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» Abstract

2 Ecology is a science of scale, which guides our description of both ecological processes and
a1 patterns, but we lack a systematic understanding of how process scale and pattern scale are
» connected. Recent calls for a synthesis between population ecology, community ecology, and
3 ecosystem ecology motivate the integration of phenomena at multiple levels of organization.
2 Furthermore, many studies leave out the scaling of a critical process: species interactions,
»s  which may be non-local through movement or foraging and must be distinguished from dis-
% persal scales. Here, we use simulations to explore the consequences of three different process
x  scales (species interactions, dispersal, and the environment) on emergent patterns of biodi-
s versity, ecosystem functioning, and their relationship, in a spatially-explicit landscape and
2o stable equilibrium setting. A major result of our study is that the spatial scales of dispersal
s and species interactions have opposite effects: a larger dispersal scale homogenizes spatial
a1 biomass patterns, while a larger interaction scale amplifies their heterogeneity. Interestingly,
» the specific scale at which dispersal and interaction scales begin to influence landscape pat-
13 terns depends on the scale of environmental heterogeneity — in other words, the scale of
s one process allows important scales to emerge in other processes. This interplay between
35 process scales, i.e., a situation where no single process dominates, can only occur when the
3% environment is heterogeneous and the scale of dispersal small. Finally, contrary to our ex-
s pectations, we observe that the spatial scale of ecological processes is more clearly reflected
s in landscape patterns (i.e., distribution of local outcomes) than in global patterns such as
3 Species-Area Relationships or large-scale biodiversity-functioning relationships. Overall we
w0 conclude that long-range interactions often act differently and even in opposite ways to
a  dispersal, and that the landscape patterns that emerge from the interplay of long-ranged
» interactions, dispersal and environmental heterogeneity are not well captured by often-used
s metrics like the Species-Area Relationship.

« Introduction

s Scale is fundamental to ecology, from the spatial and temporal scales at which we observe and
s manage ecosystems [1, 2, 3] to the intrinsic scales at which processes occur within and across
«  ecosystems [4]. Much of current research efforts describe ecological patterns across scales,
s such as Species-Area or Biodiversity-Ecosystem Functioning relationships [5, 3]. However,
w0 the scaling of ecological patterns is largely phenomenological — we can describe how patterns
s scale but not why [6, 5]. Although links between scales of patterns and processes have been
st explored in recent years [7, 8, 9], as we will discuss, a systematic and unified treatment of
52 scale in ecology is incomplete. A critical question remains: how is the scaling of ecological
53 patterns, such as patterns of biodiversity and ecosystem functioning, generated by scales of
sa  specific processes, and why?

55 In answering this question, a crucial process is often overlooked: the spatial scale of
s species interactions. While dispersal and environmental variation are often understood to
s operate at various spatial scales, existing research generally assumes that species only inter-
ss act locally [10, 11, 12] (although exceptions exist, e.g., studies using multi-layer networks
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s to link interaction networks at local scales to their realization at the global scale [13, 14]).
6 Yet many species move, forage, or otherwise interact with each other at a range of spatial
s scales [15, 16], even in the absence of dispersal. A simple distinction is that dispersing species
e establish new “home” ranges when they move across the environment, while mobile species
63 always return to their “home” range. Many move daily across multiple habitat types, such
o as seabirds connecting marine and terrestrial ecosystems [15], or predatory insects moving
s between different habitats in the landscape [16]. Non-local competition can therefore arise
e from foraging across multiple localities. Additionally, species interact indirectly across long
e distances via intermediary species, (e.g., plants interacting indirectly via pollinators or her-
s bivores), and many such intermediary interactions are not explicitly studied, thus being
e best represented by long range interactions. As a result, scales of species interactions, such
o as competition, likely have consequences for population persistence, affecting the spatial
7 distribution of biodiversity and ecosystem functioning in ways that are distinct from other
7 process scales [17, 18].

73 How do the spatial scales of dispersal, environmental heterogeneity, and species inter-
7 actions interactively influence ecological patterns? Answering this question is unlikely to
7 be achieved via observational studies, as different combinations of ecological processes may
% generate identical patterns, but computational models can explore patterns that emerge as
77 processes interact across scales. Indeed, the scale of dispersal relative to the environment
7 has been studied most extensively, in particular within a metacommunity context [19, 7, 20].
7o These studies generally find that high rates of dispersal blur differences between local com-
s munities, leading to losses of biodiversity and ecosystem functioning. Although there are
a1 reasons to expect increased scales of dispersal and species interactions to have similar con-
& sequences, as both processes are influenced by many of the same variables (e.g., animal
sz mobility) and serve to spread out the effects of species interactions, there are also reasons
s to expect the opposite [21]. A key difference is that large dispersal scales can allow popu-
s lations to permeate through whole landscapes over a few generations, whereas individuals
e with large interaction scales are still bound to specific localities. As a result, increasing
e scales of interactions may amplify spatial heterogeneity in an ecological system [22], counter
s to the blurring effect of larger dispersal scales.

80 In addition to scales of species interactions, we will address an additional major gap which
o prevents a complete knowledge of scaling in ecology: consideration of a wider range of ecolog-
o1 ical patterns within a single study than has been examined previously. Two well-recognized
« ecological patterns are Species-Area (SAR) and Biodiversity-Ecosystem Functioning (BEF)
o3 relationships. The Species-Area relationship is the earliest and most widely-examined eco-
w logical pattern to explicitly consider scale [5, 23]. Although SARs have been described as
s one of “ecology’s few universal regularities” [24], accumulating evidence reveals consider-
o able variation within and among biological systems [25, 5, 26]. Likewise, BEF theory has
o7 revealed consistent patterns, typically a saturating relationship between community diver-
e sity and biomass production [27], but most work has focused on BEFs at local scales, with
o only recent work highlighting the importance of scale [3]. Previous studies have examined
w0 how one pattern or the other are affected by process scales [28, 26, 29], but no study has
1w examined how SAR and BEF relationships change in tandem and if effects that are masked
102 through one pattern are apparent in the other. As a consequence, it is unclear how both
103 SAR and BEF relationships are affected by the interplay of processes acting at different
104 scales, making it difficult to assess how process scales affect the overall behavior of ecosys-
w05 tems as different measures highlight different aspects of ecosystems. Resolving these issues
w0 will be useful for both basic and applied biodiversity problems, for instance allowing us to
w7 scale up to landscape scales our predictions of biodiversity loss and its effect of ecosystem
s productivity, that are often based on local scales [30].

