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Abstract 

An optimal control strategy for municipal wastewater MBR treatment was applied to investigate its 
efficiency in minimizing the pumping energy of the system. Based on a simple mathematical model to 
capture the dynamic evolution of the TransMembrane Pressure (TMP), an optimal switching instant 
between filtration/backwash was determined to reduce the supplementary pumping energy caused by 
fouling for a predefined net permeate volume.  A MBR pilot treating municipal wastewater was used to 
generate dynamic data of TMP. The pilot was operated with two different strategies: a classical strategy 
with known operating conditions (10 min filtration and 45s backwash) and an optimal strategy where 
the frequency was determined based on adjustment of model parameters. Results demonstrated that a 
satisfactory agreement was achieved between experimental data and model prediction. The optimal 
strategy was then applied experimentally on the MBR pilot. The two strategies were compared in terms 
of energy consumption and fouling degree. The results showed the feasibility of the optimal solution 
and its reliability to reduce the pumping energy of the system by 7% and decrease residual fouling by 
14% compared with a classical strategy. 

 

Key words: MBR, fouling, modelling, optimal control of backwash, energy optimization. 

 

Abbreviation 

C solid matter concentration (Kg.m-3) 
EBW pumping energy consumption during backwash (W.s) 
Ef pumping energy consumption during filtration (W.s) 
ET total pumping energy consumption (W.s) 
JBW backwash volumetric flux (m3.m-2.s-1) 
Jv permeate volumetric flux (m3.m-2.s-1) 
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k1n hydraulic energy parameters (m3. Pa. s-1. Kg-1) 
k2n hydraulic energy parameters (m3.Pa.s-1) 
m membrane surface deposited mass (Kg.m-2) 
𝑚𝑚�  deposited mass on singular arc state (Kg.m-2) 
m0 initial deposited mass (Kg.m-2) 
qn volumetric flow during filtration (n:f) or backwash (n:BW) (m3.s-1) 

Rcake cake resistance (m-1) 
Rer external resistance (m-1) 
Rir internal resistance (m-1) 
Rm membrane resistance (m-1) 
Rres residual cake resistance (m-1) 

TMP Transmembrane Pressure (Pa) 
TMP0 transmembrane Pressure at the beginning of each cycle (Pa) 
TMP01 transmembrane Pressure at the beginning of the first cycle (Pa) 
TMPi transmembrane Pressure at the beginning of the second phase of each cycle (Pa) 
TSS Total suspended Solid (Kg.L-1) 

u flux direction control  
𝑢𝑢� flux direction control at singular arc state  
V permeate collected volume (m3) 
V* target volume at the end of optimal control strategy (m3) 
 𝑉𝑉�  collected volume at the end of singular arc 
Ve Collected volume at the beginning of singular arc 
α specific cake resistance (m.Kg-1) 
β parameters related to the shear force (m2.Kg-1) 
η backwash efficiency (s-1) 
µ Viscosity (Pa.s) 

 

1. Introduction 

Due to the global water scarcity, there is increasing interest in developing and optimizing 
advanced technologies for appropriately treating wastewater for recycling purposes. Membrane 
bioreactors have been extensively studied for wastewater treatment due to their ability to produce high-
quality effluent, occupy a small footprint, and reduce sludge production [1,2]. This technology combines 
an activated sludge and membrane filtration process to achieve high nutrient removal and complete 
biomass rejection without the need for secondary settling. However, membrane fouling remains a major 
challenge in MBRs as it reduces permeation flux when filtration operates at a constant transmembrane 
pressure (TMP) or increases TMP in constant flux mode. This results in a decrease of effluent quality 
and an increase in operating costs [3, 4]. 

At full scale, physical cleaning methods such as relaxation, backwash, and aeration are 
commonly employed to limit clogging. However, this phenomenon is complex and depends on several 
operational parameters, including flux, filtration and backwash duration, and aeration flow [5]. Without 
an optimal cleaning strategy, the process may suffer from inefficient filtration performance, resulting in 
high energy consumption and low water recovery [6, 7]. Several studies have focused on optimizing 
MBR operating conditions to mitigate clogging [8, 9]. In this context, significant progress has been 
made in developing more efficient fouling control methods. 



3 
 

An effective backwash strategy can delay irreversible fouling and reduce the overall cost 
associated with UF foulants [10-12]. Backwash duration and frequency are important parameters [13-
15] that influence fouling and cannot be determined solely based on the supplier's recommendations 
[16]. Most MBR plants operate at a constant flux, and fouling is generally indicated by an increase in 
transmembrane pressure (TMP) over time. Therefore, a higher backwash duration and frequency can 
cause a net production loss without necessarily reducing the fouling rate. On the other hand, infrequent 
backwashing can increase the build-up rate of internal fouling and lead to increased energy consumption. 
Thus, there is a compromise to be found that can be computed provided that a model is available, and 
an optimal control is well defined. The novel challenge is to operate MBRs at optimal operating 
parameters, in a sense to be clearly defined, that allow for good water productivity at minimal energy 
cost. 

