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Abstract19

Ecology is a science of scale, which guides our description of both ecological processes and20

patterns, but we lack a systematic understanding of how process scale and pattern scale are21

connected. Recent calls for a synthesis between population ecology, community ecology, and22

ecosystem ecology motivate the integration of phenomena at multiple levels of organization.23

Furthermore, many studies leave out the scaling of a critical process: species interactions,24

which may be non-local through movement or foraging and must be distinguished from dis-25

persal scales. Here, we use simulations to explore the consequences of three different process26

scales (species interactions, dispersal, and the environment) on emergent patterns of biodi-27

versity, ecosystem functioning, and their relationship, in a spatially-explicit landscape and28

stable equilibrium setting. A major result of our study is that the spatial scales of dispersal29

and species interactions have opposite effects: a larger dispersal scale homogenizes spatial30

biomass patterns, while a larger interaction scale amplifies their heterogeneity. Interestingly,31

the specific scale at which dispersal and interaction scales begin to influence landscape pat-32

terns depends on the scale of environmental heterogeneity – in other words, the scale of33

one process allows important scales to emerge in other processes. This interplay between34

process scales, i.e., a situation where no single process dominates, can only occur when the35

environment is heterogeneous and the scale of dispersal small. Finally, contrary to our ex-36

pectations, we observe that the spatial scale of ecological processes is more clearly reflected37

in landscape patterns (i.e., distribution of local outcomes) than in global patterns such as38

Species-Area Relationships or large-scale biodiversity-functioning relationships. Overall we39

conclude that long-range interactions often act differently and even in opposite ways to40

dispersal, and that the landscape patterns that emerge from the interplay of long-ranged41

interactions, dispersal and environmental heterogeneity are not well captured by often-used42

metrics like the Species-Area Relationship.43

Introduction44

Scale is fundamental to ecology, from the spatial and temporal scales at which we observe and45

manage ecosystems [1, 2, 3] to the intrinsic scales at which processes occur within and across46

ecosystems [4]. Much of current research efforts describe ecological patterns across scales,47

such as Species-Area or Biodiversity-Ecosystem Functioning relationships [5, 3]. However,48

the scaling of ecological patterns is largely phenomenological – we can describe how patterns49

scale but not why [6, 5]. Although links between scales of patterns and processes have been50

explored in recent years [7, 8, 9], as we will discuss, a systematic and unified treatment of51

scale in ecology is incomplete. A critical question remains: how is the scaling of ecological52

patterns, such as patterns of biodiversity and ecosystem functioning, generated by scales of53

specific processes, and why?54

In answering this question, a crucial process is often overlooked: the spatial scale of55

species interactions. While dispersal and environmental variation are often understood to56

operate at various spatial scales, existing research generally assumes that species only inter-57

act locally [10, 11, 12] (although exceptions exist, e.g., studies using multi-layer networks58
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to link interaction networks at local scales to their realization at the global scale [13, 14]).59

Yet many species move, forage, or otherwise interact with each other at a range of spatial60

scales [15, 16], even in the absence of dispersal. A simple distinction is that dispersing species61

establish new “home” ranges when they move across the environment, while mobile species62

always return to their “home” range. Many move daily across multiple habitat types, such63

as seabirds connecting marine and terrestrial ecosystems [15], or predatory insects moving64

between different habitats in the landscape [16]. Non-local competition can therefore arise65

from foraging across multiple localities. Additionally, species interact indirectly across long66

distances via intermediary species, (e.g., plants interacting indirectly via pollinators or her-67

bivores), and many such intermediary interactions are not explicitly studied, thus being68

best represented by long range interactions. As a result, scales of species interactions, such69

as competition, likely have consequences for population persistence, affecting the spatial70

distribution of biodiversity and ecosystem functioning in ways that are distinct from other71

process scales [17, 18].72

How do the spatial scales of dispersal, environmental heterogeneity, and species inter-73

actions interactively influence ecological patterns? Answering this question is unlikely to74

be achieved via observational studies, as different combinations of ecological processes may75

generate identical patterns, but computational models can explore patterns that emerge as76

processes interact across scales. Indeed, the scale of dispersal relative to the environment77

has been studied most extensively, in particular within a metacommunity context [19, 7, 20].78

These studies generally find that high rates of dispersal blur differences between local com-79

munities, leading to losses of biodiversity and ecosystem functioning. Although there are80

reasons to expect increased scales of dispersal and species interactions to have similar con-81

sequences, as both processes are influenced by many of the same variables (e.g., animal82

mobility) and serve to spread out the effects of species interactions, there are also reasons83

to expect the opposite [21]. A key difference is that large dispersal scales can allow popu-84

lations to permeate through whole landscapes over a few generations, whereas individuals85

with large interaction scales are still bound to specific localities. As a result, increasing86

scales of interactions may amplify spatial heterogeneity in an ecological system [22], counter87

to the blurring effect of larger dispersal scales.88

In addition to scales of species interactions, we will address an additional major gap which89

prevents a complete knowledge of scaling in ecology: consideration of a wider range of ecolog-90

ical patterns within a single study than has been examined previously. Two well-recognized91

ecological patterns are Species-Area (SAR) and Biodiversity-Ecosystem Functioning (BEF)92

relationships. The Species-Area relationship is the earliest and most widely-examined eco-93

logical pattern to explicitly consider scale [5, 23]. Although SARs have been described as94

one of “ecology’s few universal regularities” [24], accumulating evidence reveals consider-95

able variation within and among biological systems [25, 5, 26]. Likewise, BEF theory has96

revealed consistent patterns, typically a saturating relationship between community diver-97

sity and biomass production [27], but most work has focused on BEFs at local scales, with98

only recent work highlighting the importance of scale [3]. Previous studies have examined99

how one pattern or the other are affected by process scales [28, 26, 29], but no study has100

examined how SAR and BEF relationships change in tandem and if effects that are masked101

through one pattern are apparent in the other. As a consequence, it is unclear how both102

SAR and BEF relationships are affected by the interplay of processes acting at different103

scales, making it difficult to assess how process scales affect the overall behavior of ecosys-104

tems as different measures highlight different aspects of ecosystems. Resolving these issues105

will be useful for both basic and applied biodiversity problems, for instance allowing us to106

scale up to landscape scales our predictions of biodiversity loss and its effect of ecosystem107

productivity, that are often based on local scales [30].108

Here, we use a modified Lotka-Volterra metacommunity model to explore the conse-109

quences of the scaling of ecological processes for biodiversity, ecosystem functioning, and110

their relationship across spatial scales. Our simulations consist of species interacting in111

a spatially-explicit landscape, with “patches” emerging from the environmental structure112

of the landscape. Although metacommunities tend to be modelled as systems of discrete113

patches embedded within an inhospitable matrix, Chase and Leibold [31] describe this ap-114

proach as useful (easing computation and interpretation) but limited – they foreshadow a115

