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Abstract

An optimal control strategy for municipal wastewater MBR treatment was applied to investigate its
efficiency in minimizing the pumping energy of the system. Based on a simple mathematical model to
capture the dynamic evolution of the TransMembrane Pressure (TMP), an optimal switching instant
between filtration/backwash was determined to reduce the supplementary pumping energy caused by
fouling for a predefined net permeate volume. A MBR pilot treating municipal wastewater was used to
generate dynamic data of TMP. The pilot was operated with two different strategies: a classical strategy
with known operating conditions (10 min filtration and 45s backwash) and an optimal strategy where
the frequency was determined based on adjustment of model parameters. Results demonstrated that a
satisfactory agreement was achieved between experimental data and model prediction. The optimal
strategy was then applied experimentally on the MBR pilot. The two strategies were compared in terms
of energy consumption and fouling degree. The results showed the feasibility of the optimal solution
and its reliability to reduce the pumping energy of the system by 7% and decrease residual fouling by
14% compared with a classical strategy.
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Abbreviation
c solid matter concentration (Kg.m™)

Esw pumping energy consumption during backwash (W.s)
Er pumping energy consumption during filtration (W.s)
Er total pumping energy consumption (W.s)

Jsw backwash volumetric flux (m>.m2.s™)

I permeate volumetric flux (m®>.m=2.s™)



kin hydraulic energy parameters (m’. Pa. s™'. Kg™!)
kzn hydraulic energy parameters (m*.Pa.s™)

m membrane surface deposited mass (Kg.m?)

m deposited mass on singular arc state (Kg.m™)

my initial deposited mass (Kg.m)

Gn volumetric flow during filtration (n:f) or backwash (n:BW) (m3.s!)
Reake  cake resistance (m™)

Rer external resistance (m™)

R internal resistance (m™)

R membrane resistance (m™)

Rres residual cake resistance (m™)

TMP  Transmembrane Pressure (Pa)
TMP, transmembrane Pressure at the beginning of each cycle (Pa)
TMPy;  transmembrane Pressure at the beginning of the first cycle (Pa)
TMP;  transmembrane Pressure at the beginning of the second phase of each cycle (Pa)
TSS Total suspended Solid (Kg.L™")
flux direction control
flux direction control at singular arc state
permeate collected volume (m?)
target volume at the end of optimal control strategy (m?*)
collected volume at the end of singular arc
Collected volume at the beginning of singular arc
specific cake resistance (m.Kg™)
parameters related to the shear force (m>.Kg™)
backwash efficiency (s)
Viscosity (Pa.s)
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1. Introduction

Due to the global water scarcity, there is increasing interest in developing and optimizing
advanced technologies for appropriately treating wastewater for recycling purposes. Membrane
bioreactors have been extensively studied for wastewater treatment due to their ability to produce high-
quality effluent, occupy a small footprint, and reduce sludge production [1,2]. This technology combines
an activated sludge and membrane filtration process to achieve high nutrient removal and complete
biomass rejection without the need for secondary settling. However, membrane fouling remains a major
challenge in MBRs as it reduces permeation flux when filtration operates at a constant transmembrane
pressure (TMP) or increases TMP in constant flux mode. This results in a decrease of effluent quality
and an increase in operating costs [3, 4].

At full scale, physical cleaning methods such as relaxation, backwash, and aeration are
commonly employed to limit clogging. However, this phenomenon is complex and depends on several
operational parameters, including flux, filtration and backwash duration, and aeration flow [5]. Without
an optimal cleaning strategy, the process may suffer from inefficient filtration performance, resulting in
high energy consumption and low water recovery [6, 7]. Several studies have focused on optimizing
MBR operating conditions to mitigate clogging [8, 9]. In this context, significant progress has been
made in developing more efficient fouling control methods.



An effective backwash strategy can delay irreversible fouling and reduce the overall cost
associated with UF foulants [10-12]. Backwash duration and frequency are important parameters [13-
15] that influence fouling and cannot be determined solely based on the supplier's recommendations
[16]. Most MBR plants operate at a constant flux, and fouling is generally indicated by an increase in
transmembrane pressure (TMP) over time. Therefore, a higher backwash duration and frequency can
cause a net production loss without necessarily reducing the fouling rate. On the other hand, infrequent
backwashing can increase the build-up rate of internal fouling and lead to increased energy consumption.
Thus, there is a compromise to be found that can be computed provided that a model is available, and
an optimal control is well defined. The novel challenge is to operate MBRs at optimal operating
parameters, in a sense to be clearly defined, that allow for good water productivity at minimal energy
cost.