109 Here, we use a modified Lotka-Volterra metacommunity model to explore the conse-
uo quences of the scaling of ecological processes for biodiversity, ecosystem functioning, and
m  their relationship across spatial scales. Our simulations consist of species interacting in
2 a spatially-explicit landscape, with “patches” emerging from the environmental structure
us  of the landscape. Although metacommunities tend to be modelled as systems of discrete
us patches embedded within an inhospitable matrix, Chase and Leibold [31] describe this ap-
us  proach as useful (easing computation and interpretation) but limited — they foreshadow a
e “coming” in ecology in favour of models that allow “patches” to emerge from the structure
ur  of the environment, which our model achieves. We first study the heterogeneity of local
us outcomes across the landscape: patterns of patch biodiversity, patch functioning, and rela-
uo  tionships between them (local BEF). We can then scale up to the whole landscape scale and
120 every scale in between. By varying the spatial scales over which metacommunity processes
1 (abiotic environment, competitive interactions, and dispersal) play out, we test the hypoth-
122 esis that ecological patterns depend on how processes interact across scales, including scales
123 of species interactions, and lead to different patterns from those generated by commonly-
e assumed hierarchical process scales (i.e., scales of interactions < environment < dispersal;
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125 Fig. 1).

126 Species-Area relationships depend on spatial turnover in species composition, and com-
w7 positional turnover is driven by ecological processes [32]. Thus, we would expect that
128 ecological processes should strengthen SARs in scenarios where they increase compositional
120 turnover. We predict that the strongest slopes of the SAR will occur when scales of dis-
1w persal < environment < species interactions, because (i) interactions are not constrained to
i abiotically suitable patches, and (ii) weaker dispersal prevents the homogenization of species
12 composition across the landscape. Additionally, we predict that the consequences for BEF
133 relationships will differ between local and regional scales. On local scales, we expect BEF's
1 to weaken as interaction scales increase relative to the others, given that species that are
135 locally absent but present in nearby areas can affect local functioning. On regional scales, we
13s  expect BEF's to strengthen as interaction scales increase, since regional competition would
137 keep only the most suitable species at a given location. Hence, more species would mean
18 that multiple species are productive within a given region.

(a) Spatial scales of ecological processes (b) Classic landscape model: I<D<E
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Figure 1: Conceptual diagram of spatial scales of ecological processes. (a) Illustration of
the spatial scale of species interactions I, dispersal D and environmental heterogeneity E relative
to the total size of the landscape (i.e., width of curves). (b) In the classic scenario, interactions take
place within a patch, while dispersal is thought to act within a neighborhood and environmental
factors vary broadly over the landscape. (c) Comparison of ecological scenarios along scales of
I, D and E. Yellow and green represent two different species, with circle and its rim representing
the resident species and the favoured species, respectively. Metacommunity theory has explored
different scenarios for the relative scales of dispersal and environment (i.e., the ratio D/E), notably
distinguishing “species sorting” (local environmental factors determine species distribution) and
“mass effects” (population fluxes homogenize the landscape). Our work highlights the relative
importance of species interactions scale (e.g., expressed through the ratio I/ E, which was previously
considered only in particular ecological settings (e.g., vegetation patterns or territoriality). Ranged
interactions may for instance induce exclusion of weaker competitors in a neighboring patch, even
without a population flux of a stronger competitor into that patch.

w» Methods
140 Model

1w We use a modified Lotka-Volterra metacommunity model to explore the consequences of
12 the spatial scaling of three ecological processes — abiotic environment, species interactions,
w3 and dispersal — for biodiversity and ecosystem functioning. Our specific assumptions and
s parameters are motivated by two important choices. First, we focus on a classic setting
s of ecological assembly, i.e., the patterns that arise when many species, originating from
s a regional pool, come together and reach an equilibrium state, with some species going
w7 locally or regionally extinct. Furthermore, we take species interactions in the pool to be
s disordered, that is, heterogeneous but without a particular functional group or trophic level
1o structure [33]. We do not exclude that different patterns could emerge for more ordered
150 interactions (e.g., a realistic food web) or for parameter values that lead to more complex
151 dynamical regimes (e.g., population cycles or chaos, driven by stronger species interactions
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152 or environmental perturbations). We note that our communities, in the chosen parameter
153 regime of moderate competition, contain many species in a stable equilibrium (i.e., due to
152 the assembly process). Our methodology thus differs from the extensive literature that has
155 considered models with random interactions in order to study stability-complexity relation-
156 ships [34], including more recent works in a spatial context [35, 36], as we rather focus on
157 the abundance and diversity patterns arising from community assembly.

158 Second, we consider the possibility of species interacting over large spatial scales. Con-
159 ventional metacommunity models describe discrete local communities of habitat patches
160 connected by dispersal, within which species interact [37]. In doing so, they implicitly as-
161 sume that the spatial range of species interaction is smaller than the scale of dispersal and
12 contained within a patch, for all species and types of interactions [17]. To relax these as-
163 sumptions, we construct a metacommunity model where populations of species can disperse
1« and interact at different spatial scales, without specifying a mechanism underlying these eco-
165 logical processes. Species interactions that manifest beyond local scales are abstracted from
166 mechanisms such as individual foraging, vector species (e.g., pathogens) [38], and spatial
w7 resource fluxes [39, 17].

168 The model details the dynamics of S different species distributed across a spatially-
1o explicit lattice landscape of 320x320 cells. The dynamical equation for the biomass N; of
o species 7 at position X in the landscape at time ¢ is given by a generalized Lotka-Volterra
m  equation of the form

S
GNED =N (1@ + Y [FAERHNEY | +5ANE) )

> where X and ¥ represent vectors of spatial (x,y) coordinates in the landscape. Equation
ws (1) models the effects of three ecological processes on the biomass of species i: its intrinsic
wm  growth rate r;(X), which is influenced by abiotic environmental conditions at location X,
s dispersal to and from location X, which is controlled by the diffusion coefficient d;, and
e interactions with all other species j, including when they are located elsewhere in the land-
wr scape, A;;(X,¥). Although at face value cells in our model resemble patches in traditional
17s metacommunity models, given that discrete populations are necessary to simulate Lotka-
19 Volterra dynamics, here it is best to interpret cells as neighborhoods on a landscape. Each
10 neighborhood may take on a unique environmental value and hold unique densities of in-
1n dividuals of different species. Viewed in this way, landscape dynamics can be simulated
12 more continuously, with the numerical limitation of needing to discretize dynamics at their
13 finest resolution. While “patches” can emerge in autocorrelated environments (i.e., a spatial
e clustering of cells that are suitable to a given species), our model is also generalizable to
15 landscapes with a diversity of environmental structures.