“coming” in ecology in favour of models that allow “patches” to emerge from the structure116

of the environment, which our model achieves. We first study the heterogeneity of local117

outcomes across the landscape: patterns of patch biodiversity, patch functioning, and rela-118

tionships between them (local BEF). We can then scale up to the whole landscape scale and119

every scale in between. By varying the spatial scales over which metacommunity processes120

(abiotic environment, competitive interactions, and dispersal) play out, we test the hypoth-121

esis that ecological patterns depend on how processes interact across scales, including scales122

of species interactions, and lead to different patterns from those generated by commonly-123

assumed hierarchical process scales (i.e., scales of interactions < environment < dispersal;124

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2021.10.11.463913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463913
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1).125

Species-Area relationships depend on spatial turnover in species composition, and com-126

positional turnover is driven by ecological processes [32]. Thus, we would expect that127

ecological processes should strengthen SARs in scenarios where they increase compositional128

turnover. We predict that the strongest slopes of the SAR will occur when scales of dis-129

persal < environment < species interactions, because (i) interactions are not constrained to130

abiotically suitable patches, and (ii) weaker dispersal prevents the homogenization of species131

composition across the landscape. Additionally, we predict that the consequences for BEF132

relationships will differ between local and regional scales. On local scales, we expect BEFs133

to weaken as interaction scales increase relative to the others, given that species that are134

locally absent but present in nearby areas can affect local functioning. On regional scales, we135

expect BEFs to strengthen as interaction scales increase, since regional competition would136

keep only the most suitable species at a given location. Hence, more species would mean137

that multiple species are productive within a given region.138
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Figure 1: Conceptual diagram of spatial scales of ecological processes. (a) Illustration of
the spatial scale of species interactions I, dispersal D and environmental heterogeneity E relative
to the total size of the landscape (i.e., width of curves). (b) In the classic scenario, interactions take
place within a patch, while dispersal is thought to act within a neighborhood and environmental
factors vary broadly over the landscape. (c) Comparison of ecological scenarios along scales of
I, D and E. Yellow and green represent two different species, with circle and its rim representing
the resident species and the favoured species, respectively. Metacommunity theory has explored
different scenarios for the relative scales of dispersal and environment (i.e., the ratio D/E), notably
distinguishing “species sorting” (local environmental factors determine species distribution) and
“mass effects” (population fluxes homogenize the landscape). Our work highlights the relative
importance of species interactions scale (e.g., expressed through the ratio I/E, which was previously
considered only in particular ecological settings (e.g., vegetation patterns or territoriality). Ranged
interactions may for instance induce exclusion of weaker competitors in a neighboring patch, even
without a population flux of a stronger competitor into that patch.

Methods139

Model140

We use a modified Lotka-Volterra metacommunity model to explore the consequences of141

the spatial scaling of three ecological processes – abiotic environment, species interactions,142

and dispersal – for biodiversity and ecosystem functioning. Our specific assumptions and143

parameters are motivated by two important choices. First, we focus on a classic setting144

of ecological assembly, i.e., the patterns that arise when many species, originating from145

a regional pool, come together and reach an equilibrium state, with some species going146

locally or regionally extinct. Furthermore, we take species interactions in the pool to be147

disordered, that is, heterogeneous but without a particular functional group or trophic level148

structure [33]. We do not exclude that different patterns could emerge for more ordered149

interactions (e.g., a realistic food web) or for parameter values that lead to more complex150

dynamical regimes (e.g., population cycles or chaos, driven by stronger species interactions151
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or environmental perturbations). We note that our communities, in the chosen parameter152

regime of moderate competition, contain many species in a stable equilibrium (i.e., due to153

the assembly process). Our methodology thus differs from the extensive literature that has154

considered models with random interactions in order to study stability-complexity relation-155

ships [34], including more recent works in a spatial context [35, 36], as we rather focus on156

the abundance and diversity patterns arising from community assembly.157

Second, we consider the possibility of species interacting over large spatial scales. Con-158

ventional metacommunity models describe discrete local communities of habitat patches159

connected by dispersal, within which species interact [37]. In doing so, they implicitly as-160

sume that the spatial range of species interaction is smaller than the scale of dispersal and161

contained within a patch, for all species and types of interactions [17]. To relax these as-162

sumptions, we construct a metacommunity model where populations of species can disperse163

and interact at different spatial scales, without specifying a mechanism underlying these eco-164

logical processes. Species interactions that manifest beyond local scales are abstracted from165

mechanisms such as individual foraging, vector species (e.g., pathogens) [38], and spatial166

resource fluxes [39, 17].167

The model details the dynamics of S different species distributed across a spatially-168

explicit lattice landscape of 320x320 cells. The dynamical equation for the biomass Ni of169

species i at position ~x in the landscape at time t is given by a generalized Lotka-Volterra170

equation of the form171

∂

∂t
Ni(~x, t) = Ni(~x, t)

ri(~x) +
S∑
j

∫
d~yAij(~x, ~y)Nj(~y, t)

+ δi∆Ni(~x, t) (1)

where ~x and ~y represent vectors of spatial (x, y) coordinates in the landscape. Equation172

(1) models the effects of three ecological processes on the biomass of species i: its intrinsic173

growth rate ri(~x), which is influenced by abiotic environmental conditions at location ~x,174

dispersal to and from location ~x, which is controlled by the diffusion coefficient δi, and175

interactions with all other species j, including when they are located elsewhere in the land-176

scape, Aij(~x, ~y). Although at face value cells in our model resemble patches in traditional177

metacommunity models, given that discrete populations are necessary to simulate Lotka-178

Volterra dynamics, here it is best to interpret cells as neighborhoods on a landscape. Each179

neighborhood may take on a unique environmental value and hold unique densities of in-180

dividuals of different species. Viewed in this way, landscape dynamics can be simulated181

more continuously, with the numerical limitation of needing to discretize dynamics at their182

finest resolution. While “patches” can emerge in autocorrelated environments (i.e., a spatial183

clustering of cells that are suitable to a given species), our model is also generalizable to184

landscapes with a diversity of environmental structures.185

Environment186

Abiotic conditions in each location are encoded by an environmental variable V (~x). This187

variable is continuous and varies smoothly over space, with parameters allowing one to tune188

the typical spatial scale of this variation [40]. For more details on the construction of the189

environment, see the Appendix section A2.190

Each species has a Gaussian fundamental niche that determines its abiotic fitness in each191

location, with an optimal environmental value Hi and abiotic niche width ωi192

fi(~x) = exp

[
− (V (~x)−Hi)