A variety of control and optimization methods have been proposed for better management of
backwash sequences. However, many of these studies are just based on empirical investigations [11, 13,
17-19]. For example, Hwang et al. [18] proposed a power-type empirical correlation between
irreversible filtration resistance and the filtration cycle to select optimal backwash conditions. Gonzalez
et al. [20] proposed a feedback control using an empirical fouling model to adjust permeate flux as a
function of filtration length and the maximum permissible TMP during a cycle. However, more
advanced control methods that use mathematical models to anticipate the dynamic behavior of the
process and adapt the cleaning strategy are emerging in the literature [21-25]. For instance, optimal
control approaches have been developed recently to design optimal backwash strategies and maximize
filtration system performance. Cogan ef al. [21, 22] and Kalboussi et al. [24, 25] applied Pontryagin's
Maximum Principle (PMP) to predict the optimal instants of switching between filtration and backwash
periods that maximize the net water production over a given operating time of a membrane filtration
process operating at constant TMP. They demonstrated numerically that the optimal strategy
significantly improves the net permeate production [24]. With respect to previously mentioned empirical
strategies, optimal controls synthesized on the basis of mathematical models present the advantage of
guaranteeing their optimality.

It is interesting to note that while many studies have focused on developing optimal control
strategies for separation systems operating at a constant transmembrane pressure, more recent studies
have focused on developing optimal control strategies for constant flux filtration systems, which are
typical in real-world MBR applications. For example, Cogan et al. [26] developed a model to calculate
an optimal balance between filtration and backwash to maximize water production efficiency while
considering the effects of membrane aging during full scale potable reuse. They showed that used model
compares well with the full-scale operational data, and model parameters accurately capture the fouling
kinetics with membrane age, providing clues to changes in optimal backwash timing and duration. On
the other hand, Aichouch et al. [27] used a simple mathematical model to develop an optimal backwash
scheduling strategy that minimized pumping energy consumption for a predefined volume production.
This work seems interesting since the increase in TMP induced by biofouling can represent 30 to 70%
of energy consumption [28] but this optimal approach was simply tested in simulation and never
implemented at pilot scale.

The objective of this paper is therefore to conduct an experimental implementation of the
optimal control backwash as developed in Ref. [27], to reduce pumping energy consumption in a
constant flux MBR. To the best of our knowledge, the practical implementation of theoretical optimal
strategies has not yet been undertaken. This study can provide valuable insights into the real
effectiveness of this approach in mitigating fouling and reducing pump energy consumption. The
findings from such experiments can contribute to the development of more efficient fouling control
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methods and improve the overall performance and sustainability of MBR processes. Steps of this work
consist first in validating the simple model to capture the dynamic behavior of the MBR, then in
synthesizing the optimal control strategy according to the data gained from model analysis and finally
in evaluating and discussing the practical implementation of the optimal strategy compared to the
classical one.

2. Experimental section
2.1 SMBR pilot system

The experimental study was carried out using a ZeeWeed submerged membrane bioreactor pilot ZW10
(Fig. 1) installed in the wastewater treatment plant WWTP of Charguia (Tunis, Tunisia). The SMBR is
equipped with a hollow fiber membrane (M), from Polymem-France. The membrane has pores diameter
of 0.01 pm, filtration surface area of 1.5 m* and is immersed in a cylindrical biological tank of 220 L
(T2). Biological treatment was performed under aerobic conditions with compressed air introduced in
the aeration pipes (A) around the membrane module. The air flow rate measured with a rotameter (F1)
was fixed at 2 CFM in the reactor to maintain the dissolved oxygen above 1.5 mg/L and create a shear
for fouling mitigation.
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FI1G. 1: Experimental set up of Zenon SMBR ZW10

A: aeration pipes, B1: blower, F1: float flowmeter, FT2: reversible flow magnetic transmitter M: Hollow
fiber membrane, P1: feed pump, P2: reversible gear permeate pump, P3: sludge pump, PT1: pressure
transmitter, V: valve, T1: feed tank, T2: bioreactor, T3: permeate tank

The permeate was continuously extracted from the top of the membrane module by reversible micro-
gear pump P2 (micropump serie GJ) connected to a programmable automate system (siemens SIMATIC
HMI). The automation system allowed for the control of the pump’s rotation speed and the ability to
reverse the pump’s rotation during backwash phase.