16 Environment

17 Abiotic conditions in each location are encoded by an environmental variable V' (X). This
188 variable is continuous and varies smoothly over space, with parameters allowing one to tune
180 the typical spatial scale of this variation [40]. For more details on the construction of the
10 environment, see the Appendix section A2.
191 Each species has a Gaussian fundamental niche that determines its abiotic fitness in each
12 location, with an optimal environmental value H; and abiotic niche width w;
2 2
Fi(R) = exp [_(V(X)QH)]

2w;

(2)

13 Each fitness value is bound between 0 and 1 and reaches its maximum at an optimal envi-
e ronmental condition (i.e., when V(X) = H;). We take the growth rate as r;(X) = f;(X). In
s other words, V (X) sets the actual structure of environmental conditions across the landscape,
s whereas 7;(X) is how species experience the environment and its structure.

17 Interactions

s We choose to limit ourselves to competitive interactions, defined by the matrix Cj;, which
19 represents the per-capita competitive effect of species j on species i. The diagonal of the
20 matrix (the impact of a species on itself) is set to 1, whereas all other interactions are
21 taken independently from a random uniform distribution between 0 and ¢. We choose ¢ = 1
22 to allow for moderate interactions between different species (inter-specific competition is
23 always weaker than intra-specific), suggesting that pairwise coexistence is often possible
20 for species with different growth rates r;, but the total impact of many competitors is
205 still strong enough to allow for extinctions. Previous work has shown that, in disordered
206 communities, the outcomes of ecological assembly are robust to many details such as the
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27 nature of interactions (e.g., mutualism, predation), and depend only on a few statistical
28 properties such as the mean and variance of interaction effects [33].

200 Furthermore, interactions are assumed to occur over a characteristic spatial scale encoded
a0 by a spatial kernel K. This scale may represent the distance an animal forages from its nest
au (without establishing a new nest), the scale at which trees gather resources with their roots,
a2 or the effective distance an immobile species interacts with its neighbors via an intermediary
a3 species (where the intermediary is not explicitly modeled). We use a Gaussian kernel whose
as standard deviation defines the interaction range such that

2 _ 2
XYy
LS 5

a5 where ||X — ¥|| indicates the norm of (distance between) the vectors X and ¥, and ~ is the
26 spatial range (scale) of the interactions. We note that while this modeling strategy is not
a7 physical as it implies that interactions occur instantaneously across distances, this is not
as expected to bias our results since we are focusing on the equilibrium state of the system,
a0 where hypothetical lag effects should be minimal.

20 We normalize the interactions by kg such that the overall effect of the kernel is always
a1 the same (i.e., the integral over K always equals 1). This normalization means that for large-
a2 scale interactions, local competition becomes weaker. However, some amount of (especially
23 intra-specific) competition must remain locally strong to prevent species densities from
24 growing exponentially and exploding. Therefore, we define interactions as partially local
»s and partially regional, with 8 governing the fraction of interactions that are regional:

K(% §l7) = kocap [—

26 We choose 8 to ensure that the effect of interactions changes with their spatial scale (see

2z scales subsection below), but local competition is never negligible (see more details in the
28  Appendix, Fig. S12).

»o  Dispersal

20 Finally, dispersal is modeled by the diffusion (Laplace) operator,

2 where 0; is the diffusion or dispersal coefficient of the species. For simplicity, we set the
22 dispersal coefficient to be the same for all species.

233 Contrary to interactions, we do not use an explicit spatial kernel here, because intensity
24 and spatial scale are unavoidably entangled in the case of dispersal (see Appendix section
25 Al). The coefficient d; sets the spatial scale over which dispersal impacts ecological dynam-
26 ics. Note that two aspects of our modeling choices mean that our choice of dispersal by
27 diffusion is not qualitatively different from applying a large dispersal kernel: our focus on
28 the equilibrium state, and having initial conditions where all species are introduced to every
230 point in the landscape. The former aspect of equilibrium means that any potential non-
20 equilibrium dynamics driven by species moving quickly across space due to a large dispersal
21 kernels are not applicable. The latter aspect means that there is no limit to dispersal, i.e.,
22 a short or long-ranged dispersal kernel does not affect which parts of the landscape can be
xus  reached by a species.

« Scales

25 In this study we are concerned with spatial scales of three ecological processes:
26 1. E: environmental heterogeneity

207 2. D: dispersal

248 3. I: species interactions

29 To properly compare the interplay of different process scales, we must first compute their
0 values for a given set of model parameters (Table 1). The scale of the environment com-
»1 bines two features often used in the literature to generate realistic, spatially-autocorrelated
2 landscapes [41]: spectral color p, which indicates the relative importance of long-range and
»3  short-range variations in the environment, and spectral cutoff k., which indicates the finest
¢ grain of variation (Appendix section A2). The effective environmental scale E is controlled
25 by these two parameters.

256 In the main text, we focus on a single value for the environment scale £ = 32, and
»7  vary the other two scales on a logarithmic scale, with values of 1, 3.2, 10, 32 and 100,
s where the system itself has the scale (length) of 320 cells. Our distribution of I and D
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Parameter Interpretation Baseline value [Range]
General
S species number 20
L landscape size (cells) (area = L?) 320
d; dispersal coefficient [0.01, 100]
Environment
H; optimal environment value ~ uniform(20, 80)
w; abiotic niche width ~ normal(10, 2)
P spectral color 0.95
ke spectral cutoff 0.04
K(X) local abiotic conditions [0, 100]
ko normalization constant -
Interactions
c max interaction strength 1.0
B fraction of regional interactions 0.9
¥ spatial scale of interactions [1, 100]
Cij interaction matrix ~ uniform(0, ¢)

Table 1: Parameters, default values and ranges.

x0 are equally spaced along a log scale and allow us to have a clear separation between the
%0 scales of each ecological process, while also being substantially smaller than the system
s size (320 cells) and larger than the smallest scale in the system (1 cell). Details on the
x%  construction of the environment are given in the Appendix section A2. We choose a value
23 of B = 32 specifically as it is the most straightforward to demonstrate our results (see
¢ Appendix section A3 for other values). The scale of interactions is set by, and coincides
%5 with, the width of the Gaussian kernel v, such that I = . The scale of dispersal is mainly
2 determined by the diffusion coefficient d;, and it is expected to scale as D ~ /&; (see,
w7 e.g., [42]). The normalization constant is, however, not trivial, and as we show in the
s Appendix section Al, it is approximately 10. We therefore use: D = 10+/d;. Fixing the
%0 environmental scale and varying the scale of interactions and dispersal allows us to isolate
oo the effects of interaction and dispersal scale without confounding the effects of different
on landscape structures or differences between species.

»» Parameterization and simulations

a3 To initialize our simulations, we first add environmental structure to a two-dimensional
zs landscape of size 320x320 cells (see the Appendix section A2 for details). We do not define
a5 patches explicitly, but rather allow them to emerge from the spatial structure of the environ-
s ment. We then seed S = 20 species onto the landscape, with initial biomass at each location
o7 drawn from a uniform distribution between 0 and 1, resulting in roughly equal biomasses
as  at the landscape scale. For simplicity, we use periodic boundary conditions for the two-
a9 dimensional system (i.e., a torus topology), for both dispersal and interactions. We do not
20 expect this choice to impact the results, due to the large size of the system considered.