2

2ω2
i

]
(2)

Each fitness value is bound between 0 and 1 and reaches its maximum at an optimal envi-193

ronmental condition (i.e., when V (~x) = Hi). We take the growth rate as ri(~x) = fi(~x). In194

other words, V (~x) sets the actual structure of environmental conditions across the landscape,195

whereas ri(~x) is how species experience the environment and its structure.196

Interactions197

We choose to limit ourselves to competitive interactions, defined by the matrix Cij , which198

represents the per-capita competitive effect of species j on species i. The diagonal of the199

matrix (the impact of a species on itself) is set to 1, whereas all other interactions are200

taken independently from a random uniform distribution between 0 and c̃. We choose c̃ = 1201

to allow for moderate interactions between different species (inter-specific competition is202

always weaker than intra-specific), suggesting that pairwise coexistence is often possible203

for species with different growth rates ri, but the total impact of many competitors is204

still strong enough to allow for extinctions. Previous work has shown that, in disordered205

communities, the outcomes of ecological assembly are robust to many details such as the206
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nature of interactions (e.g., mutualism, predation), and depend only on a few statistical207

properties such as the mean and variance of interaction effects [33].208

Furthermore, interactions are assumed to occur over a characteristic spatial scale encoded209

by a spatial kernel K. This scale may represent the distance an animal forages from its nest210

(without establishing a new nest), the scale at which trees gather resources with their roots,211

or the effective distance an immobile species interacts with its neighbors via an intermediary212

species (where the intermediary is not explicitly modeled). We use a Gaussian kernel whose213

standard deviation defines the interaction range such that214

K(~x, ~y|γ) = k0exp

[
−||

~x− ~y||2

2γ2

]
(3)

where ||~x − ~y|| indicates the norm of (distance between) the vectors ~x and ~y, and γ is the215

spatial range (scale) of the interactions. We note that while this modeling strategy is not216

physical as it implies that interactions occur instantaneously across distances, this is not217

expected to bias our results since we are focusing on the equilibrium state of the system,218

where hypothetical lag effects should be minimal.219

We normalize the interactions by k0 such that the overall effect of the kernel is always220

the same (i.e., the integral over K always equals 1). This normalization means that for large-221

scale interactions, local competition becomes weaker. However, some amount of (especially222

intra-specific) competition must remain locally strong to prevent species densities from223

growing exponentially and exploding. Therefore, we define interactions as partially local224

and partially regional, with β governing the fraction of interactions that are regional:225

Aij(~x, ~y) = −βCijK(~x, ~y|γ)− (1− β)Cij . (4)

We choose β to ensure that the effect of interactions changes with their spatial scale (see226

scales subsection below), but local competition is never negligible (see more details in the227

Appendix, Fig. S12).228

Dispersal229

Finally, dispersal is modeled by the diffusion (Laplace) operator,230

δi∆Ni(~x, t), (5)

where δi is the diffusion or dispersal coefficient of the species. For simplicity, we set the231

dispersal coefficient to be the same for all species.232

Contrary to interactions, we do not use an explicit spatial kernel here, because intensity233

and spatial scale are unavoidably entangled in the case of dispersal (see Appendix section234

A1). The coefficient δi sets the spatial scale over which dispersal impacts ecological dynam-235

ics. Note that two aspects of our modeling choices mean that our choice of dispersal by236

diffusion is not qualitatively different from applying a large dispersal kernel: our focus on237

the equilibrium state, and having initial conditions where all species are introduced to every238

point in the landscape. The former aspect of equilibrium means that any potential non-239

equilibrium dynamics driven by species moving quickly across space due to a large dispersal240

kernels are not applicable. The latter aspect means that there is no limit to dispersal, i.e.,241

a short or long-ranged dispersal kernel does not affect which parts of the landscape can be242

reached by a species.243

Scales244

In this study we are concerned with spatial scales of three ecological processes:245

1. E: environmental heterogeneity246

2. D: dispersal247

3. I: species interactions248

To properly compare the interplay of different process scales, we must first compute their249

values for a given set of model parameters (Table 1). The scale of the environment com-250

bines two features often used in the literature to generate realistic, spatially-autocorrelated251

landscapes [41]: spectral color ρ, which indicates the relative importance of long-range and252

short-range variations in the environment, and spectral cutoff kc, which indicates the finest253

grain of variation (Appendix section A2). The effective environmental scale E is controlled254

by these two parameters.255

In the main text, we focus on a single value for the environment scale E = 32, and256

vary the other two scales on a logarithmic scale, with values of 1, 3.2, 10, 32 and 100,257

where the system itself has the scale (length) of 320 cells. Our distribution of I and D258
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Parameter Interpretation Baseline value [Range]
General

S species number 20
L landscape size (cells) (area = L2) 320
δi dispersal coefficient [0.01, 100]

Environment
Hi optimal environment value ∼ uniform(20, 80)
ωi abiotic niche width ∼ normal(10, 2)
ρ spectral color 0.95
kc spectral cutoff 0.04

K(~x) local abiotic conditions [0, 100]
k0 normalization constant -

Interactions
c̃ max interaction strength 1.0
β fraction of regional interactions 0.9
γ spatial scale of interactions [1, 100]
Cij interaction matrix ∼ uniform(0, c̃)

Table 1: Parameters, default values and ranges.

are equally spaced along a log scale and allow us to have a clear separation between the259

scales of each ecological process, while also being substantially smaller than the system260

size (320 cells) and larger than the smallest scale in the system (1 cell). Details on the261

construction of the environment are given in the Appendix section A2. We choose a value262

of E = 32 specifically as it is the most straightforward to demonstrate our results (see263

Appendix section A3 for other values). The scale of interactions is set by, and coincides264

with, the width of the Gaussian kernel γ, such that I = γ. The scale of dispersal is mainly265

determined by the diffusion coefficient δi, and it is expected to scale as D ∼
√
δi (see,266

e.g., [42]). The normalization constant is, however, not trivial, and as we show in the267