The experiments were carried out at constant permeate flux regulated by the gear pump P2. The
transmembrane pressure was recorded every 10 s using PT1 pressure transmitter. The flow rates of both



permeate and backwash were measured by a reversible magnetic flow transmitter FT2 (Kobold). The
sludge was extracted from the bottom of the aeration tank T2 using a peristaltic pump P3.

2.2 Operating conditions

The peristaltic pump P1 was used to feed continuously the bioreactor with the real sewage from the
Charguia WWTP aeration tank T1. Table 1 summarizes the feed sewage characteristics. The
experiments were conducted during the June-July period, no significant change in the feed composition
nor in the climatic conditions was observed throughout this period.

Table 1: Characteristics of sewage used to feed the SMBR

Water quality parameter Mean value
pH 6.8
Conductivity (uS.cm™) 3745
TSS (g.L') 2.2
COD (mg0,.L'" 371
BODs (mgO,.L) 286
MVS (g.L) 1.8

The SMBR was first operated in the classical mode. Then, the operation of the process was switched in
the optimal control mode. In the classical mode, a periodical backwash of 45s was applied every 10 min
of filtration as recommended by commercial suppliers [29]. The backwash was initiated by reversing
the direction rotation of the permeate pump (P2). The optimal control mode considered in this study will
be detailed in the optimal control section 4.

The permeate flux was kept constant at 8.5 + 0.5 L.m.h, below the critical flux determined by flux step
method [30]. Whereas the backwash flux was two times much higher. To keep the bioreactor level
constant, the feed and the permeate were circulated at the same flowrates. The sludge extraction rate
was fixed at 0.6 L/h which correspond to a sludge retention time (SRT) of 15 days [29].

2.3 Analytical methods

Water samples were taken at the inlet (T1) and outlet (T3) of the bioreactor. Chemical oxygen demand
COD, biochemical oxygen demand BOD and total suspend solid TSS analyzes were carried out
immediately after sampling.

The TSS was measured by gravimetric methods with 0.7 um filter for influent and 0.45 pm filter for
permeate samples. COD were determined using WTW kits and WTW photolab S6 photometer. The
BODS5 was measured according to European Standard Method with WTW Oxitop system.

3. Fouling characterization

Registered 7MP data were analyzed according to “resistance in series” model (Eq.1) to characterize
membrane fouling.

TMP = 1 J,(Rm + Regie + Rres) @)

1 1s the permeate viscosity, /. is the volumetric permeate flux, R, is the clean membrane resistance, Reake
is the reversible fouling resistance and Ry is the residual fouling resistance. As described in [9], the
residual fouling can be divided into internal fouling resistance (&) related to pore blocking or attached



matter that is not eliminated during backwash and external fouling resistance (Rer) linked to fouling
layer recompression.

Ryes = Ry + Rer 2)
Ri-can be calculated by Egq.3.
TMPO =Hu ]v (Rm + Rir) (3)

where TMP,is the transmembrane pressure just at the beginning of each cycle (Fig.2).
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Fig.2 : TMP profile of filtration/backwash cycles for the classical control mode (10min filtration and 45s backwash). TMPy is
TMP just at the beginning of each cycle and TMP: is the initial TMP in the second phase of each cycle

External fouling resistance correspond to the sudden increase of the TMP in the beginning of each cycle
due to the rapid recompression of the external layer (first phase, Fig.2). Its value can be deduced from

Eq.2-Eq.4.
TMP; = u J, (Rpp+ Ryes) (4)

TMP;is the initial transmembrane pressure in the second phase of each cycle where the TMP starts to

increase linearly with filtration time (Fig.2) [9].

However, reversible fouling resistance is associated to the cake layer deposition and can be calculated
by Eq.1.
4. Modelling and optimal control Section

4.1 Fouling Model description

The used model was developed in a previous work [31]. It is based on mass balance for a dead-end
filtration operating at constant flux and aims to simulate the TMP variation during filtration and



backwash phases by considering cake building, pore blocking and cake porosity decrease. For the needs
of this study, the model was simplified to only consider the reversible clogging by cake layer.