281 We use 20 replicate landscapes, allowing environmental structure to vary among repli-
2 cates while keeping the environmental scale constant. Replicates with other values of envi-
263 ronmental scale are presented in the Appendix section A3. Each landscape replicate uses a
2 different set of species and their interactions, chosen at random. Each replicate landscape
25 was used to systematically vary the spatial scale of interactions I and dispersal coefficient
26 D, with 25 different combinations (5 values of D and 5 values of I, as given in Fig. 2), giving
27 a total of 500 simulations. We ascertain the generality of our findings by comparing across
28 replicates.

289 We run each simulation, where a simulation is defined as a model run with a unique
20 combination of process scales and replicate landscape, to a maximum time of 7" = 1000, or
201 until equilibrium is reached. For practical purposes, we define an equilibrium as when the
22 maximal change in biomass of any species in any location over a time-span of 7' =1 is less
23 than 1075, A full list of parameter values can be found in Table 1. All simulations were
2 performed using MatLab 2019a.

w5 Measurements

26 For each simulation we measure individual and total community biomass, species richness,
27 and sample the landscape to calculate Species-Area Relationships (SAR curves) as well as
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28 Biodiversity-Ecosystem Functioning relationships (BEF curves). For species richness, SARs,
20 and BEFs, we define a species to be extinct at a given location if its biomass is below than
30 a threshold of 1073,

301 To calculate SAR curves, we sample at 40 different spatial scales from 1x1 (single cells)
32 t0 320x320 (the entire landscape) on a logarithmic scale, and computed the species richness
a3 at each. For a given scale, we randomly choose 100 locations in the landscape, and sampled
s« a region centered around the location chosen. We averaged over the 100 locations to obtain
ss  the mean richness value for a given scale.

306 We calculate both local and regional BEF curves, based on random sampling of the
a7 landscape. We do this in a similar way to the SAR curves, measuring species richness but
38  also total community biomass. For the local BEF, we use a 1x1 cell area with 102,400
0 random locations chosen, while for the regional BEF we use an intermediate area of size
a0 10x10 with 1024 locations sampled. In this way the BEF measurement is done consistently
au  for different region sizes. For both local and regional BEF curves, we measure every cell on
a2 average once.

313 A striking outcome observed in our results is that spatial patterns of biodiversity and
s functioning in landscapes are not well captured by landscape summary measures, such as
as SARs. To explain these patterns, we calculate how correlated the biomass is of a given
a6 species as distance between sampling locations increases (i.e., spatial correlation), which can
sz be used to quantify the properties of spatial patterns we observe. To calculate species’ spatial
as  correlations, we do the following: 1) we normalize the species’ distribution by subtracting
s its average biomass (taken over the whole system); 2) we obtain a correlation map by
a0 calculating the convolution of a spatial distribution with itself, using a two-dimensional
s Fast Fourier Transform; 3) we normalize the correlation map by dividing the resulting two-
a2 dimensional map by its maximum value (i.e., we set a correlation value of 1 at the origin);
23 and 4) we define the one-dimensional correlation function as the average between a vertical
322 and horizontal transects through the correlation map. To define the scale of correlation
s for a given species, we locate the distance at which the correlation function reaches half its
a6 height, i.e., the distance from the origin where its value is the average of the maximum value
sz (which is always 1) and its minimal value (typically around 0). A step-by-step illustration
s of calculating the spatial correlation is provided in the Appendix, Fig. S13.

» Results

s Local outcomes: functioning and diversity across localities

s Our first major result is that, although they can arise from similar biological mechanisms
s (e.g., individual mobility), dispersal and interaction scales have opposite impacts on biodi-
a3 versity and functioning patterns across the landscape (Fig. 2 and S9). We start from the
s case of weakly-connected communities with local interactions where all landscape patterns
35 result from environmental variation (top-left panel, Fig. 2). Increasing the spatial scale of
16 dispersal leads to a blurring of total community biomass over the landscape (from left to
s right, Fig. 2). In contrast, increasing the scale of species interactions leads to a sharpening
as  of spatial patterns, amplifying underlying environmental heterogeneity (top to bottom, Fig.
s 2). The antagonism between these two effects can be seen by the fact that they counteract
a0  each other when increasing both scales at once, leading to similar-looking outcomes (along
s the diagonal, Fig. 2), but dispersal eventually wins out — the states along the right column
w2 are virtually identical, whereas the same is not true across the bottom row. Critically, it
s is not until the scales of dispersal or interactions exceed the scale of environmental hetero-
us  geneity (i.e., outside the dashed-lined boundary in Fig. 2) that the scale of either process
us  significantly alters spatial patterns in biomass (see also Fig. S4). Larger emergent scales
us of total community biomass due to high D, and the opposite due to high I, can also be
w7 seen in Fig. 5, which shows how quickly patterns among locations become dissimilar as the
us distances between them increase.

349 We then focus on a subset of our scenarios above to show how process scales impact not
0 only total biomass but also individual species distributions (Fig. 3). We observe that in-
s creasing dispersal scale predictably makes larger, more coherent domains (i.e., fairly defined
2 areas with similar characteristics) with typically higher local diversity. Increasing interaction
33 scale creates a more granular landscape with a broader range of diversities, including many
s low-diversity patches and a few high-diversity ones. Indeed, large interaction scales lead to
355 more spotty species distributions, with rare species persisting in some locations where they
36 would not in other scenarios (Fig. 3 bottom row). Two notable examples include species 1
7 (red patches) persisting only when interactions are large and dispersal is small, and species
s 2 (individually green, but here cyan due to its coexistence with species 3, blue) taking on a
30 more clumped distribution with large interaction scales.
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Figure 2: Distribution of total community biomass across the landscape as we change dispersal
D (columns) and interaction I (rows) scales. Dashed black line shows where the environment scale
E = 32 is larger than both D and I. Black frames around panels designate parameter values that
we further examine in other figures. For better legibility, biomass levels above 3 are not shown.
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Figure 3: Species distribution patterns for five selected parameter sets, representing differ-
ent scales of dispersal (D) and interaction (I), as designated in Fig. 2. Top row: total community
biomass. Middle row: local species richness. Bottom row: distribution of three of the 20 species
in original species pool (their biomass are encoded in the red, green and blue color channels, re-
spectively; thus, cyan regions corresponds to coexistence of species 2 and 3). For better legibility,
biomass levels above 3 are not shown.