Appendix section A1, it is approximately 10. We therefore use: D = 10
√
δi. Fixing the268

environmental scale and varying the scale of interactions and dispersal allows us to isolate269

the effects of interaction and dispersal scale without confounding the effects of different270

landscape structures or differences between species.271

Parameterization and simulations272

To initialize our simulations, we first add environmental structure to a two-dimensional273

landscape of size 320x320 cells (see the Appendix section A2 for details). We do not define274

patches explicitly, but rather allow them to emerge from the spatial structure of the environ-275

ment. We then seed S = 20 species onto the landscape, with initial biomass at each location276

drawn from a uniform distribution between 0 and 1, resulting in roughly equal biomasses277

at the landscape scale. For simplicity, we use periodic boundary conditions for the two-278

dimensional system (i.e., a torus topology), for both dispersal and interactions. We do not279

expect this choice to impact the results, due to the large size of the system considered.280

We use 20 replicate landscapes, allowing environmental structure to vary among repli-281

cates while keeping the environmental scale constant. Replicates with other values of envi-282

ronmental scale are presented in the Appendix section A3. Each landscape replicate uses a283

different set of species and their interactions, chosen at random. Each replicate landscape284

was used to systematically vary the spatial scale of interactions I and dispersal coefficient285

D, with 25 different combinations (5 values of D and 5 values of I, as given in Fig. 2), giving286

a total of 500 simulations. We ascertain the generality of our findings by comparing across287

replicates.288

We run each simulation, where a simulation is defined as a model run with a unique289

combination of process scales and replicate landscape, to a maximum time of T = 1000, or290

until equilibrium is reached. For practical purposes, we define an equilibrium as when the291

maximal change in biomass of any species in any location over a time-span of T = 1 is less292

than 10−5. A full list of parameter values can be found in Table 1. All simulations were293

performed using MatLab 2019a.294

Measurements295

For each simulation we measure individual and total community biomass, species richness,296

and sample the landscape to calculate Species-Area Relationships (SAR curves) as well as297
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Biodiversity-Ecosystem Functioning relationships (BEF curves). For species richness, SARs,298

and BEFs, we define a species to be extinct at a given location if its biomass is below than299

a threshold of 10−3.300

To calculate SAR curves, we sample at 40 different spatial scales from 1x1 (single cells)301

to 320x320 (the entire landscape) on a logarithmic scale, and computed the species richness302

at each. For a given scale, we randomly choose 100 locations in the landscape, and sampled303

a region centered around the location chosen. We averaged over the 100 locations to obtain304

the mean richness value for a given scale.305

We calculate both local and regional BEF curves, based on random sampling of the306

landscape. We do this in a similar way to the SAR curves, measuring species richness but307

also total community biomass. For the local BEF, we use a 1x1 cell area with 102,400308

random locations chosen, while for the regional BEF we use an intermediate area of size309

10x10 with 1024 locations sampled. In this way the BEF measurement is done consistently310

for different region sizes. For both local and regional BEF curves, we measure every cell on311

average once.312

A striking outcome observed in our results is that spatial patterns of biodiversity and313

functioning in landscapes are not well captured by landscape summary measures, such as314

SARs. To explain these patterns, we calculate how correlated the biomass is of a given315

species as distance between sampling locations increases (i.e., spatial correlation), which can316

be used to quantify the properties of spatial patterns we observe. To calculate species’ spatial317

correlations, we do the following: 1) we normalize the species’ distribution by subtracting318

its average biomass (taken over the whole system); 2) we obtain a correlation map by319

calculating the convolution of a spatial distribution with itself, using a two-dimensional320

Fast Fourier Transform; 3) we normalize the correlation map by dividing the resulting two-321

dimensional map by its maximum value (i.e., we set a correlation value of 1 at the origin);322

and 4) we define the one-dimensional correlation function as the average between a vertical323

and horizontal transects through the correlation map. To define the scale of correlation324

for a given species, we locate the distance at which the correlation function reaches half its325

height, i.e., the distance from the origin where its value is the average of the maximum value326

(which is always 1) and its minimal value (typically around 0). A step-by-step illustration327

of calculating the spatial correlation is provided in the Appendix, Fig. S13.328

Results329

Local outcomes: functioning and diversity across localities330

Our first major result is that, although they can arise from similar biological mechanisms331

(e.g., individual mobility), dispersal and interaction scales have opposite impacts on biodi-332

versity and functioning patterns across the landscape (Fig. 2 and S9). We start from the333

case of weakly-connected communities with local interactions where all landscape patterns334

result from environmental variation (top-left panel, Fig. 2). Increasing the spatial scale of335

dispersal leads to a blurring of total community biomass over the landscape (from left to336

right, Fig. 2). In contrast, increasing the scale of species interactions leads to a sharpening337

of spatial patterns, amplifying underlying environmental heterogeneity (top to bottom, Fig.338

2). The antagonism between these two effects can be seen by the fact that they counteract339

each other when increasing both scales at once, leading to similar-looking outcomes (along340

the diagonal, Fig. 2), but dispersal eventually wins out – the states along the right column341

are virtually identical, whereas the same is not true across the bottom row. Critically, it342

is not until the scales of dispersal or interactions exceed the scale of environmental hetero-343

geneity (i.e., outside the dashed-lined boundary in Fig. 2) that the scale of either process344

significantly alters spatial patterns in biomass (see also Fig. S4). Larger emergent scales345

of total community biomass due to high D, and the opposite due to high I, can also be346

seen in Fig. 5, which shows how quickly patterns among locations become dissimilar as the347

distances between them increase.348

We then focus on a subset of our scenarios above to show how process scales impact not349

only total biomass but also individual species distributions (Fig. 3). We observe that in-350

creasing dispersal scale predictably makes larger, more coherent domains (i.e., fairly defined351

areas with similar characteristics) with typically higher local diversity. Increasing interaction352

scale creates a more granular landscape with a broader range of diversities, including many353

low-diversity patches and a few high-diversity ones. Indeed, large interaction scales lead to354

more spotty species distributions, with rare species persisting in some locations where they355

would not in other scenarios (Fig. 3 bottom row). Two notable examples include species 1356

(red patches) persisting only when interactions are large and dispersal is small, and species357

2 (individually green, but here cyan due to its coexistence with species 3, blue) taking on a358

more clumped distribution with large interaction scales.359
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E = 32 is larger than both D and I. Black frames around panels designate parameter values that
we further examine in other figures. For better legibility, biomass levels above 3 are not shown.
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Figure 3: Species distribution patterns for five selected parameter sets, representing differ-
ent scales of dispersal (D) and interaction (I), as designated in Fig. 2. Top row: total community
biomass. Middle row: local species richness. Bottom row: distribution of three of the 20 species
in original species pool (their biomass are encoded in the red, green and blue color channels, re-
spectively; thus, cyan regions corresponds to coexistence of species 2 and 3). For better legibility,
biomass levels above 3 are not shown.