During the filtration phase, the mass accumulated over time on the membrane surface (/m) is assumed
to be the difference between the mass deposited by convective forces and the mass detached by shear
forces generated by the aeration in the biological tank:

‘;—’: = f;(m) = C.J, = C.J,.B.m (5)

where Cis the suspended matter concentration, /, the permeate volumetric flux and a parameter related
to the shear force.

During backwash, the mass deposited on the membrane surface decreases as follows:

= fow(m) = —n.m (6)
where 77 is the backwash efficiency.

If we consider a control u that takes, by convention values 1 during filtration and -1 during backwash,
the accumulated mass deposited on the membrane surface can be written as follows:

dm 1+u

= fr(m) + = few(m) (7)

dt 2

According to the resistance in series model, by neglecting the residual fouling, the TMP, can be
expressed as:

TMP = u J, (Rm + Reqke) (8)
Reake 1s proportional to the specific cake resistance a as:
Rcake =am (9)

In this study, MATLAB 2014b software was used for simulation and process optimization. Model
validation and parameters identification were realized by fitting the normalized experimental data
(TMP/TMPy;) to the theoretical normalized ones by the least squares method using Matlab fmincon
function, defined as an optimization function. The model efficiency was evaluated by determining the
regression coefficient R%as a performance indicator, calculated by the following expression:

3Ny (TMP-TMPy))"
¥, (tmMP i=TMPgy)”

R2=1 (10)

where TMP,, TMPB, and TMF,,, were the experimental, predicted and average transmembrane pressures,
respectively. jis the measure number and N is the total number of measures.
4.2 Optimal control approach

As described in Ref. [27], an optimal control problem was developed to minimize the pumping hydraulic
energy using a mathematical model describing the process. The control signal u(?) is adjusted based on
feedback which is dependent on the accumulated mass m and the produced volume V. Pontryagin’s
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Maximum Principle (PMP) was the mathematical tool applied to determine the analytical solution of
the optimal control problem. The fundamental contribution of optimal control theory is that the applied
theoretical tools provided by the PMP enable the calculation of an optimal accumulated mass value, m,
that minimizes the total hydraulic energy consumed by MBR pump to produce a predefined volume I*

The total produced volume Vis defined as:

v = fy (52 ), = 2 o) (11)

2

Where /zwis the backwash flux and 7'is the time for which the target permeate volume F*is reached.

The pumping energy demand £7during a time interval [0, 7] depends on the deposited mass m as:

P

Er = foT(Hu Ef(m) + 1_Tu 'EBW(m)) dt (12)

Erand Epw are respectively the required pumping energy during filtration and backwash phases.

Erand Epwcan be calculated using Eq. 13.
E, = g, TMP, (13)
Where q is the flowrate and the index # refers to f during filtration and BW for backwash phase.

From Eq. 8 and 9, £}, can be rewritten in terms of the attached mass mz:
En = kln m+ an (14)

kinand k2, are parameters relatives to the hydraulic energy their expressions are represented in table 2.

Table 2 : Hydraulic energy parameters expressions during filtration and backwash

Parameter Expression
kin(m’. Pa. s'. Kg!) ‘17121 na (15)
3 -1 2
Kkon(m’.Pa.s™) ‘%1 u R, (16)

*n refers to f during filtration and BW for backwash phase

The optimal solution depends on the state of membrane fouling and is summarized in [27] as:

+1, ifm<m
um,V)={ @, ifm=m and V<V (17)
+1, ifm>m and V>V



In Eq. 17, m, V and @ are the control parameters and depend on the parameters of the fouling model
described previously. The procedure for calculating 7, V and 4 is summarized in Appendix.

A schematic diagram of the optimal solution is represented in Fig 3.

m(t)

3

V, v v

Figure 3: Schematic representation of the optimal control solution developed in [27]

As we consider that the membrane is initially clean (9= 0), the optimal solution begins with z= 1 until
m reaches m corresponding to VV = V.. Then, in a second phase, [V. , V], a constant control # called
singular arc is applied to maintain the mass of the cake layer around m until the switching volume V
is reached. & takes value between [-1, 1]. Finally, for the last phase [V, V7, it is optimal to finish the
process with filtration cycle (z= 1) until the target volume V*

It should be noted that the total operating time of the process depends on the target volume % Contrary
to V, the others control parameters 7, % and V. are independent on V*and remain unchanged whatever
the total operating time.

