2     var( �⃗vG)

2 skew( �⃗vG)
2 – −840.261

Survival λG var( �⃗vG)     λG × var( �⃗vG)     λG
2     var( �⃗vG)

2     skew( �⃗vG)
2 0.850 –

λG var( �⃗vG)     λG × var( �⃗vG)     λG
2     var( �⃗vG)

2 skew( �⃗vG)
2 – −1340.038
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and EC variance/skewness improves the adjusted-R2 
to 83 and 85 percent in the spread and survival sce-
narios respectively, indicating that the overall distri-
bution of connectivity of the network has important 
effects on species spread and survival.

Sensitivity analysis

Often in computation models, parameter choice can 
limit the ability to make general claims about model 
results. Therefore, we perform a sensitivity analysis 
on the prairie dog ABM parameters and re-assess 
whether multi-metric regression models outperform 
single metric models. A series of tables, one for each 
parameter perturbation, containing the adjusted statis-
tical measures, can be found in Supplemental Mate-
rial D.

For two parameter perturbations (increased prairie 
dog litter size and decreased mortality) in the sur-
vival scenario, extinction events became so rare that 
it was not possible to complete the necessary number 
of simulations to be included in our analysis. This is 
because reproduction and survival on any one node 
was sufficiently high to limit global extinction.

Though the ranking of single and two-metric 
regression models may change depending on parame-
ter settings, we find that models with multiple metrics 
always provide the best indicators of spread and sur-
vival. In both spread and survival scenarios, regres-
sion performance is sensitive to prairie dog growth 

rate and litter size parameters. In two experiments, 
the original adjusted-R2 value reduced by almost a 
factor of 2 (Table 5). But even at the lowest adjusted-
R2 level, the 3-metric model remains a better predic-
tor of survival than spread, which again is surpris-
ing given the presumed connection between network 
structure and dispersal. Perhaps this result is less 
astounding when one also considers the important 
linkage between dispersal and survival in the case of 
prairie dogs.

Discussion and conclusion

Network metrics and node centralities collapse the 
high dimensionality of networks into the measure 
of a single dimension, yet no single metric can pre-
cisely describe outcomes such as spread or survival 
in our model. Information is lost when considering 
only a single metric. Using multiple metrics in a sys-
tematic manner helps to retain structural information 
and describe different network attributes influencing 
model outcomes. In doing so, it is possible to nego-
tiate tradeoffs between simple, readily interpretable 
metrics and the amount information lost through sum-
marization of network properties.

Our systematic approach to network measurement 
begins at the global scale with the most general metric 
of structure (e.g., a single network metric), and then 
categorizes the network based on individual-scale 

Table 5   Sensitivity of spread and survival results to parameter perturbation

This table provides the quantitative change in adjusted-R2 for the 3-metric linear regression model when perturbing model param-
eters. We systematically increase/decrease each default parameter by ten percent then recalculate the relationship between network 
metrics and outcomes. A positive ▵ Adj-R2 implies that the largest adjusted-R2 associated with the perturbed model is greater than 
the largest adjusted-R2 value reported in Table 3
a  These values must be nonnegative integers
b  We are unable to observe any meaningful relationship between metrics and median survival time because simulations with death 
rate 0.518 (and lower) or litter size 4 (and higher) seldom lead to extinction

Perturbed value ∆ Adj-R2

Parameter −10% (+ 10%) Spread Survival

Initial number of prairie dogs on a patch, Nx 135 (165)a 0.017 (−0.001) 0.022 (−0.013)
Prairie dog growth rate, r 0.67 (0.82) 0.112 (−0.046) −0.095 (0.305)
Prairie dog litter size, fx 2 (4)a −0.514 (0.053) −0.064 (−)b

Prairie dog mortality probability, qx 0.518 (0.633) −0.047 (−0.320) −(−0.065)b

Prairie dog density threshold, DU,x 0.81 (0.99) 0.041 (0.039) −0.001 (−0.012)
Average dispersal distance of prairie dogs, Mx 1.8 km (2.2 km) −0.011 (0.003) −0.016 (−0.002)
Carrying capacity, Ki 135 (165)a 0.013 (0.004) −0.032 (0.037)
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heterogeneities (e.g., node centrality scores). We 
recover information in node centrality scores with 
routine formula for statistical moments. The math-
ematical dependence between the metrics determines 
the range of possible network configurations. With 
each network metric added to the hierarchy, we gain a 
clearer picture of network structure, which we can use 
to better understand model outcome.

In terms of evaluating spread and survivability 
by single metrics, we found that tradeoffs may exist 
between distinct structural properties. Traversability 
(measured by spectral radius) and node heterogeneity 
(measured by EC variance) strongly influence model 
outcome in opposite ways in each of our ecological 
scenarios. It is worth noting that this tradeoff exists 
because of the nature of the connection. In the context 
of a habitat network, the edge weight is interpreted as 
the distance between two nodes, and a higher value of 
spectral radius implies less connectivity. In a species 
interaction network, the weight would be interpreted 
as the strength of interaction between two species, and 
spectral radius would have the opposite interpretation 
(e.g., a higher value implies higher connectivity).

