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Abstract

Thyroid hormones are known to trigger metamorphosis in an amphibian. This review 
discusses the hypothesis according to which they act in a similar manner to synchronize 
the post-natal development of mice, using brain, brown adipose tissue, and heart as 
examples.

Thyroid hormones (THs; including T3, 3, 3′, 5-triiodo-l-
thyronine and its less active precursor T4 or thyroxine) 
exert a broad influence on the development of vertebrate 
species. The possibility that the developmental function 
of TH in mammals is similar to that in amphibians and fish 
metamorphosis has been discussed on several occasions (1, 
2, 3). This review takes advantage of the available genetic 
toolbox to reconsider the hypothesis that mouse postnatal 
development represents a metamorphosis-like process.

Similarity between amphibian 
metamorphosis and mouse 
postnatal development

THs have originally been discovered as signals that trigger 
amphibian tadpole metamorphosis (4). During these 
crucial developmental stages, a number of dramatic 
changes take place in the body plan, which have been 
extensively studied in the anuran Xenopus laevis: gills 
disappear, hindlimbs grow while the tail regresses, and 
the intestine and the brain are deeply remodeled. The 
position of the eyes and the retina projections are also 
modified. Early exposure of tadpoles to TH precociously 
induces metamorphosis, whereas TH suppression delays it 
extensively. Therefore, it appears that THs do not represent 
an instructive signal that is able to impose a complete 

change in the developmental trajectory, but mainly a 
permissive signal that acts as a timer of metamorphosis. 
Although other hormones, notably cortisosterone (5), also 
influence the transition, TH function is essential, because 
a proper timing of events during metamorphosis is vital.

TRα and TRβ are the nuclear receptors of T3, 
respectively, encoded by the Thra and Thrb genes, which 
are already expressed in tadpoles before metamorphosis. 
They display favorable properties converting the elevation 
of TH into a sharp developmental transition. First, they act 
as DNA-binding transcription repressors in the absence of 
ligands and quickly switch into transcription activators 
upon T3 binding (6). Furthermore, this abrupt switch is 
amplified by the fact that the expression of Thrb, and to a 
lesser extent of Thra, is upregulated by T3 (7).

Mice are called altricial because they are 
underdeveloped at the time of birth and rely heavily 
on maternal care. During the first 3 weeks of postnatal 
life, major developmental processes are at work 
(Fig. 1). In particular, the brain undergoes important 
maturation processes during the postnatal period, 
which are equivalent to those occurring during the 
second trimester of human gestation. While the mouse 
fetal development is primarily dependent on maternal-
derived TH, the mouse thyroid gland becomes functional 
before birth and provides all the necessary TH after birth. 
Although less pronounced than during amphibian 

2

Key Words

	f thyroid hormone

	f mouse

	f postnatal development

	f metamorphosis

12

220225

220225

Downloaded from Bioscientifica.com at 09/29/2023 08:14:45AM
via free access

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-3360-2345
mailto:Frederic.flamant@ens-lyon.fr


https://doi.org/10.1530/ETJ-22-0225
https://etj.bioscientifica.com	 © 2023 the author(s)

Published by Bioscientifica Ltd.
This work is licensed under a Creative Commons 
Attribution 4.0 International License.

e220225J Ren and F Flamant 12:2

metamorphosis, a marked increase in both serum T4 and 
T3 levels is observed during the first 2 postnatal weeks 
(8), after which TH levels decrease and become stable 
in serum. The importance of TH in mouse postnatal 
development has been demonstrated by knocking out 
the Pax8 gene (9, 10). This genetic ablation of the thyroid 
gland causes lethality, occurring during the second and 
third postnatal weeks unless the mice are rescued by TH 
treatment.