Fig. 3 presents the general optimal control synthesis for the problem considered. Notice that for some
initial conditions, the optimal control consists in switching from -1 to +1 instead of staying on the
singular arc [27]. In practice, this case is very particular and, in most cases, it may be neglected, notably
as long as V* is large enough.

For the singular arc, the control signal & takes an intermediate value between -1 and 1. However, in
practical applications, implementing this exact value is not feasible. Nevertheless, it is possible to
approximate the theoretical optimum by alternating between -1 and 1 in a way that keeps the mass m
close to m. This approximation is detailed in section practical implementation section 5.4.

5. Results and discussion
5.1 Water treatment efficiency

Samples of influents and effluents were taken from the SMBR system. Parameters such as TSS, COD
and BODs were analyzed, and mean values are summarized in table 3. It can be noted that the applied
strategy didn’t affect the effluent quality. The slight deviations observed are mainly due to fluctuations
of the influent quality.



Table 3 : influent and effluent characteristics and removal efficiency

Influent (mg.L") Effluent (mg.L™") Removal efficiency
(%)
TSS 2100+ 84 6+2 99
COD 250+ 10 51+10 80
BOD 240+ 20 9+3 96

The influent COD was around 250 mgO,.L"!, while the permeate had a lower COD concentration of less
than 51mg0O,.L"!, resulting in COD removal efficiency of approximately 80%. The COD rejection could
probably be improved to reach higher value by varying the operating conditions, like increasing the
SRT, but it was not the aim of this study. The DBO rejection rate was higher, reaching 97%. Nonetheless,
the rejection rates are considered satisfactory and comparable to those reported in Ref. [32]. Regarding
total suspended solid TSS, a high rejection rate was observed (more than 99%). The permeate contained
only trace amounts of suspended matter, below 8 mg.L.

5.2 Model calibration and parameters estimation

For model validation, the theoretical data were compared to the experimental normalized TMP data
registered for classical experience. The model parameters determined experimentally are presented in
Table 4. Others model parameters (table 5) were identified using least square method as described in
model description section. As the used membrane was not new, an initial deposed mass my = 6. 10
kg.m? was considered as the initial condition. R, was determined experimentally from pure water
permeability and C, the suspended solid concentration, was considered as the TSS concentration in the
biological reactor.

Table 4 : Experimental model parameters

Parameters Value
Jo(m*m2sh 2.71 10°¢
Jow (m*.m?.s") 5.66 10
PTMy; (Pa) 7892.4
R (m™) 1.79 10*12
C(Kg.m?) 2184 107

Table 5 : Model parameters identified by least squares method

Parameters Value

£ (m*kg™!) 10
a(mkg?h) 2.02 1074
n(sh 49103
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Figure 4 : Model fitting with experimental data obtained for the classical strategy

The comparison of model simulation and experimental normalized data shows satisfactory fitting with
an important coefficient regression 86.25 % (Fig.4). The discrepancy observed is mainly due to
hypothesis assuming no irreversible fouling in the model. In fact, from Fig.4, it can be observed that the
model fit mainly the linear rise of the TMP corresponding to cake fouling.

Despite its simplicity, the proposed model reproduces in satisfactory way the experimental TMP of the
classical experience. Hence, the identified model parameters can now be used for computing the optimal
control.

As the main objective of this study is the minimization of the permeate pump hydraulic energy Er, the
parameters (k7 et kz) related to the energy were calculated according to the equations 14 and 15 and
represented in table 6.

Table 6 : Pumping Energy parameters values

Parameters Value
kir(m®. Pa. s Kg!) 2.0769
kor(m®. Pa. s) 0.0185
kipw(m®, Pa. s'1. Kg'!) 9.0551
kopw(m®. Pa. s) 0.0807

5.3 optimal control strategy

To evaluate the efficiency of the optimal solution, the optimal control parameters (7, V and i) were
calculated with the identified model parameters (o and ) using the appropriate mathematical design
model (cf. Appendix). The target volume V* was chosen equal to 0.04 m’.m? corresponding
approximatively to the volume collected after Sh of operation with the classical strategy. Fig.5-A and B
shows theoretical optimal solution of the control (u) and the deposed mass (m) on the membrane,
respectively, as a function of the volume produced for a predefined volume V*=0.04 m*>.m™.
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Figure 5 : (A) The theoretical optimal operating strategy over V* = 0.04 m3/m?; (B) The corresponding mass accumulated on
the membrane surface.