A variety of control and optimization methods have been proposed for better management of 
backwash sequences. However, many of these studies are just based on empirical investigations [11, 13, 
17-19]. For example, Hwang et al. [18] proposed a power-type empirical correlation between 
irreversible filtration resistance and the filtration cycle to select optimal backwash conditions. Gonzalez 
et al. [20] proposed a feedback control using an empirical fouling model to adjust permeate flux as a 
function of filtration length and the maximum permissible TMP during a cycle. However, more 
advanced control methods that use mathematical models to anticipate the dynamic behavior of the 
process and adapt the cleaning strategy are emerging in the literature [21-25]. For instance, optimal 
control approaches have been developed recently to design optimal backwash strategies and maximize 
filtration system performance. Cogan et al. [21, 22] and Kalboussi et al. [24, 25] applied Pontryagin's 
Maximum Principle (PMP) to predict the optimal instants of switching between filtration and backwash 
periods that maximize the net water production over a given operating time of a membrane filtration 
process operating at constant TMP. They demonstrated numerically that the optimal strategy 
significantly improves the net permeate production [24]. With respect to previously mentioned empirical 
strategies, optimal controls synthesized on the basis of mathematical models present the advantage of 
guaranteeing their optimality. 

It is interesting to note that while many studies have focused on developing optimal control 
strategies for separation systems operating at a constant transmembrane pressure, more recent studies 
have focused on developing optimal control strategies for constant flux filtration systems, which are 
typical in real-world MBR applications. For example, Cogan et al. [26] developed a model to calculate 
an optimal balance between filtration and backwash to maximize water production efficiency while 
considering the effects of membrane aging during full scale potable reuse. They showed that used model 
compares well with the full-scale operational data, and model parameters accurately capture the fouling 
kinetics with membrane age, providing clues to changes in optimal backwash timing and duration. On 
the other hand, Aichouch et al. [27] used a simple mathematical model to develop an optimal backwash 
scheduling strategy that minimized pumping energy consumption for a predefined volume production. 
This work seems interesting since the increase in TMP induced by biofouling can represent 30 to 70% 
of energy consumption [28] but this optimal approach was simply tested in simulation and never 
implemented at pilot scale. 

The objective of this paper is therefore to conduct an experimental implementation of the 
optimal control backwash as developed in Ref. [27], to reduce pumping energy consumption in a 
constant flux MBR. To the best of our knowledge, the practical implementation of theoretical optimal 
strategies has not yet been undertaken. This study can provide valuable insights into the real 
effectiveness of this approach in mitigating fouling and reducing pump energy consumption. The 
findings from such experiments can contribute to the development of more efficient fouling control 
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methods and improve the overall performance and sustainability of MBR processes. Steps of this work 
consist first in validating the simple model to capture the dynamic behavior of the MBR, then in 
synthesizing the optimal control strategy according to the data gained from model analysis and finally 
in evaluating and discussing the practical implementation of the optimal strategy compared to the 
classical one.  

2. Experimental section 

2.1 SMBR pilot system 

The experimental study was carried out using a ZeeWeed submerged membrane bioreactor pilot ZW10 
(Fig. 1) installed in the wastewater treatment plant WWTP of Charguia (Tunis, Tunisia). The SMBR is 
equipped with a hollow fiber membrane (M), from Polymem-France. The membrane has pores diameter 
of 0.01 µm, filtration surface area of 1.5 m2 and is immersed in a cylindrical biological tank of 220 L 
(T2). Biological treatment was performed under aerobic conditions with compressed air introduced in 
the aeration pipes (A) around the membrane module. The air flow rate measured with a rotameter (F1) 
was fixed at 2 CFM in the reactor to maintain the dissolved oxygen above 1.5 mg/L and create a shear 
for fouling mitigation. 

 

FIG. 1: Experimental set up of Zenon SMBR ZW10 

A: aeration pipes, B1: blower, F1: float flowmeter, FT2: reversible flow magnetic transmitter M: Hollow 
fiber membrane, P1: feed pump, P2: reversible gear permeate pump, P3: sludge pump, PT1: pressure 
transmitter, V: valve, T1: feed tank, T2: bioreactor, T3: permeate tank 

The permeate was continuously extracted from the top of the membrane module by reversible micro-
gear pump P2 (micropump serie GJ) connected to a programmable automate system (siemens SIMATIC 
HMI). The automation system allowed for the control of the pump’s rotation speed and the ability to 
reverse the pump’s rotation during backwash phase. 

The experiments were carried out at constant permeate flux regulated by the gear pump P2. The 
transmembrane pressure was recorded every 10 s using PT1 pressure transmitter. The flow rates of both 

PT1 
T2 

A 

M 
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permeate and backwash were measured by a reversible magnetic flow transmitter FT2 (Kobold). The 
sludge was extracted from the bottom of the aeration tank T2 using a peristaltic pump P3. 