The mammalian Thra gene encodes several non-
receptor proteins (11) and the TRα1 receptor, which is 
nearly ubiquitous. The Thrb encodes TRβ1 and TRβ2. 
Whereas TRβ2 mRNA is found in only a few cell types, 
TRβ1 mRNA is broadly distributed. TRβ1 is abundant in 
the liver, heart, and several brain areas where it appears at 
late stages of development (12). Their protein abundance 
is poorly documented, but the recent development of 
mouse models with tagged Thra or Thrb alleles revealed 
surprising discrepancies between mRNA and protein 
levels. In particular, the non-receptor protein TRα2 is 
more abundant than TRα1 in brain, and TRβ1 is less 
abundant than predicted in several organs (13). Overall, 
most if not all mammalian cells have the ability to respond 
to T3 throughout development. However, in contrast to 
the amphibian genes, the response of the mouse Thrb 
gene expression to T3 is modest, and restricted to a few 
cell types, while Thra gene tends to be downregulated 
(14). Therefore, the T3 response in mammals is unlikely 
to be amplified by a positive feedback loop resulting in 
receptors accumulation.

In the following, we will consider major transitions in 
which TH have been demonstrated to be involved in mouse 
postnatal development. These are only examples, and we 
do not intend to cover the large body of literature related 
to the influence of TH. In each case, the main difficulty 
consists in distinguishing between the direct consequences 
of TH stimulation, also called cell-autonomous response, 
and the indirect influences, which are secondary to the 
local or systemic changes caused by TH. In the chosen 
examples, this discrimination has been addressed by using 
Cre/loxP recombination to selectively alter the T3 response 
in selected cell types.

From ectotherm to endotherm

Mouse pups only progressively gain the ability to maintain 
their body temperature, notably by developing the 
brown adipose tissue which is specialized in adaptive 
thermogenesis. Although a small number of brown 
adipocytes are present at birth, the cell proliferation in 
this tissue peaks at postnatal day 8 (PND8) (15). However, 
while the brown adipocytes already contain the UCP1 
uncoupling protein, which is thought to be at the heart 
of the thermogenic process, they do not express the genes 
encoding key lipogenic enzymes before PND15. Therefore, 
the brown adipose tissue of juvenile mice is unable to 
fuel thermogenesis autonomously, as it does in adults, 
but rather oxidizes fatty acids coming from the maternal 
milk. Furthermore, the neuronal circuits required to sense 

Figure 1
Postnatal maturation processes in mice. (A) Evolution of the T3 
concentration in serum (8). (B) Eye opening occurs at around postnatal 
day 13 (PND13). Endothermy is achieved progressively before PND15. The 
anagen phase of hair growth is at PND17. Weaning becomes possible on 
PND21. (C) Cardiomyocytes lose their regenerative capacity (18) when 
heart rate (84) and oxidative capacities of ventricular fibers (85) increase 
during the second postnatal week. (D) The brain grows faster than the 
entire body. Forebrain regions, such as the olfactory bulbs and cortex, 
grow earlier than cerebellum (86). In the cerebellum, the arborization of 
Purkinje cells progresses between PND7 and PND21. In cortical basket 
cells, also known as fast-spiking interneurons, a major change in ions 
channels content occurs around PND15 (42). They express the 
parvalbumin marker and exert an inhibitory activity which has a pivotal 
role in the elaboration of the neuronal circuits (87). A phase of 
synaptogenesis is followed by the critical period of heightened plasticity 
(43). The peak of synaptic plasticity occurs at different times in different 
cortex areas, from PND12 in the somatosensory cortex to PND28 in the 
visual cortex. At the closure of the critical period, basket cells produce the 
perineuronal net which stabilizes their synapses (44). The inhibitory 
activity of GABAergic neurons finally balances the excitatory activity of 
glutamatergic neurons (88). NB: The milestones of postnatal development 
vary slightly depending on the mouse strain.
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cold and trigger thermogenesis only become functional at 
PND15 (16).