As the initial condition my= 6 10~ kg/m? is less than m = 1.17 102 kg.m™, our system operates initially
in filtration (u = 1) up to a volume V.= 0.0027 m>.m corresponding to a filtration time of 16 min. Once
the required mass at the surface of the membrane reaches the value m, the singular control # is applied
until reaching the volume V = 0.0321 m?>.m?. The value of ii in this case study is equal to 0.8189. The
cake mass (m) was maintained at m during the singular arc volume interval [ V., V] which corresponds
to a filtration/backwash duration of 4 hours and 12min. A final filtration cycle (z = 1) for 48 min is set
up when V=V _Fig.5 shows that the durations of the first and last cycle are shorter compared to the time
spent on the singular arc defined by m (%)= m. Filtration times corresponding to the collected volumes
V., V and V* were calculated using Eq.11.

This optimal solution was simulated with Matlab to estimate theoretically the pump energy consumption
for a targeted volume of 0.04m>.m. Fig. 6 represents the evolution of simulated £ for the classical and

optimal strategies.
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Figure 6: Simulated hydraulic pump energy for the classical and optimal strategy

As shown in Fig.6, the model predicts an energy consumption of 1056 W.s when simulating data of
classical strategy to collect V*= 0.04 m’.m? However, the optimal strategy requires less energy
consumption of about 1042 W.s compared to the classical one. The gap between both consumption is
observed from about 12000s and became more pronounced over time filtration.

At this stage, the optimal solution has no physical signification as in the singular arc # is different from
1 and -1. In the next section, an approximation of the optimal solution is constructed to convert u =
0.8189 into filtration (= 1) and backwash periods (u = -1).

5.4 Practical implementation

To approximate i only by filtration and backwash cycles, such that m remains close to m during the
singular arc interval time, we consider that & represents the ratio between the net time production and
total time cycle as:

= StBw (18)

tr+tpw
trand tpw represent respectively the filtration and backwash duration in each cycle.

The latter expression means that if # = 1, then all the cycle time will be spent in filtration (zzw = 0) and
if 4 =—1, the cycle time will be spent in backwash (¢,= 0).

Based on Eq. 18, filtration and backwash times can be calculated during the singular arc interval [V, V].
The backwash period was kept the same as the classical strategy i.e 45s to compare the performance of
the classical and optimal strategies experimentally. In this case, the filtration time was 7.5 min
corresponding to a commutation number between filtration and backwash equal to 32.

The optimal strategy sequence which will be applied experimentally is summarized in Fig. 7.
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5.5 Classical vs optimal strategy

Adapted optimal strategy (Fig.7) was applied on the SMBR, and the experimental results were analyzed
in terms of fouling and hydraulic pump energy consumption then compared to the classical strategy data.

5.5.1 Fouling characterization

TMP analysis provides information on reversible (cake layer) and residual clogging as described in
experimental section. The calculated resistance Ry, Reake, Rress Riand R. are shown in Fig 8 for classical
and optimal experiences.

S5E+12

4,5E+12 _ _
st M classical strategy B optimal strategy
o~ 3,5E+12

3E+12
2,5E+12

r

2E+12

1,5E+12
1E+12
SE+11 - .
0
Rir Rer Rm

Rt Rcake Rres

Resistance (m

Figure 8: Different hydraulic resistances for classical and optimal strategy

Fig.8 illustrates some differences in the fouling profile of classical and optimal experiences. The total
hydraulic resistance is slightly higher for the classical experience than the optimal one. For both
strategies the residual fouling exceeds reversible fouling which is in concordance with the works of
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Jiang et al. and Vera et al. [9, 33]. They showed [9] that the magnitude of the residual resistance is
greater than the reversible resistance due to pore blocking. Based on the R;-and Rerresults, the residual
fouling caused by pore blocking and particles adsorption was more intensive than that caused by the
external layer recompression.