Regional outcomes: functioning and diversity at the landscape scale360

The outcomes described above allow us to identify spatial patterns in local outcomes in361

the landscape, but what are outcomes for the landscape as a whole? Given the additive362

nature of biomass across localities, two regions could have identical biomass at the land-363

scape scale even if one region has high variation among localities that span extremes of364

high and low values, whereas another varies little with biomass values that are intermedi-365

ate. Here, we see that biomass is highest when interaction scales are large (Fig. S10), an366
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effect that is quickly eroded as dispersal scales increase. Interestingly, these high-biomass367

landscapes had extreme variation in biomass among localities, including areas of extremely368

low biomass (dark blue in Fig. 2) and extremely high biomass (red in Fig. 2). Therefore,369

high biomass is driven by a disproportionate subset of local communities in a landscape.370

Furthermore, these high biomass landscapes were unremarkable in regional species richness371

in the landscape and actually had fewer species per locality on average than other scenarios372

(Fig. S11). For those who may be interested in comparing our findings to those typically373

reported in traditional metacommunity models more explicitly (e.g., [43], we note that the374

left and right plots in Fig. S11 essentially show local (i.e., alpha) and regional (i.e., gamma)375

diversity, respectively, whereas compositional turnover among localities (i.e., beta diversity)376

is essentially differences between them.377

Cross-scale outcomes: BEF and SAR378

Next, we turn to two types of cross-scale outcomes (Fig. 4). First, we consider the relation-379

ship in BEF curves (i.e., total biomass vs. species diversity) at neighborhood (i.e., single380

cell) scales. In doing so, we find that BEF curves (Fig. 4, left panel) reflect underlying381

process scales. In particular, they exhibit a hump-shaped relationship for large interaction382

scales, suggesting that patches with the largest total biomass are not the most diverse, but383

rather have a few high-performing species. This result ties into our previous observation that384

the interaction scale tends to amplify environmental heterogeneity, and may thus put more385

weight on selection effects, where abiotic conditions select the best-performing species at the386

exclusion of others. We also examined BEF curves measured at larger scales, i.e., when spa-387

tially aggregating 100-cell neighborhoods, and found qualitatively identical patterns (Fig. 4,388

middle panel).389

We also look at a pattern aggregated over continuously increasing spatial scales – the390

SAR (Fig. 4, right panel). We would expect that changes in the slope or shape of the SAR391

as the aggregation scale (x-axis) exceeds the spatial scales of our ecological processes, as has392

been demonstrated for the Stability-Area Relationships [8]. However, we do not observe a393

clear link between process and pattern scales, beyond the fact that the inflection point (in394

particular, for low D and I) corresponds to the environmental scale E (vertical gray line in395

Fig. 3). The main impact of process scale is that, by amplifying landscape heterogeneity, a396

large interaction scale I leads to a stronger SAR when large interaction scales are coupled397

with short dispersal scales. Specifically, as predicted, at the smallest scale the D < E < I398

scenario (magenta curve) yields the lowest species richness compared to all other scenarios,399

whereas at the scale of the entire landscape, its richness is very high.400
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Figure 4: BEF and SAR relationships. Solid lines show average values over 20 replicates, small
circles show values for individual replicates. Colors correspond to five selected parameter sets,
representing different scales of dispersal (D) and interaction (I), as designated in Fig. 2. Local and
regional BEF curves are measured at regions of size 1 and 100, respectively. Vertical gray line shows
the area corresponding to the environmental scale E = 32. Although our model is deterministic
(i.e., each replicate has only one possible outcome, given a specific set of parameter values and
initial conditions), differences among replicates reflect differences in parameter values caused by
sampling those values from distributions (Table 1).

Aggregated measures of biodiversity and functioning at regional scales miss much of the401

information captured by local measures, such as the distribution and turnover in biomass402

(Fig. 2 and Fig. 3). Yet these local patterns can be quantified. Figure 5 presents the403

results of the spatial correlation of species biomass distributions, which measures how the404

biomass of a species correlates over the distance between sampling. We observe clear trends405

in scale, with consistent patterns of growing (shrinking) correlation with higher dispersal406

(interaction) scales.407
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Figure 5: Spatial correlation of each species’s biomass distribution, for three scenarios. Left:
I = 100, D = 1; Middle: I = 1, D = 1; Right: I = 1, D = 100. Recall that E = 32. Each of the
20 species is represented by a different color, with black showing the average correlation function,
all for a single replicate. For this simulation run, the scale of correlation X is given, and is shown
by gray vertical lines. The correlation scale averaged over the 20 replicates, X̄, is also noted.

Discussion408

This study focuses on a critical question: how is the scaling of ecological patterns, such as409

patterns of biodiversity and ecosystem functioning, related to scales of specific processes,410

and why? We have modelled how intrinsic scales of ecological processes align with the411

emergence of ecological patterns in a metacommunity, where we control the spatial scale412

of environmental heterogeneity, dispersal, and species interactions. In doing so, below, we413

highlight the following three take-home messages of our results:414

• the scale of one process (here, environment) can cause the emergence of characteristic415

scales of other processes (dispersal, interactions)416

• two interlinked ecological patterns (biodiversity and ecosystem function) and their417

relationship to each other are oppositely affected by two forms of organismal movement418

• averaging ecological patterns at any one scale misses a rich patterning of spatial vari-419

ance that is closely tied to process scales420

Below, we expand upon each finding and place them within existing knowledge, examine421

the mechanisms that underlie our findings, contrast results among ecological variables, and422

end by placing our results within a context of ecosystem preservation.423

A main finding of our study is that the spatial scale of interactions amplifies environ-424

mental heterogeneity, sharpening observed spatial patterns, in contrast to dispersal scales.425

Importantly, observed spatial patterns did not reflect the absolute value of the spatial scale426

of each ecological process, but rather, their values relative to the environment; decreasing427

the spatial scale of the environment shifts the boundary of blurring/sharpening effects of428

dispersal and species interactions (Fig. S4). We find this effect because environmental con-429

ditions are quite literally the template upon which dispersal and species interactions mold430

species distribution. Large-scale (i.e., at scales above the template) processes are more431

important than small-scale ones in determining overall patterns, meaning that only when432

dispersal or interactions have large scales can they impact large-scale patterns.433

We examined the impacts of process scales on two classes of patterns: first, on the spatial434

scaling of patterns (SAR and BEF), and second, on the spatial structure of species biomass435

in the landscape. Unexpectedly, the latter class of patterns appears to better reflect the scale436

of ecological processes, such as the distribution and turnover of biomass and biodiversity437

across the landscape. These patterns would be lost by examining mean biodiversity and438

function at specific aggregation scales (e.g., local vs. regional; Fig. S4), but were well439

captured via spatial autocorrelation (Fig. 5). From these analyses, one take-home message440

is that increasing the scale of species interactions actually amplifies variation on small scales.441