As THs are known to promote several thermogenic 
processes, including adaptive thermogenesis in brown 
adipose tissue, one would expect a direct link between 
TH and the maturation of the thermogenic capacity of 
pups. Although to our knowledge, the juvenile phase has 
not been specifically addressed, selective deletion of TRα1 
in brown adipocyte progenitors alters their capacity to 
produce differentiated cells in adults (17). Consequently, 
adult mice lose the capacity to expand their brown adipose 
tissue after prolonged T3 stimulation. It is therefore likely 
that the original development of the brown adipose tissue 
is sensitive to the transient postnatal increase in T3 level.

The loss of regenerative capacity of the heart

Mice are born with the capacity to regenerate the cardiac 
muscle after injury, but lose this capacity within 2 weeks 
after birth. In this process, immature cycling mono-
nucleated cells differentiate into bi-nucleated cells, which 
have a high capacity for oxidative phosphorylation but are 
unable to proliferate. Exposure to goitrogen propyl-thio-
uracyl or the TRα1 antagonist NH-3 greatly delays this 
transition (18).

When the dominant-negative mutation TRα1L400R is 
expressed only in cardiomyocytes to block their capacity to 
respond to T3, a persistent proliferation of cardiomyocytes 
is observed. The heart size increases in pathological 
proportions, and its regenerative capacity, which 
manifests after an infarction, persists at the adult stage. 
Therefore, the influence of T3 on the loss of regeneration 
capacity is cell-autonomous. Transcriptome analysis 
detects changes in gene expression caused by TRα1L400R 
expression in cardiomyocytes, while ChIP-Seq analysis 
pinpoints genes whose regulatory sequences are occupied 
by TRα1. This combined strategy allows to identify a set of 
genes whose transcription is very likely to be activated by 
the liganded TRα1 in the postnatal heart and to promote 
the loss of regeneration capacity. A number of them 
encode important enzymes and regulators of oxidative 
phosphorylation in mitochondria.

A survey of many vertebrate species suggests that 
the loss of heart regenerative capacity is a trade-off 
for the acquisition of endothermy during evolution. 
Endothermy is indeed energy demanding and imposes 
a high contraction capacity on the myocardium, to 
ensure a proper oxygen supply to tissues. In mammals, 
cardiomyocyte metabolism switches to ATP-producing 

processes. A unifying hypothesis would be T3 reprograms 
cardiomyocytes metabolism, which switches from 
nucleotide synthesis to ATP production to face a high-
energy demand during mammalian development. 
Accordingly, zebrafishes, which are ectotherm, maintain 
the regenerative capacity of their heart at the adult stage 
(19), unless they are treated with an excess of T3 (18). 
Interestingly, a metabolic switch from mitochondrial 
oxidative phosphorylation to glycolysis, associated with 
a remodeling of the extracellular matrix glycosylation, 
accompanies the zebrafish heart regeneration (20). 
However, the heart of Xenopus laevis, which is also an 
ectotherm species, loses its regeneration capacity under 
the influence of T3 and the transition takes place during 
metamorphosis (21). Therefore, the tempting link between 
the function of T3 in development and in thermogenesis 
requires further investigation.

Loss of axonal regenerative capacity  
in Purkinje cells

The evolutionary loss of regenerative competence in 
mammals, and its maintenance in zebrafish, also applies 
to neurons. This manifests either as injury-induced 
neurogenesis and axonal regeneration after axons 
severing. Here again, a developmental transition has been 
observed in mice. Notably, the axons of Purkinje cells, in 
the cerebellum, possess the capacity to regrow at early 
postnatal stages. This regeneration capacity disappears 
within 1 week after birth, whether when the cells stay in 
the cerebellum or if cerebellum slices are cultured in vitro 
(22). In general, T3 exerts a cell-autonomous influence on 
the morphological maturation of these neurons, which 
takes place after birth (23, 24). The typical arborization of 
Purkinje cells is impaired by either TRα1 or TRβ1 mutations 
(25, 26). Therefore, while T3 prevents axonal regrowth, it 
also favors dendritic growth. The most likely explanation 
is that the link to T3 is indirect and that both the loss 
of regenerative capacity and the dendritic arborization 
reflect the terminal maturation of the Purkinje cells.