Moreover, it can be observed that Ry is higher for classical experience than the optimal one.
The residual resistance for the classical experience contributes to 50% of the total resistance against
45% for optimal experience. McAdam et al. [34] reported on a dead-end filtration MBR applied to
groundwater that it exists a critical cycle duration, associated to a critical mass deposition, beyond which
the physical cleaning is less efficient, and so the residual fouling increased. During the singular arc for
the optimal strategy, m is probably closer to the critical mass so the physical cleaning is more performant
reducing the residual fouling. Likewise, Rca is more important for optimal experience (6.54 10" m™)
than classical one (5.63 10" m™). In fact, for the optimal experience, the first and last filtration cycles
are longer than the classical experience. Longer filtration time favors cake layer deposition which can
protect the membrane surface against pore blocking.

5.5.2 Hydraulic pump energy consumption

The optimal strategy was applied experimentally on SBMR and the TMP data were used to calculate
the pump hydraulic energy during filtration and backwash sequences (£gq.13).

Fig. 9-A and -B shows, respectively, the collected permeate volume and the pumping energy consumed
for the two experiences.
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Figure 9: (A) Cumulative permeate volume (L.m) and (B) Cumulative Hydraulic pumping energy consumption for classical
and optimal strategy over time. The blue and green dotted lines (in B) correspond respectively to the energy consumption to
produce a net volume of 0.037 m®.m for classical and optimal strategy

Although the optimal control approach applied in this study does not consider productivity as
an optimization criterion, it is noteworthy that the total time required to collect the same volume from
both experiments is quite similar, as seen from Fig. 9-A. The net permeate flux of the optimal experiment
is 7.46 L.m™.h"! which is slightly lower than that of the classical experience at 7.57 L.m.h"!. However,
it is interesting to observe that the optimal strategy has effectively reduce the total consumed hydraulic
pump energy compared to the classical strategy (Fig.9-B). For the same net permeate produced of 0.0373
m’.m?, corresponding to 18 110 seconds of operation, the classical strategy requires a total hydraulic
energy of 907 W.s with 749 W.s consumed during filtration. However, the optimal strategy consumes
only 892 W.s (730 W.s during filtration) to produce 0.0393 m*>.m™ of net permeate. For the same volume
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produced 0.0373 m>.m2, a 7% reduction in consumed hydraulic pump energy is realized when the
optimal strategy is applied.

One important point to note is that the optimal control strategy consumes less hydraulic energy
during filtration, even though it spends more time on the filtration operation (94% of the time versus
93% for the classical strategy). This indicates that the optimal strategy effectively reduces membrane
clogging. In conclusion, the optimal strategy provides direct benefits for MBR operation by reducing
pumping energy consumption and indirect benefits by preserving the membrane against fouling. This,
in the longer term, could lead to a reduction in additional expenses incurred by membrane cleaning
and/or replacement.

6. Conclusion

MBR is a promising technology for municipal wastewater treatment however fouling control remains
the main challenge to decrease the operational cost of the system. In this study, an optimal control
backwash strategy was applied to a MBR to decrease the supplementary operational cost of pumping
induced by fouling. A simple mathematical model is used to capture the dynamic behavior of the system
in order to arrive at suitable optimal strategy. The simple used model allowed to describe the dynamic
system during the filtration and backwash with satisfactory coefficient regression around 86%. The
optimal backwash strategy consists of applying a filtration phase until reaching a singular arc
corresponding to an optimal critical accumulated mass onto the membrane. To keep the mass around
the singular arc the optimal strategy indicates that backwash should be performed more frequently with
a filtration/backwash cycle times of 7.5 min/45s instead of 10 min/45s for the classical strategy.
Compared with the classical backwash scheduling, the optimal strategy decreased the total resistance
particularly the residual fouling of 14% and the energy pumping consumption of 7%.