Regional outcomes: functioning and diversity at the landscape scale

The outcomes described above allow us to identify spatial patterns in local outcomes in
the landscape, but what are outcomes for the landscape as a whole? Given the additive
nature of biomass across localities, two regions could have identical biomass at the land-
scape scale even if one region has high variation among localities that span extremes of
high and low values, whereas another varies little with biomass values that are intermedi-
ate. Here, we see that biomass is highest when interaction scales are large (Fig. S10), an
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effect that is quickly eroded as dispersal scales increase. Interestingly, these high-biomass
landscapes had extreme variation in biomass among localities, including areas of extremely
low biomass (dark blue in Fig. 2) and extremely high biomass (red in Fig. 2). Therefore,
high biomass is driven by a disproportionate subset of local communities in a landscape.
Furthermore, these high biomass landscapes were unremarkable in regional species richness
in the landscape and actually had fewer species per locality on average than other scenarios
(Fig. S11). For those who may be interested in comparing our findings to those typically
reported in traditional metacommunity models more explicitly (e.g., [43], we note that the
left and right plots in Fig. S11 essentially show local (i.e., alpha) and regional (i.e., gamma)
diversity, respectively, whereas compositional turnover among localities (i.e., beta diversity)
is essentially differences between them.

Cross-scale outcomes: BEF and SAR

Next, we turn to two types of cross-scale outcomes (Fig. 4). First, we consider the relation-
ship in BEF curves (i.e., total biomass vs. species diversity) at neighborhood (i.e., single
cell) scales. In doing so, we find that BEF curves (Fig. 4, left panel) reflect underlying
process scales. In particular, they exhibit a hump-shaped relationship for large interaction
scales, suggesting that patches with the largest total biomass are not the most diverse, but
rather have a few high-performing species. This result ties into our previous observation that
the interaction scale tends to amplify environmental heterogeneity, and may thus put more
weight on selection effects, where abiotic conditions select the best-performing species at the
exclusion of others. We also examined BEF curves measured at larger scales, i.e., when spa-
tially aggregating 100-cell neighborhoods, and found qualitatively identical patterns (Fig. 4,
middle panel).

We also look at a pattern aggregated over continuously increasing spatial scales — the
SAR (Fig. 4, right panel). We would expect that changes in the slope or shape of the SAR
as the aggregation scale (x-axis) exceeds the spatial scales of our ecological processes, as has
been demonstrated for the Stability-Area Relationships [8]. However, we do not observe a
clear link between process and pattern scales, beyond the fact that the inflection point (in
particular, for low D and I) corresponds to the environmental scale E (vertical gray line in
Fig. 3). The main impact of process scale is that, by amplifying landscape heterogeneity, a
large interaction scale I leads to a stronger SAR when large interaction scales are coupled
with short dispersal scales. Specifically, as predicted, at the smallest scale the D < E < I
scenario (magenta curve) yields the lowest species richness compared to all other scenarios,
whereas at the scale of the entire landscape, its richness is very high.

local BEF regional BEF
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Figure 4: BEF and SAR relationships. Solid lines show average values over 20 replicates, small
circles show values for individual replicates. Colors correspond to five selected parameter sets,
representing different scales of dispersal (D) and interaction (I), as designated in Fig. 2. Local and
regional BEF curves are measured at regions of size 1 and 100, respectively. Vertical gray line shows
the area corresponding to the environmental scale E = 32. Although our model is deterministic
(i.e., each replicate has only one possible outcome, given a specific set of parameter values and
initial conditions), differences among replicates reflect differences in parameter values caused by
sampling those values from distributions (Table 1).

Aggregated measures of biodiversity and functioning at regional scales miss much of the
information captured by local measures, such as the distribution and turnover in biomass
(Fig. 2 and Fig. 3). Yet these local patterns can be quantified. Figure 5 presents the
results of the spatial correlation of species biomass distributions, which measures how the
biomass of a species correlates over the distance between sampling. We observe clear trends
in scale, with consistent patterns of growing (shrinking) correlation with higher dispersal
(interaction) scales.
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Figure 5: Spatial correlation of each species’s biomass distribution, for three scenarios. Left:
I =100,D = 1; Middle: I =1,D = 1; Right: I = 1,D = 100. Recall that E = 32. Each of the
20 species is represented by a different color, with black showing the average correlation function,
all for a single replicate. For this simulation run, the scale of correlation X is given, and is shown
by gray vertical lines. The correlation scale averaged over the 20 replicates, X, is also noted.

« Discussion

w0 This study focuses on a critical question: how is the scaling of ecological patterns, such as
a0 patterns of biodiversity and ecosystem functioning, related to scales of specific processes,
an  and why? We have modelled how intrinsic scales of ecological processes align with the
a2 emergence of ecological patterns in a metacommunity, where we control the spatial scale
az  of environmental heterogeneity, dispersal, and species interactions. In doing so, below, we
as highlight the following three take-home messages of our results:

a5 e the scale of one process (here, environment) can cause the emergence of characteristic
a16 scales of other processes (dispersal, interactions)

a7 e two interlinked ecological patterns (biodiversity and ecosystem function) and their
a1 relationship to each other are oppositely affected by two forms of organismal movement
410 e averaging ecological patterns at any one scale misses a rich patterning of spatial vari-
420 ance that is closely tied to process scales

a1 Below, we expand upon each finding and place them within existing knowledge, examine

a2 the mechanisms that underlie our findings, contrast results among ecological variables, and
»3 end by placing our results within a context of ecosystem preservation.

o A main finding of our study is that the spatial scale of interactions amplifies environ-
s mental heterogeneity, sharpening observed spatial patterns, in contrast to dispersal scales.
w26 Importantly, observed spatial patterns did not reflect the absolute value of the spatial scale
a7 of each ecological process, but rather, their values relative to the environment; decreasing
«2s the spatial scale of the environment shifts the boundary of blurring/sharpening effects of
«9 dispersal and species interactions (Fig. S4). We find this effect because environmental con-
a0 ditions are quite literally the template upon which dispersal and species interactions mold
a  species distribution. Large-scale (i.e., at scales above the template) processes are more
a2 important than small-scale ones in determining overall patterns, meaning that only when
a3 dispersal or interactions have large scales can they impact large-scale patterns.

a3 We examined the impacts of process scales on two classes of patterns: first, on the spatial
a5 scaling of patterns (SAR and BEF), and second, on the spatial structure of species biomass
a6 in the landscape. Unexpectedly, the latter class of patterns appears to better reflect the scale
a7 of ecological processes, such as the distribution and turnover of biomass and biodiversity
a8 across the landscape. These patterns would be lost by examining mean biodiversity and
20 function at specific aggregation scales (e.g., local vs. regional; Fig. S4), but were well
w0 captured via spatial autocorrelation (Fig. 5). From these analyses, one take-home message
a1 is that increasing the scale of species interactions actually amplifies variation on small scales.
a2 In other words, large-scale processes do not necessarily beget large-scale patterns.