The capacity of the Purkinje cell axons to regenerate 
can be evidenced either by performing in vivo or in 
vitro axotomy. T3 has a clear effect on the timing of 
this transition, accelerating the loss of regenerative 
capacity both in vivo and in vitro. Accordingly, the 
dominant-negative receptor TRα1L400R delays the loss 
of regeneration capacity (22). In some other neurons, 
axon myelination has been shown to be responsible 
for the loss of regeneration capacity. The myelination 
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in itself is a T3-dependent process, as T3 activates the 
differentiation of oligodendrocytes, the cells which 
create myelin sheaths (27). This raises the possibility 
of an indirect effect of T3 of Purkinje cells, mediated by 
oligodendrocytes. However, this hypothesis was ruled 
out by expressing TRα1L400R only in Purkinje cells, using 
a lentivirus vector (22). Although the molecular details 
remain unknown, gain and loss of function experiments 
demonstrate that the Klf9 transcription factor is an 
important intermediate of T3 action. As in many other 
cell types, the expression of the Klf9 gene is activated by 
the T3-bound TRα1 receptor in Purkinje cells. The Klf9 
transcription factor then modifies the expression of other 
genes, and the cells lose the capacity to regenerate their 
axon. In general, loss of regeneration capacity appears 
to be one of the T3-dependent processes during Purkinje 
cell maturation. Overall, the possible involvement of 
T3-signaling in the developmental and evolutionary loss 
of regenerative capacity remains one hypothesis among 
several others (28).

Maturation of the GABAergic interneurons  
of the cortex and the critical period

Development of the cerebral cortex is an extremely 
complex process. Neurons migrate and form a layered 
structure and then establish synapses to finally generate 
functional circuits. Congenital hypothyroidism in 
rodents leads to less defined cortical layers, defective 
neuronal migration and altered circuitry (29) causing 
irreversible cognitive defects (30). Virtually all cortical cell 
types are affected by TH deficiency (31). However, because 
neurotrophins secretion is altered (32), it is unclear 
whether all cell lineages display an autonomous response 
to T3. The alternative would be that a small fraction of 
cells are sensitive to T3 and then orchestrate a network 
of cellular interactions. This can be mediated by direct 
cell contacts and the secretion of diffusible factors, as 
previously demonstrated in the cerebellum (33).

Cortical cells for which the influence of T3 has 
been shown to be cell-autonomous are the GABAergic 
inhibitory interneurons. The expression of TRα1L400R 
restricted to this lineage causes lethal epileptic seizures 
(34). The GABAergic neuronal population includes at 
least 12 different cell types defined by their morphology, 
position, connections, immunostaining, and gene 
expression (35). Whether all 60 types and subtypes 
are equally sensitive to T3 remains unclear. However, a 
selective alteration has been observed for the maturation 
of parvalbumin-expressing (Pv+) cells, which normally 

represent 40% of the cortical GABAergic population. A 
large fraction of Pv+ cells are called basket cells based 
on morphology, or fast-spiking interneurons based on 
electrophysiological properties (36). Hypothyroidism 
and mutations altering TH transport across the blood–
brain barrier (37) greatly reduce the density of Pv+ cells 
in the cortex at PND15 (38, 39). The same defect can 
be observed in mice which express TRα1L400R (34) or 
TRα1R384C , another mutation which greatly reduces the 
affinity of the receptor for T3 (40). Besides, patch-clamp 
recording of TRα1R384C/+ cortical slices revealed a dramatic 
reduction in the number of fast-spiking interneurons 
(40). As TRα1R384C has a residual sensitivity to T3, it 
is less detrimental than expressing TRα1L400R that is 
often lethal. A slow recovery of Pv+ cells is observed in 
TRα1R384C/+ mice, but not in the few surviving TRα1L400R/+ 

mice. This suggests that T3 not only defines the timing 
for the maturation of these cells but also maintains their 
function in the adult brain.