The results of this study are very promising and have proven the effectiveness of mathematical tools to
better control clogging. However, to apply these advanced optimization techniques on an industrial scale
it would be interesting to extend this work to longer term operation. So as future work, an adaptative
feedback control can be envisaged over longer term to continuously adjust the parameters of the model
and thus rectify/adapt the optimal strategy if the filtration system is subjected to variability of influent
quality, fouling degree or others various operating conditions.
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Appendix

The optimal control synthesis for constant flux filtration system was developed in [25, 27] and is
summarized in this Appendix.
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Optimal control Analysis

The optimal control is defined as [27]:

gﬂ%&mmwm@&mmmu

Al
Subject to
m = f_(x) +uf (x), m(0) = my
) u € [—-1,1]
V=J]_+uw, V() =V,
The process stops at the first time t; for which the target is reached: V(tf) =V
For convenience, £, E, f3, £, /- and /. are defined as:
E +E E —-E
E,(m) = 7 (m) ; sw (M) E_(m) = 7(m) ; sw (M)
fr() + few (x) fr(®) = few(x)
fol) = 5 f ) =
And
T+ ew _Jv = Jsw
]+ - 2 ’ ]— - 2
For simplicity the simple expressions of the functions f, fpw, Ef, Egw are re written as:
ff(m) = —a,m + bp' few(m) = a,m
Ef(m) = klfm + sz' Epw = kigwm + kapw
where a,, by, ar, kyf, kyf, k1pw, kopw are non-negative parameters.
the Hamiltonian of the system is [27]:
H(m! Aml;tV' u) = Am [f—(m) + uf+(m)] + AVU— + u]+] + /10 [E+(m) + uE_(m)] A2

where A, is equal to -1 or 0. The Pontryagin’s maximum principal states that for any optimal solution
u*(+) there exists adjoint variables A,,(-), Ay (+) solutions of the adjoint system [27]

{im(t) = = O H(x (1), 4n (1), Ay (1), u™ (£))
Ay (8) = =y H(m(£), A (), v (), u” (1))

Here, the adjoint equations are

A = =Amf2(m) = AoEL(m) — w* (A fi (M) + A EL(m))
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A‘V = 0
with the transversality conditions

An(tr) =0, A,(t;) = 0

From Eq. A.2, the switching function is

d(t) = An (O fr(M(D)) + Ay + AoE_(m(t))
which gives the following maximization conditions

vrn _ |1 wheng(t) >0
wi(6) = {—1 when ¢(t) < 0

ae.t €[0,t]
For any optimal solution, one has the following properties [27]

i. g = —1 i.e. there does not exist abnormal extremal,

ii. there exists t < t; such that u*(t) = 1 is optimal for t € [Z, tf]

iii. A, is a positive constant.

Singular arc

A singular arc is possible only for constant values of m equal to m. Then, the corresponding value of
the control for the trajectory to stay atm = m is

_f-® _ ~(ap+ar)m+by
fr () (ar—ap)1mi+by

A3

u=
A straightforward computation gives

.1
¢ = 2 (arbp/lm + (arklf - apleW)m + bpleW)
that can be written using the expression of ¢ as follows:

a,b,

¢3=( ¢ +p(m, 4y)

a, — ap)m + b,
where the function i has the expression

miy) =-——"— wi
2 (a, —a,)m+ b,

M(m, Av) = (ap - ar)(apleW - arklf)mz - Z(apleW - arklf)bpm + arbp(sz - kZBW - Zlvj+) + bﬁleW

Therefore, a singular arc x = X has to satisfy
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ron) = ¢(m,1,(m)) =0

Finally, a straightforward but lengthy computation (verified with Maple) gives the following expression
of T' [27]

N(m) = _(arklf - apleW)[(ap]BW + ar]v)mz - pr]BWm] + arbp (ka]BW + kZBW]V) + bﬁleW]BW

And

A(m) = (ap]BW + a‘r]v)m - bp]BW

Consequently, a singular arc m = 1 is aroot of N. And an arcm = m can be part of an optimal solution
only if its corresponding adjoint ip (m) is positive.

The expression of Ay is [27]:

Py(m)
A(m)

y(x) =
with
Pv(m) = (arklf - apklw)mz + (arsz - akaBW + bplew)x + bkaBW

Finally, if an optimal solution possesses a singular arc, this imposes that the singular arc is left with IV =
V such that [27]:

‘n_lf dm

v 1og (_ap_—nﬂbp) ifa, >0 A4
— V* _ ap —apmf+bp

Z—;(mf—m)ifa,,:o

The final state my = m(tf) satisfy the condition Ay J,, — Ef (n_lf) = 0, thus

Ay(m)Jy—k
Tflf — v () Jy—kyf A5
kyf
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