a3 The question of how process scales affect observed patterns can also be spun around:
ae  what information about process scales can be inferred from the various patterns we see?
ws  Considering the opposing effects that dispersal and interaction scales have on pattern scales
ws  (Fig.2), it is not clear that such an inference is possible. However, given that patterns scales
wr change differently (compare Fig. 2 with Fig. S3, for instance), combining several measures
as  together may provide an answer, for instance by finding when changes in spatial correlations
ao  of biodiversity and biomass no longer behave similarly. In this context, it is perhaps to be

10
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w0 expected that no clear connection was found between well known patterns such as BEF
1 and SARs, and process scales. Over the past few decades, ecologists have been cautioned
»s2 from interring processes from patterns [44]. Our results demonstrate exactly why this is
ss3 important: a lack of a 1:1 mapping between a pattern and any one specific process.

454 Indeed, our finding that the SAR curves did not exhibit transitions at particular spatial
w5 scales, that would allow us to identify the typical scales of the underlying processes (other
»s6  than the environment), runs counter to other contexts, such as the invariability-area rela-
457 tionship [8]. In particular, we do not find a triphasic SAR curve that is often reported [45, 8.
sss This is the case since our model does not consider individual sampling and dispersal limi-
w0 tation, which typically lead to stronger SAR slopes at small and large scales, respectively.
w0 We thus see the strongest slopes at intermediate spatial scales, consistent with results under
w1 similar settings [46], and hinting that we are largely seeing community dynamics typical of
w2 species-sorting [37]. Centering on the average SAR slope itself, on the one hand, we found
w3 that large interaction scales may enhance the SAR by amplifying landscape heterogeneity
ws  and creating low-diversity strips along the edges of species ranges. On the other hand, this
w5 spatial heterogeneity could also promote coexistence as a weaker competitor might thrive
w6 in the margins [47]. This suggests that edge effects may play a prevalent role in the case
w7 of long-range interactions, and deserves more extensive investigation. Overall, the scales of
ws biotic processes (interaction and dispersal) are mainly reflected inasmuch as they change
w0 overall community properties, such as total diversity across the landscape.

470 Knowledge of the spatial scale of ecological processes is critical to understanding the
an maintenance of ecosystems. To illustrate this argument, one can imagine a landscape man-
a2 ager interested in preserving some baseline level of functioning in a landscape at a specific
a3 spatial extent, for example, primary production. If the spatial scale of interest does not en-
an compass the intrinsic scales of processes that govern functioning, then landscape alteration
a5 beyond that scale might impact functioning in an unanticipated and undesirable manner;
a  these scales will differ among ecosystems based on how species? traits and the physical
ar landscape affect how organisms experience scales of E, D, and I. In other words, the scales
ws important to the maintenance of ecosystem function may be mismatched from the (typ-
ao ically small) spatial scales at which ecosystem functioning is observed and managed, but
a0 the degree to which this is true depends on process scaling. Predictions of our model could
w1 be best tested empirically in microcosm or mesocosm setups or using data syntheses, for
w2 example, by examining the spatial structure of species richness and biomass depending on
w3 process scales of focal taxa (e.g., small vs large-bodied animals using remotely sensed data,
¢ experiments with insects where mobility is restricted).

a8 Our results suggest that it will be difficult to manage landscapes to preserve biodiver-
a6 sity and ecosystem functioning simultaneously, despite their causative relationship, for two
w7 related reasons. First, the fact that increasing dispersal and interaction scales had opposing
ws  effects on either ecosystem property presents a unique management challenge, given that
w0 both scales are tied to organismal movement, albeit on distinct timescales (i.e., daily vs.
w0 once-per-generation). Second, ecosystems attained the highest biomass in scenarios which
w1 also led to the lowest levels of biodiversity, specifically, when interaction scales were large
w2 and dispersal scales were small. We note that this second issue may only be relevant when
w03 interactions are largely competitive, since our modeling, and thus results, did not consider
sa  mutualistic interactions which would likely change the observed trade-off between biodiver-
w5 sity and biomass. How would a manager plan a landscape to enhance interaction scales
w5 (preserving function) while simultaneously minimizing scales of dispersal (preserving biodi-
w7 versity)? This can, for instance, be relevant for managing predation of pest herbivores in
ws agricultural landscapes [16]. This type of intervention might be most successful in species
w0 with body plans for long-distance movement, but that can remain philopatric for behavioural
s reasons (which can be environmentally determined; i.e., territorial hunters).

501 Our metacommunity model differs from traditional metacommunity models in several
s important ways. Traditional metacommunity models tend to include discrete local patches
s embedded within an implicit inhospitable matrix, interconnected by rates of dispersal, often
s from a spatially-implicit regional pool of dispersers. By contrast, “patches” in our model
ss  emerge from the environmental template (Fig. 3), the structure of which may be viewed
soo  differently by different species according to their fundamental niche. Further, these patches
s7  may have fuzzy boundaries, within-patch heterogeneity, as well as different shapes and sizes.
ss Individuals may be lost to the matrix (i.e., habitat falling outside of the fundamental niche)
so0 if they disperse there or may form stepping stone populations to reach new patches. In
si0  doing so, dispersal limitation is more likely to emerge as the spatial grain of the environment
su  exceeds the scales at which species disperse, a major result of our study. These features align
sz with the recent calls [48, 31] to develop more realistic metacommunity models applicable to a
sz wider range of systems, beyond discrete, patchy, island-like systems. Given these strengths,
s the next step is to extend a model like ours to multi-trophic systems, beyond “horizontal”
sis (sensu Vellend [49]) competitive communities. Our model is naturally amenable to multi-
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s trophic systems, as predators often perceive the landscape at a different scale than their prey
s (i.e., a different interaction scale) and would perceive the scale of the environment via spatial
sis distributions of their prey—additionally, there is an opportunity to move beyond Lotka-
si9 Volterra dynamics for modelling species interactions, towards more mechanistic consumer-
s0 resource approaches [50]. Most metacommunity models have been applied to competing
s species [17], with multi-trophic extensions becoming more common in recent years [51].