Basket cells produce spontaneous γ-oscillations soon 
after birth, which synchronize the early electrical activity 
of cortical networks (41). They undergo an extensive 
functional and transcriptional maturation process 
between PND10 and PND40, with a major change in ion 
channels content around PND15 (42). They ultimately 
produce a specific type of extracellular matrix called the 
perineuronal net, which stabilizes synapses. The assembly 
of the perineuronal net marks the end of the so-called 
critical period of high synaptic plasticity (43, 44). After 
this, experience-dependent elaboration of novel neuronal 
circuits becomes almost impossible. The elaboration 
of the perineuronal net is altered in mice expressing 
TRα1L400R in GABAergic neurons (34). Therefore, it is 
tempting to conclude that, by ensuring the proper timing 
of basket cells maturation, T3 provides a temporal signal, 
which defines the end of the critical period (45). It would 
be of interest to address if these conclusions also apply to 
the filial imprinting of birds. Similarly, this phenomenon 
is restricted to a sensitive period defined by T3 (46) and 
involves GABAergic neurons (47).

Desynchronizing the synchronization

The earlier examples indicate that during the postnatal 
and preweaning period, T3 acts in a cell-autonomous 
manner to promote the terminal maturation of distinct 
cell types: the cardiomyocytes, the Purkinje cells of the 
cerebellum, and the cortical basket cells. This conclusion 
probably also applies to at least bone chondrocytes 
(48) and spleen erythrocytes progenitors (49). On the 
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other hand, there are cell types that respond in a non-
cell autonomous manner to T3 during development. 
For example, the response to T3 of the granule cells 
progenitors of the cerebellum is only secondary to 
the T3-induced secretion of diffusible signals by 
the neighboring Purkinje cells (25). Similarly, the 
oligodendrocyte precursor cells, responsible for the 
initial postnatal myelination of axons, are not sensitive to 
the restricted expression of TRα1L400R (50, 51). Therefore, 
T3-responsive cells amplify the influence of T3, secreting 
growth factors and neurotrophins that influence their 
microenvironment (52, 53, 54).

The possibility that T3 is a temporal signal 
orchestrating directly or indirectly the multiple 
changes that take place after birth in mice justifies the 
comparison with amphibian metamorphosis. In that 
respect, it is striking that the heart regenerative capacity 
is lost in both models. However, under this hypothesis, all 
T3-dependent maturation processes should be initiated 
when the circulating level of T3 is at its maximum, in 
tadpoles or juvenile mice, which is not precisely the case. 
In particular, the critical period of heightened plasticity 
mentioned above is restricted to a temporal window, 
which varies according to brain areas (43). Thus, in 
addition to the circulating level of T4 and T3, one should 
consider the local level of signaling, whose dynamic 
evolution after birth might be different in different areas 
and cell types. Reporter mice indeed reveal a complex and 
dynamic pattern of T3 signaling in brain (55).

The most obvious way to modify the local 
concentration of T3 and generate different peaks of T3 
at different times would be deiodination. Several studies 
illustrate this possibility for inner ear maturation and 
the onset of hearing. In the prenatal cochlea, type 3 
deiodinase catabolizes both T4 and T3, lowering the T3 
content of the perilymph (56). After birth, this enzyme is 
replaced by type 2 deiodinase that quickly increases the 
local concentration of T3 by converting T4 into T3, which 
ensures a timely differentiation of mechanosensory hair 
cells within the cochlea (57). Therefore, while T3 peaks 
in the serum at PND15, the maximum T3 concentration 
in the cochlea is achieved at PND7. If supplied in excess 
at birth, T3 advances the overall program of cochlear 
maturation by several days, causing deafness in adult mice 
(58). The dynamic changes in deiodinases activity during 
postnatal development provoke similar uncoupling 
between the circulating and tissue levels of T3 in other 
tissues, including the intestine and liver (59, 60).