In other words, large-scale processes do not necessarily beget large-scale patterns.442

The question of how process scales affect observed patterns can also be spun around:443

what information about process scales can be inferred from the various patterns we see?444

Considering the opposing effects that dispersal and interaction scales have on pattern scales445

(Fig.2), it is not clear that such an inference is possible. However, given that patterns scales446

change differently (compare Fig. 2 with Fig. S3, for instance), combining several measures447

together may provide an answer, for instance by finding when changes in spatial correlations448

of biodiversity and biomass no longer behave similarly. In this context, it is perhaps to be449
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expected that no clear connection was found between well known patterns such as BEF450

and SARs, and process scales. Over the past few decades, ecologists have been cautioned451

from interring processes from patterns [44]. Our results demonstrate exactly why this is452

important: a lack of a 1:1 mapping between a pattern and any one specific process.453

Indeed, our finding that the SAR curves did not exhibit transitions at particular spatial454

scales, that would allow us to identify the typical scales of the underlying processes (other455

than the environment), runs counter to other contexts, such as the invariability-area rela-456

tionship [8]. In particular, we do not find a triphasic SAR curve that is often reported [45, 8].457

This is the case since our model does not consider individual sampling and dispersal limi-458

tation, which typically lead to stronger SAR slopes at small and large scales, respectively.459

We thus see the strongest slopes at intermediate spatial scales, consistent with results under460

similar settings [46], and hinting that we are largely seeing community dynamics typical of461

species-sorting [37]. Centering on the average SAR slope itself, on the one hand, we found462

that large interaction scales may enhance the SAR by amplifying landscape heterogeneity463

and creating low-diversity strips along the edges of species ranges. On the other hand, this464

spatial heterogeneity could also promote coexistence as a weaker competitor might thrive465

in the margins [47]. This suggests that edge effects may play a prevalent role in the case466

of long-range interactions, and deserves more extensive investigation. Overall, the scales of467

biotic processes (interaction and dispersal) are mainly reflected inasmuch as they change468

overall community properties, such as total diversity across the landscape.469

Knowledge of the spatial scale of ecological processes is critical to understanding the470

maintenance of ecosystems. To illustrate this argument, one can imagine a landscape man-471

ager interested in preserving some baseline level of functioning in a landscape at a specific472

spatial extent, for example, primary production. If the spatial scale of interest does not en-473

compass the intrinsic scales of processes that govern functioning, then landscape alteration474

beyond that scale might impact functioning in an unanticipated and undesirable manner;475

these scales will differ among ecosystems based on how species? traits and the physical476

landscape affect how organisms experience scales of E, D, and I. In other words, the scales477

important to the maintenance of ecosystem function may be mismatched from the (typ-478

ically small) spatial scales at which ecosystem functioning is observed and managed, but479

the degree to which this is true depends on process scaling. Predictions of our model could480

be best tested empirically in microcosm or mesocosm setups or using data syntheses, for481

example, by examining the spatial structure of species richness and biomass depending on482

process scales of focal taxa (e.g., small vs large-bodied animals using remotely sensed data,483

experiments with insects where mobility is restricted).484

Our results suggest that it will be difficult to manage landscapes to preserve biodiver-485

sity and ecosystem functioning simultaneously, despite their causative relationship, for two486

related reasons. First, the fact that increasing dispersal and interaction scales had opposing487

effects on either ecosystem property presents a unique management challenge, given that488

both scales are tied to organismal movement, albeit on distinct timescales (i.e., daily vs.489

once-per-generation). Second, ecosystems attained the highest biomass in scenarios which490

also led to the lowest levels of biodiversity, specifically, when interaction scales were large491

and dispersal scales were small. We note that this second issue may only be relevant when492

interactions are largely competitive, since our modeling, and thus results, did not consider493

mutualistic interactions which would likely change the observed trade-off between biodiver-494

sity and biomass. How would a manager plan a landscape to enhance interaction scales495

(preserving function) while simultaneously minimizing scales of dispersal (preserving biodi-496

versity)? This can, for instance, be relevant for managing predation of pest herbivores in497

agricultural landscapes [16]. This type of intervention might be most successful in species498

with body plans for long-distance movement, but that can remain philopatric for behavioural499

reasons (which can be environmentally determined; i.e., territorial hunters).500

Our metacommunity model differs from traditional metacommunity models in several501

important ways. Traditional metacommunity models tend to include discrete local patches502

embedded within an implicit inhospitable matrix, interconnected by rates of dispersal, often503

from a spatially-implicit regional pool of dispersers. By contrast, “patches” in our model504

emerge from the environmental template (Fig. 3), the structure of which may be viewed505

differently by different species according to their fundamental niche. Further, these patches506

may have fuzzy boundaries, within-patch heterogeneity, as well as different shapes and sizes.507

Individuals may be lost to the matrix (i.e., habitat falling outside of the fundamental niche)508

if they disperse there or may form stepping stone populations to reach new patches. In509

doing so, dispersal limitation is more likely to emerge as the spatial grain of the environment510

exceeds the scales at which species disperse, a major result of our study. These features align511

with the recent calls [48, 31] to develop more realistic metacommunity models applicable to a512

wider range of systems, beyond discrete, patchy, island-like systems. Given these strengths,513

the next step is to extend a model like ours to multi-trophic systems, beyond “horizontal”514

(sensu Vellend [49]) competitive communities. Our model is naturally amenable to multi-515
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trophic systems, as predators often perceive the landscape at a different scale than their prey516

(i.e., a different interaction scale) and would perceive the scale of the environment via spatial517

distributions of their prey–additionally, there is an opportunity to move beyond Lotka-518

Volterra dynamics for modelling species interactions, towards more mechanistic consumer-519

resource approaches [50]. Most metacommunity models have been applied to competing520

species [17], with multi-trophic extensions becoming more common in recent years [51].521

Our conclusions are twofold. First, we bring forward an important spatial scale – the522

range of species interactions – that has been largely neglected in previous analyses (e.g.,523

metacommunity theory). This interaction range can be derived from many of the same524

ecological mechanisms as dispersal, such as individual mobility, yet these two processes525

lead to opposite ecological effects. This suggests that we must carefully distinguish whether526

mobility actually leads to population dispersal or to large-range interactions, and re-evaluate527

possible consequences of evolution or environmental change in these processes. Finally, we528

saw that the spatial scale of ecological processes might not appear clearly in the scale of529

resulting patterns such as Species-Area or Biodiversity-Ecosystem Functioning relationships,530

though they may sometimes be reflected in local outcomes. While we focused on a few531

important biodiversity and functioning patterns, our study paves the way for future work532

investigating systematically under which conditions various ecological pattern scales may or533

may not reflect the spatial scale of underlying processes.534
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Appendix678