However, considering only one metric hides a more 
complicated relationship between network structure 
and model processes. Indeed, when we jointly con-
sider multiple metrics, we uncover a complex story 
about the interactions between network properties and 
their effects on species spread and survival. Under-
standing and measuring multiple properties is likely 
important for conservation planning and requires 
multiple metrics. Ames et al. (2011) and May (2006) 
make a similar argument for disease dynamics on net-
works. Our findings hold across large regions of the 
agent-based model parameter space. This robustness is 
a key component in our assessment of network metrics 
on different of model outcomes. Tradeoffs in the accu-
racy and robustness of metrics are realistic, unavoid-
able, and amplify the hardships managers face when 
seeking to understand and influence dynamics on 
networks. Our approach, coupled with a controllable 
model, helps quantify these tradeoffs and inform the 
discussion on how to best summarize networks.

While our ecological example is for relatively 
small networks, we believe that our conclusions hold 
for larger networks and other study systems. We find 
similar patterns in analyses of bank failure (Nier 
et  al., 2007; Gai and Kapadia, 2010; Haldane and 
May, 2011), disease spread (May, 2006; Ames et al., 

2011), habitat fragmentation (Thompson et al., 2017), 
and communication (Albert et  al., 2000), although 
a formal consideration of the hierarchy is lacking. 
In each case, network properties beyond mean sum-
mary metrics matter in determining model outcome. 
For example, Nier et al. (2007) (N = 25) and Gai and 
Kapadia (2010) (N = 1000) evaluated the probability 
of bank failure given the topology of a banking net-
work. While the overall connectivity of the network 
was important, modularity and clustering were both 
important factors in determining the propagation of 
shocks throughout the network. Ames et  al. (2011) 
found differences in infectivity across contact net-
works with the same degree distribution but different 
mean paths and clustering coefficients (N = 10,000). 
Thompson et  al. (2017) iteratively removed nodes 
in a habitat network (N = 30) to study the effects of 
habitat fragmentation on biodiversity and ecosys-
tem functioning. They found that removing highly-
connected “hubs” greatly degraded biodiversity and 
productivity compared to random removal—a phe-
nomenon that also held in communication networks 
(1000 ≤ N≤ 20,000) (Albert et al., 2000).

In order to isolate the effects of network struc-
ture on model outcome, we have assumed that 
model parameters are homogenous across individu-
als and patches. Relaxing these assumptions will 
affect spread and survival. Indeed, heterogeneities 
between habitat patches creating source-sink and 
rescue effects are well-established in the literature 
(Gotelli, 1995; Liebold et  al., 2004; Loreau, 2010; 
Loreau et al., 2013), and have direct applications for 
species conservation (Harrison et  al., 1988; Griffin 
and Mills, 2009; Russ and Alcala, 2011). These will 
interact with habitat network structure to shape the 
final spread or survival outcome. For example, using 
a patch-occupancy metapopulation model, Frank 
(2004) showed that heterogeneities in habitat patch 
size and dispersal linkages interact with species-
specific parameters to determine the mean survival 
time of the overall metapopulation. This warrants 
future work. Similarly, our agent-based model is a 
simplified realization of a spatial metapopulation. 
In reality, prairie dogs face predation, environmen-
tal conditions, and disease (USFWS, 2013), many 
of which vary over space and time. While the model 
can accommodate some of this (by adjusting growth 
rates in our sensitivity analysis, for example), a more 
descriptive model may be needed if it is to be used 
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for a population viability analysis of a specific species 
(Morris and Doak, 2002).

As our study is theoretical in nature, it would be 
useful to validate our results with field data. How-
ever, doing so is a feat in and of itself. Dispersal 
experiments in the field can be difficult to con-
duct (Germain et  al., 2017), and even in lab set-
tings, obtaining the required number of networks 
and replicates is often infeasible given time, space, 
and budget constraints. Indeed, the last may be 
the greatest limitation. Such experiments are very 
costly, particularly if they need to be replicated. 
That being said, advances in meso- and microcosm 
experiments are a step in the right direction (Gilbert 
et al., 1998; Gonzalez et al., 1998; Srivastava et al., 
2004; Legrand et al., 2012), with more recent work 
relating network structure and species dispersal to 
biodiversity, ecosystem functioning, and stability 
(Staddon et al., 2010; Thompson and Shurin, 2012; 
Gilarranz et al., 2017; O’Connor et al., 2020).

The interplay between grouped metrics highlights 
tradeoffs in structural design, which broadens the 
criteria for network selection. In general, the nature 
of the process and the layout of the edge weights 
determine the extent to which structural tradeoffs 
are feasible. In our ecological example, traversabil-
ity is not the sole driving force behind long-term 
persistence and can be substituted by greater node 
heterogeneity. Structural tradeoffs also extend across 
multiple processes. We find that most networks pro-
moting persistence also facilitate dispersal, but the 
converse is not true. Ordered multi-metric analy-
ses do not provide a definitive summary of network 
dynamics, but help illustrate and understand the 
complexities in identifying preferred outcomes from 
network structures (e.g. structures that minimize 
invasive species spread, maximize survival, or a 
combination of both). Applying statistical moments 
does not create new metrics. Instead, it brings order 
to the large set of available networks metrics and 
facilitates combining them in a logical manner.
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