An alternative mechanism for the local modulation 
of T3 signaling relies on transporters. Several transporters 

ensure the transport of TH across the placenta, blood–
testis and brain–blood barriers, and their transfer to the 
cell nucleus. While human patients with Mct8 mutations 
(alias Scl16a2) suffer from deep brain hypothyroidism, 
this is not the case for Mct8 knock-out mice (61). In these 
mice, a moderate T4 deficit is compensated by increased 
type-2 deiodination (62) maintaining sufficient T3 in the 
postnatal brain (37). However, overt brain hypothyroidism 
appears when the Mct8 knock-out is combined with a 
second knock-out to eliminate either another transporter 
(Oatp1c1/Slc01c1) (63) or type 2 deiodinase (64).

Future directions and unsolved problems

The fruitful cross-species comparison which led us during 
this analysis suggests several fruitful avenues for future 
research and should not be limited to Xenopus laevis and 
mice. In particular, zebrafish is a popular model which 
introduces a useful complement as it is ectotherm, has 
a high regeneration capacity, and does not undergo an 
obvious metamorphosis. This model has not yet been 
fully exploited and provides attractive models to analyze 
the developmental function of T3, notably in bones (65) 
skin (66, 67) retina (68, 69), and lateral line, which is a 
sensory organ which function is comparable to the one of 
the inner ear (70).

The reporter mice that allow to visualize the 
heterogeneity of T3 signaling in the fetus and in the 
postnatal brain (55) have been crossed to several knock-out 
mice in order to identify the origin of this heterogeneity. 
Surprisingly, the elimination of type 2 deiodinase had no 
influence on the temporal and spatial expression of the 
reporter transgene (unpublished data). Only after several 
months did the absence of type 3 deiodinase cause the 
accumulation of T3 in specific areas of the adult brain 
(71). The knock-out of the Mct8/Scl16a2 gene also failed 
to modify the perinatal expression pattern of the reporter 
transgene (unpublished data). Finally, the reporter mice 
were crossed to mice carrying a mutation of the Hairless 
gene, which in many cell types is among the most 
T3-responsive genes. Hairless encodes a protein which 
has been proposed to be a TR corepressor (72), but its 
function remains unclear. The loss of function of Hairless 
did not alter the expression of the reporter transgene, 
either (unpublished data). Although there are technical 
limitations to this reporter system, which relies on the in 
situ detection of β-galactosidase activity, these observations 
suggest that an important piece of information is missing, 
which would explain why T3 is not evenly distributed in 
mouse tissues during the fetal and postnatal development. 
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Besides, a variety of TH transporters, whose functions are 
not fully documented, remain to be tested (73). Another 
interesting candidate is μ-crystallin (74), an enzyme 
encoded by the Crym gene (75), which is abundant in 
some astrocytes (76) and maintains the intracellular pool 
of TH (77). Crym gene overexpression in mouse muscles 
causes a local accumulation of T3 and favors lipids 
β-oxydation (78).

The reason why some cell types are more sensitive 
than others to T3 stimulation remains unexplained. This 
sensitivity can be related to the abundance of receptors in a 
certain cell type. However, this abundance is very difficult 
to measure directly (13) and alternative explanations need 
to be explored. In particular, many proteins interact with 
TRα1 and TRβ1 (79). These proteins shuttle the receptors 
between the nucleus and cytoplasm (80), introduce post-
translational modifications (81, 82), or act as transcription 
cofactors (83). Finally, in most cell types, the lack of 
transcriptome and cistrome information hinders the 
identification of target genes that mediate the functions of 
receptors.
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