This appendix is made of four sections. A1: Measurement of scales; A2: Generating the679

landscape; A3: Different environmental scales; A4: Additional plots.680

A1 Measurement of scales681

As explained in the main Methods section, we explicitly measure and compare three spatial682

scales: environmental conditions (E), dispersal (D) and species interaction (I). We now683

detail the definition of these three scales, and finally note the peculiarity of dispersal scale.684

Environmental scale E: The environment itself is generated using a combination of a685

spectral color and cutoff wavenumber (see next section), but this does not explicitly define686

the scale. To measure the scale of the environment, we follow the same approach as for687

the correlation function and measure the scale for a species biomass distribution (using a688

convolution based on FFT), except that we do this for the value of intrinsic growth rate689

ri(~x), as it is directly set by the environment. For each of the 20 species, we can calculate690

a correlation function (in the same manner as explained in the methods), and from this691

we calculate the correlation scale (the point of middle height for the correlation function).692

We average this value over all 20 species, to calculate the environment’s scale for a given693

system. Since this result depend on the randomization of the environment, we repeat this694

for many replicates, and choose values of ρ and kc that will on average give a value of E we695

want to have.696

Dispersal scale D: To estimate the dispersal scale D, we compare the effect of changing697

the dispersal coefficient δ with changing γ. In Fig. S1 we show how changing δ and γ (and698

thereby D and I) affects the community biomass distribution. As seen in the left panel, with699

low δ and γ the difference from a null scenario of no dispersal and no interaction distance700

is very small, but increasing either δ or γ changes the community biomass distribution701

considerably. In the middle and right panels we see these differences, as we change only702

δ (middle) or only γ (right). This clearly shows three things: 1) The effect of interaction703

distance scales linearly with γ, as expected by its definition. 2) The effect of dispersal704

coefficient scales with
√
δ, as expected from dimensional considerations (e.g., [42]). 3) More705

specifically, to make these two effects comparable, the dispersal scale is missing a factor of706

10, i.e., D = 10
√
δ. This can be seen by the fact that for both δ = 1 in the middle panel707

and γ = 10 in the right panel, the y-axis values are roughly the same (10−1.2).708

Interaction scale I: In our model, the species interactions are explicitly defined with709

a distance over which they occur – via the Gaussian kernel function. This naturally gives710

us the scale of interactions I, as the width of the Gaussian function, such that I = γ.711
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Figure S1: Comparison of different diffusion coefficient and interaction distance scenarios
to the case of no dispersal and local interactions alone. Differences are squared, summed
over all species, and averaged over domain. This is done along the diffusion coefficient (interaction
distance) axis in the left (right) panel. Comparison shows that diffusion scales like a square root,
and that a normalization factor of 10 should be applied to make it comparable to interaction
distance (i.e., d = 1 is comparable to an interaction distance of 10).

Peculiarity of dispersal scale: An interesting problem we encountered, which is712

worth expounding upon to aid future research in this area, is how to place dispersal on713

comparable scales and strength to other processes. For both environmental factors and714

species interactions, we could separate the intensity of variation and the scale over which it715

takes place. We could do this, for instance, by modelling interactions with a spatial kernel716

which defines the range of these interactions. For dispersal, however, this distinction does717
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not hold in the continuum limit nor in the stable equilibrium regime that we consider in this718

study. This can be understood intuitively in a single dimension: organisms who disperse719

from site x to site x+1 at time t will be counted in those that disperse from site x+1 to site720

x + 2 at a later moment in time. Therefore, dispersing twice as fast between neighboring721

sites can be equivalent to dispersing twice as far. This equivalence breaks down when the722

details of individual dispersal events matter, e.g., for very rare and long-ranged dispersal723

events [52]. But even then, the strength of each dispersal event would still play into the724

spatial scale over which dispersal impacts the dynamics over longer times. As a consequence,725

defining dispersal scale from a spatial kernel alone might seem more intuitive, but would726

actually hide the importance of intensity, and we prefer to simply model nearest-neighbor727

dispersal and acknowledge that intensity and scale are entangled.728

A2 Generating the landscape729

The landscape profile is defined by a spectral color (ρ) and cutoff (kc). A spectral color close730

to 0 corresponds to “white” noise, i.e., noise that exhibits little or no spatial autocorrelation;731

a spectral color close to 1 indicates “red” noise – noise with high spatial autocorrelation [40].732

The spectral cutoff creates a point of truncation in the frequency profile that prevents733

high variation between adjacent cells, in effect smoothing the noise across the landscape.734

Together, color and cutoff control the degree of structural fragmentation of the landscape735

(see Fig. S3). More weight on higher frequencies (low ρ, high kc) entails smaller and less-736

connected fragments of similar environmental conditions. Weight on lower frequencies (high737

ρ, low kc) creates long bands of constant environmental conditions which can act as corridors738

for species favoring this value.739

To generate the environmental landscape K(~x), we prescribe a frequency profile for the
noise:

F (k 6= 0) =
1

kρ
e−k/kw , F (0) = 1

which is a power-law with color ρ (ρ = 1 corresponds to red noise) and an exponential740

cutoff with wavenumber kw = kcL/2 which removes high spatial frequencies, smoothing the741

landscape and avoiding strong variations between adjacent cells. The construction process is742

demonstrated in Fig. S2. Note that the cutoff wavenumber is simply the normalization of the743

spectral cutoff by the number of different frequencies represented by the chosen resolution744

of the domain, L/2, with L the number of cells along the x and y axes, such that in the745

spectral domain it represents the resolution of the landscape.746
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Figure S2: Demonstration of landscape construction. The steps of landscape construction
are shown in the different columns, with the top (bottom) row corresponding to a landscape with
E = 32 (E = 10). From left to right, the four columns correspond to: 1) The function M , which
is a power-law function with exponential cutoff, on a two-dimensional spectral map (i.e., where
each cell corresponds to a different spatial frequency), with the addition of random noise. 2) The
environmental conditions V , which result from applying the Fourier transform on the previous step,
and normalizing the values to range between 0 and 1. 3) The fundamental niches fi of 3 species,
where the value of fi of each species are encoded in the red, green and blue color channels. 4) The
spatial distribution of species biomass Ni at equilibrium, of the same 3 species and with the same
color coding, as the previous column. Note that the top-right panel corresponds to the bottom-left
column of Fig. 3.