522 Our conclusions are twofold. First, we bring forward an important spatial scale — the
s3 range of species interactions — that has been largely neglected in previous analyses (e.g.,
s« metacommunity theory). This interaction range can be derived from many of the same
s ecological mechanisms as dispersal, such as individual mobility, yet these two processes
s lead to opposite ecological effects. This suggests that we must carefully distinguish whether
s7 - mobility actually leads to population dispersal or to large-range interactions, and re-evaluate
s possible consequences of evolution or environmental change in these processes. Finally, we
s0  saw that the spatial scale of ecological processes might not appear clearly in the scale of
s resulting patterns such as Species-Area or Biodiversity-FEcosystem Functioning relationships,
sn though they may sometimes be reflected in local outcomes. While we focused on a few
s important biodiversity and functioning patterns, our study paves the way for future work
533 investigating systematically under which conditions various ecological pattern scales may or
s may not reflect the spatial scale of underlying processes.
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« Appendix

oo This appendix is made of four sections. Al: Measurement of scales; A2: Generating the
eo landscape; A3: Different environmental scales; A4: Additional plots.

« Al Measurement of scales

ez As explained in the main Methods section, we explicitly measure and compare three spatial
3 scales: environmental conditions (E), dispersal (D) and species interaction (I). We now
es detail the definition of these three scales, and finally note the peculiarity of dispersal scale.
685 Environmental scale E: The environment itself is generated using a combination of a
ses spectral color and cutoff wavenumber (see next section), but this does not explicitly define
67 the scale. To measure the scale of the environment, we follow the same approach as for
s the correlation function and measure the scale for a species biomass distribution (using a
s convolution based on FFT), except that we do this for the value of intrinsic growth rate
w0 14(X), as it is directly set by the environment. For each of the 20 species, we can calculate
s a correlation function (in the same manner as explained in the methods), and from this
02 we calculate the correlation scale (the point of middle height for the correlation function).
e3 We average this value over all 20 species, to calculate the environment’s scale for a given
s system. Since this result depend on the randomization of the environment, we repeat this
ss for many replicates, and choose values of p and k. that will on average give a value of E we
s want to have.

697 Dispersal scale D: To estimate the dispersal scale D, we compare the effect of changing
o the dispersal coefficient § with changing . In Fig. S1 we show how changing ¢ and «y (and
o0 thereby D and I) affects the community biomass distribution. As seen in the left panel, with
70 low 0 and v the difference from a null scenario of no dispersal and no interaction distance
o is very small, but increasing either § or 7 changes the community biomass distribution
02 considerably. In the middle and right panels we see these differences, as we change only
w3 0 (middle) or only v (right). This clearly shows three things: 1) The effect of interaction
e distance scales linearly with ~, as expected by its definition. 2) The effect of dispersal
s coefficient scales with v/3, as expected from dimensional considerations (e.g., [42]). 3) More
6 specifically, to make these two effects comparable, the dispersal scale is missing a factor of
w7 10, i.e., D = 10v/6. This can be seen by the fact that for both § = 1 in the middle panel
2 and v = 10 in the right panel, the y-axis values are roughly the same (1071-2).

700 Interaction scale I: In our model, the species interactions are explicitly defined with
no  a distance over which they occur — via the Gaussian kernel function. This naturally gives
m  us the scale of interactions I, as the width of the Gaussian function, such that I = .

-0.4 -0.4

*  simulation comparison * simulation comparison ¥
y=05*x-1.24 { 061 y=x-22 1

-0.6

-0.8 [

*

log10 difference from baseline simulation

48&*******
2|
B 22
-1.5 -1 -0.5 0 05 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
log10 diffusion coefficient log10 interaction distance

Figure S1: Comparison of different diffusion coefficient and interaction distance scenarios
to the case of no dispersal and local interactions alone. Differences are squared, summed
over all species, and averaged over domain. This is done along the diffusion coefficient (interaction
distance) axis in the left (right) panel. Comparison shows that diffusion scales like a square root,
and that a normalization factor of 10 should be applied to make it comparable to interaction
distance (i.e., d = 1 is comparable to an interaction distance of 10).

2 Peculiarity of dispersal scale: An interesting problem we encountered, which is
n3  worth expounding upon to aid future research in this area, is how to place dispersal on
na  comparable scales and strength to other processes. For both environmental factors and
ns  species interactions, we could separate the intensity of variation and the scale over which it
ne  takes place. We could do this, for instance, by modelling interactions with a spatial kernel
n7  which defines the range of these interactions. For dispersal, however, this distinction does
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ns  not hold in the continuum limit nor in the stable equilibrium regime that we consider in this
no  study. This can be understood intuitively in a single dimension: organisms who disperse
=0 from site x to site x+ 1 at time ¢ will be counted in those that disperse from site x+1 to site
= x + 2 at a later moment in time. Therefore, dispersing twice as fast between neighboring
2 sites can be equivalent to dispersing twice as far. This equivalence breaks down when the
=3 details of individual dispersal events matter, e.g., for very rare and long-ranged dispersal
= events [52]. But even then, the strength of each dispersal event would still play into the
s spatial scale over which dispersal impacts the dynamics over longer times. As a consequence,
76 defining dispersal scale from a spatial kernel alone might seem more intuitive, but would
=7 actually hide the importance of intensity, and we prefer to simply model nearest-neighbor
s dispersal and acknowledge that intensity and scale are entangled.

= A2 Generating the landscape

20 The landscape profile is defined by a spectral color (p) and cutoff (k.). A spectral color close
= to 0 corresponds to “white” noise, i.e., noise that exhibits little or no spatial autocorrelation;
72 aspectral color close to 1 indicates “red” noise — noise with high spatial autocorrelation [40].
73 The spectral cutoff creates a point of truncation in the frequency profile that prevents
734 high variation between adjacent cells, in effect smoothing the noise across the landscape.
75 Together, color and cutoff control the degree of structural fragmentation of the landscape
16 (see Fig. S3). More weight on higher frequencies (low p, high k.) entails smaller and less-
7 connected fragments of similar environmental conditions. Weight on lower frequencies (high
s p, low k) creates long bands of constant environmental conditions which can act as corridors
70 for species favoring this value.

To generate the environmental landscape K (Z), we prescribe a frequency profile for the

noise:

F(k #0) = %e*k/kw, F(0)=1

70 which is a power-law with color p (p = 1 corresponds to red noise) and an exponential
m  cutoff with wavenumber k,, = k.L/2 which removes high spatial frequencies, smoothing the
=2 landscape and avoiding strong variations between adjacent cells. The construction process is
n3  demonstrated in Fig. S2. Note that the cutoff wavenumber is simply the normalization of the
s spectral cutoff by the number of different frequencies represented by the chosen resolution
s of the domain, L/2, with L the number of cells along the x and y axes, such that in the
ns  spectral domain it represents the resolution of the landscape.
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Figure S2: Demonstration of landscape construction. The steps of landscape construction
are shown in the different columns, with the top (bottom) row corresponding to a landscape with
E =32 (E = 10). From left to right, the four columns correspond to: 1) The function M, which
is a power-law function with exponential cutoff, on a two-dimensional spectral map (i.e., where
each cell corresponds to a different spatial frequency), with the addition of random noise. 2) The
environmental conditions V', which result from applying the Fourier transform on the previous step,
and normalizing the values to range between 0 and 1. 3) The fundamental niches f; of 3 species,
where the value of f; of each species are encoded in the red, green and blue color channels. 4) The
spatial distribution of species biomass N; at equilibrium, of the same 3 species and with the same
color coding, as the previous column. Note that the top-right panel corresponds to the bottom-left
column of Fig. 3.

Practically speaking, for a two-dimensional landscape, we generate a L x L matrix R;;

of uniform random numbers over [—1, 1] corresponding to amplitudes for each wave vector
(ks ky). We then multiply these random numbers by the profile above

Mij :RUF(Q/]{JZQ‘FICJZ)
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L
wr with k; =4 — 3 where index ¢ is a natural number running over [1,L]. We set the element

us  Mp /2 1/ corresponding to the uniform trend (k; = k; = 0) to 5. Finally, we apply a Fast
u9  Fourier Transform on the matrix M;; to obtain the landscape matrix V. As explained in
7o the main text, this landscape matrix V' is used to define the growth rate r; using a Gaussian
= function (see eq. 2), which in turn determines the species biomass distribution NN; (see eq. 1).
2 We show in Fig. S3 the environment as a function of different values of p and k., to better
73 visualize their effect.

E=43.5 . . E=25.6

k =0.03 =0.07 k =0.12 k =0.25
c c c c

Figure S3: How p and k. shape the landscape structure, shown by maps of the environmental
conditions V. We show an example of how a landscape is affected by different values of p (rows)
and k. (columns). On top of each panel we also note the environmental scale E that corresponds
to the combination of p and k.. We can see that smaller k. values lead to a landscape with less
sharp transitions (i.e., smoother), whereas p has a more significant effect on the overall scale. In
other figures and in the main text we choose p and k. concordantly, with large p values together
with small k. values for a large E, and small p values together with large k. values for a small E.

=~ A3 Different environmental scales

s We show below a few additional plots, which explore the impact of different values of
6 environmental scale E. In Fig. S4 we show the overall difference in community state, between
7 different sets of values of D and I to the case of no dispersal and local interactions, for two
s values of F.

difference from no dispersal & local interactions difference from no dispersal & local interactions
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Figure S4: Comparison of various scenarios to the case of no dispersal and local inter-
actions alone. Difference is measured by averaging over the squared sum of each cell for a given
value of I and D, against the baseline of D = I = 0. This is done for for 5x5 different parameter
sets with different values of D and I, for two different values of E, 32 and 10, in the left and right
panels, respectively.
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750 In Fig. S5 we consider different E values, and see how changing either I or D affects
w0 the overall change in system state (compared with the baseline of no dispersal and local
w0 interactions). In both figures we can see that big differences in the state of the system due
2 to higher I or D (seen as dark blue region in Fig. S4, and region below the dotted line in
w3 Fig. S5) occur for lower values for I and D, and only when FE is sufficiently high. This
w4 demonstrates that the environmental scale E determines the threshold scale of I and D in
s which they can have a substantial effect on the community.

766 We also test how the inflection point of SAR (measured in the same way as in the main
wr  text), changes along a range of F values (Fig. S6). We can see that as long as dispersal is not
s too high (i.e., the three cases where D = 1), the inflection point follows the environmental
w0 scale E (seen by the roughly parallel lines to the 1:1 line).

770 In Fig. S7 and Fig. S8 we show the spatial distributions of biomass and species richness,
m for a different landscape, one that has an environmental scale of & = 10.
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Figure S5: Average difference from a community with no dispersal and local interactions
only. Difference is measured by averaging over the squared sum of each cell for a given value of 1
and D, against the baseline of D = I = 0. Left half shows the effect of D alone, while right half
shows the effect of I alone.
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Figure S6: Inflection point of SAR for different combination of scales. For four sets of values
of landD (D=1,I=1;D=11=10;D=1,1=100; D = 10,1 = 1), we show how the
inflection point of SAR changes along a range of 10 values of E (with values between 56 and 3).
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Figure S7: Total community biomass, for the 5x5 scenarios, with E = 10. For better legibility,
biomass levels above 3.0 are not shown.
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Figure S8: Local species richness, for the 5x5 scenarios, with E = 10.
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=~ A4 Additional plots

7z We show below a few additional plots.

7 In Fig. S9 we show the spatial distribution of species richness, for 5x5 different parameter
s sets with different values of D and I, corresponding to Fig. 2. In Fig. S10 and Fig. S11 we
s show summary statistics for each of these 5x5 parameter sets, of total community biomass,
7 average local diversity, and total diversity.

778 Finally, we explore in Fig. S12 the sensitivity of our results to the parameter 3, and
7o demonstrate using Fig. S13 the calculation of species’ spatial correlations, which is used to
70 estimate the environmental scale E.

stronger dispersal

D=32.0 D=100.0

18

15

1
—
n

(2]

longer-distance interaction

species richness

0

Figure S9: Species richness plots, corresponding to Fig.2, for the 5x5 scenarios (E = 32).
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Figure S10: Total community biomass, averaged over domain, for the 5x5 scenarios (E = 32).
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Figure S11: Diversity plots. Average local diversity of community (left) and total community
diversity, (right) for the 5x5 scenarios (E = 32).
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Figure S12: Effect of changing the value of the parameter 3, which determines the fraction
of regional interactions. Each panel shows the spatial distribution of total biomass, with columns
showing results for different values of I and D, while lower rows showing increasing values of (.
The number in each panel shows the highest biomass density seen in the panel (where each panel’s
colors are scaled to that value to better show the spatial structure). For low values of 8 (top two
rows) scale of interactions I has minimal effect (clearly seen by right column looking the similar
to other columns). For values of 8 (bottom two rows) the effect of I becomes strong and clearly
visible. However, for very high values of 8 (bottom row) the effect also includes very high densities
of biomass, which is not very realistic. We therefore choose a high value of 8 but not so high as to
lead to very high densities (leading us to the middle ground of 8 = 0.9.
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Figure S13: Demonstration of calculation of correlation function. The steps of calculating
the correlation function are shown in the different columns, with the top (bottom) row corresponding
to two different species in the same landscape used in Fig. 2. From left to right, the four columns
correspond to: 1) The spatial distribution of biomass of a single species N;. 2) Correlation map,
which is the result of a convolution of this spatial distribution with itself. 3) Transects of the
correlation map (horizontal and vertical, shown in green and black), also marked in previous column
by dotted lines. 4) Averaging of transects resulting in the correlation function. Horizontal dotted
lines show the highest and lowest values of the correlation function, along with the average of the
two which is used as a threshold to determine the scale of correlation.
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