Practically speaking, for a two-dimensional landscape, we generate a L × L matrix Rij
of uniform random numbers over [−1, 1] corresponding to amplitudes for each wave vector
(kx, ky). We then multiply these random numbers by the profile above

Mij = Rij F (
√
k2i + k2j )
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with ki = i − L

2
where index i is a natural number running over [1,L]. We set the element747

ML/2,L/2 corresponding to the uniform trend (ki = kj = 0) to 5. Finally, we apply a Fast748

Fourier Transform on the matrix Mij to obtain the landscape matrix V . As explained in749

the main text, this landscape matrix V is used to define the growth rate ri using a Gaussian750

function (see eq. 2), which in turn determines the species biomass distribution Ni (see eq. 1).751

We show in Fig. S3 the environment as a function of different values of ρ and kc, to better752

visualize their effect.753
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Figure S3: How ρ and kc shape the landscape structure, shown by maps of the environmental
conditions V . We show an example of how a landscape is affected by different values of ρ (rows)
and kc (columns). On top of each panel we also note the environmental scale E that corresponds
to the combination of ρ and kc. We can see that smaller kc values lead to a landscape with less
sharp transitions (i.e., smoother), whereas ρ has a more significant effect on the overall scale. In
other figures and in the main text we choose ρ and kc concordantly, with large ρ values together
with small kc values for a large E, and small ρ values together with large kc values for a small E.

A3 Different environmental scales754

We show below a few additional plots, which explore the impact of different values of755

environmental scale E. In Fig. S4 we show the overall difference in community state, between756

different sets of values of D and I to the case of no dispersal and local interactions, for two757

values of E.758
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Figure S4: Comparison of various scenarios to the case of no dispersal and local inter-
actions alone. Difference is measured by averaging over the squared sum of each cell for a given
value of I and D, against the baseline of D = I = 0. This is done for for 5x5 different parameter
sets with different values of D and I, for two different values of E, 32 and 10, in the left and right
panels, respectively.
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In Fig. S5 we consider different E values, and see how changing either I or D affects759

the overall change in system state (compared with the baseline of no dispersal and local760

interactions). In both figures we can see that big differences in the state of the system due761

to higher I or D (seen as dark blue region in Fig. S4, and region below the dotted line in762

Fig. S5) occur for lower values for I and D, and only when E is sufficiently high. This763

demonstrates that the environmental scale E determines the threshold scale of I and D in764

which they can have a substantial effect on the community.765

We also test how the inflection point of SAR (measured in the same way as in the main766

text), changes along a range of E values (Fig. S6). We can see that as long as dispersal is not767

too high (i.e., the three cases where D = 1), the inflection point follows the environmental768

scale E (seen by the roughly parallel lines to the 1:1 line).769

In Fig. S7 and Fig. S8 we show the spatial distributions of biomass and species richness,770

for a different landscape, one that has an environmental scale of E = 10.771
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Figure S5: Average difference from a community with no dispersal and local interactions
only. Difference is measured by averaging over the squared sum of each cell for a given value of I
and D, against the baseline of D = I = 0. Left half shows the effect of D alone, while right half
shows the effect of I alone.
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Figure S6: Inflection point of SAR for different combination of scales. For four sets of values
of I and D (D = 1, I = 1 ; D = 1, I = 10 ; D = 1, I = 100 ; D = 10, I = 1), we show how the
inflection point of SAR changes along a range of 10 values of E (with values between 56 and 3).

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2021.10.11.463913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463913
http://creativecommons.org/licenses/by-nc-nd/4.0/


I=
3
.2

I=
1
0
.0

I=
3
2
.0

I=
1
0
0
.0

D=3.2 D=10.0 D=32.0 D=100.0

stronger dispersal
lo

n
g
e
r-

d
is

ta
n
c
e
 i
n
te

ra
c
ti
o
n

D=1.0
I=

1
.0

c
o

m
m

u
n

it
y
 b

io
m

a
s
s

0

3

E=10

E>D,I

Figure S7: Total community biomass, for the 5x5 scenarios, with E = 10. For better legibility,
biomass levels above 3.0 are not shown.
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Figure S8: Local species richness, for the 5x5 scenarios, with E = 10.
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A4 Additional plots772

We show below a few additional plots.773

In Fig. S9 we show the spatial distribution of species richness, for 5x5 different parameter774

sets with different values of D and I, corresponding to Fig. 2. In Fig. S10 and Fig. S11 we775

show summary statistics for each of these 5x5 parameter sets, of total community biomass,776

average local diversity, and total diversity.777

Finally, we explore in Fig. S12 the sensitivity of our results to the parameter β, and778

demonstrate using Fig. S13 the calculation of species’ spatial correlations, which is used to779

estimate the environmental scale E.780
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Figure S9: Species richness plots, corresponding to Fig.2, for the 5x5 scenarios (E = 32).
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Figure S10: Total community biomass, averaged over domain, for the 5x5 scenarios (E = 32).
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average species richness
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Figure S11: Diversity plots. Average local diversity of community (left) and total community
diversity, (right) for the 5x5 scenarios (E = 32).
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Figure S12: Effect of changing the value of the parameter β, which determines the fraction
of regional interactions. Each panel shows the spatial distribution of total biomass, with columns
showing results for different values of I and D, while lower rows showing increasing values of β.
The number in each panel shows the highest biomass density seen in the panel (where each panel’s
colors are scaled to that value to better show the spatial structure). For low values of β (top two
rows) scale of interactions I has minimal effect (clearly seen by right column looking the similar
to other columns). For values of β (bottom two rows) the effect of I becomes strong and clearly
visible. However, for very high values of β (bottom row) the effect also includes very high densities
of biomass, which is not very realistic. We therefore choose a high value of β but not so high as to
lead to very high densities (leading us to the middle ground of β = 0.9.
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Figure S13: Demonstration of calculation of correlation function. The steps of calculating
the correlation function are shown in the different columns, with the top (bottom) row corresponding
to two different species in the same landscape used in Fig. 2. From left to right, the four columns
correspond to: 1) The spatial distribution of biomass of a single species Ni. 2) Correlation map,
which is the result of a convolution of this spatial distribution with itself. 3) Transects of the
correlation map (horizontal and vertical, shown in green and black), also marked in previous column
by dotted lines. 4) Averaging of transects resulting in the correlation function. Horizontal dotted
lines show the highest and lowest values of the correlation function, along with the average of the
two which is used as a threshold to determine the scale of correlation.
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