2.2 Operating conditions 

The peristaltic pump P1 was used to feed continuously the bioreactor with the real sewage from the 
Charguia WWTP aeration tank T1. Table 1 summarizes the feed sewage characteristics. The 
experiments were conducted during the June-July period, no significant change in the feed composition 
nor in the climatic conditions was observed throughout this period. 

Table 1: Characteristics of sewage used to feed the SMBR 

Water quality parameter Mean value 
pH 6.8 
Conductivity (µS.cm-1) 3745 
TSS (g.L-1) 2.2 
COD (mgO2.L-1) 371 
BOD5 (mgO2.L-1) 286 
MVS (g.L-1) 1.8 

   

The SMBR was first operated in the classical mode. Then, the operation of the process was switched in 
the optimal control mode. In the classical mode, a periodical backwash of 45s was applied every 10 min 
of filtration as recommended by commercial suppliers [29]. The backwash was initiated by reversing 
the direction rotation of the permeate pump (P2). The optimal control mode considered in this study will 
be detailed in the optimal control section 4. 

The permeate flux was kept constant at 8.5 ± 0.5 L.m-2.h, below the critical flux determined by flux step 
method [30]. Whereas the backwash flux was two times much higher. To keep the bioreactor level 
constant, the feed and the permeate were circulated at the same flowrates. The sludge extraction rate 
was fixed at 0.6 L/h which correspond to a sludge retention time (SRT) of 15 days [29].  

2.3 Analytical methods 

Water samples were taken at the inlet (T1) and outlet (T3) of the bioreactor. Chemical oxygen demand 
COD, biochemical oxygen demand BOD and total suspend solid TSS analyzes were carried out 
immediately after sampling.  

The TSS was measured by gravimetric methods with 0.7 µm filter for influent and 0.45 µm filter for 
permeate samples. COD were determined using WTW kits and WTW photolab S6 photometer. The 
BOD5 was measured according to European Standard Method with WTW Oxitop system. 

3. Fouling characterization 

Registered TMP data were analyzed according to “resistance in series” model (Eq.1) to characterize 
membrane fouling. 

                                                     𝑇𝑇𝑇𝑇𝑇𝑇 =  𝜇𝜇 𝐽𝐽𝑣𝑣(𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  +  𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟)                                                                         (1) 

µ is the permeate viscosity, Jv is the volumetric permeate flux, Rm is the clean membrane resistance, Rcake 
is the reversible fouling resistance and Rres is the residual fouling resistance. As described in [9], the 
residual fouling can be divided into internal fouling resistance (Rir) related to pore blocking or attached 
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matter that is not eliminated during backwash and external fouling resistance (Rer) linked to fouling 
layer recompression. 

                                                                    𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟  =  𝑅𝑅𝑖𝑖𝑖𝑖  +  𝑅𝑅𝑒𝑒𝑒𝑒                                                                                (2) 

Rir can be calculated by Eq.3. 

                                                         𝑇𝑇𝑇𝑇𝑇𝑇0 =  𝜇𝜇  𝐽𝐽𝑣𝑣 (𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑖𝑖𝑖𝑖)                                                                        (3) 

where TMP0 is the transmembrane pressure just at the beginning of each cycle (Fig.2).  

 

Fig.2 : TMP profile of filtration/backwash cycles for the classical control mode (10min filtration and 45s backwash). TMP0 is 
TMP just at the beginning of each cycle and TMPi is the initial TMP in the second phase of each cycle 

External fouling resistance correspond to the sudden increase of the TMP in the beginning of each cycle 

due to the rapid recompression of the external layer (first phase, Fig.2). Its value can be deduced from 

Eq.2-Eq.4. 

                                                         𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 =   𝜇𝜇  𝐽𝐽𝑣𝑣  (𝑅𝑅𝑚𝑚 +  𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟)                                                                 (4) 

TMPi is the initial transmembrane pressure in the second phase of each cycle where the TMP starts to 

increase linearly with filtration time (Fig.2) [9]. 

However, reversible fouling resistance is associated to the cake layer deposition and can be calculated 

by Eq.1. 

4. Modelling and optimal control Section 

4.1 Fouling Model description 

The used model was developed in a previous work [31]. It is based on mass balance for a dead-end 
filtration operating at constant flux and aims to simulate the TMP variation during filtration and 

TMPi 

TMP0 

1st phase 

2nd phase 
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backwash phases by considering cake building, pore blocking and cake porosity decrease.  For the needs 
of this study, the model was simplified to only consider the reversible clogging by cake layer.  

During the filtration phase, the mass accumulated over time on the membrane surface (m) is assumed 
to be the difference between the mass deposited by convective forces and the mass detached by shear 
forces generated by the aeration in the biological tank: 

                                                              𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑓𝑓(𝑚𝑚) =  𝐶𝐶. 𝐽𝐽𝑣𝑣 − 𝐶𝐶. 𝐽𝐽𝑣𝑣 .𝛽𝛽.𝑚𝑚                                                                (5) 

where C is the suspended matter concentration, Jv the permeate volumetric flux and β a parameter related 
to the shear force. 

During backwash, the mass deposited on the membrane surface decreases as follows: 

 

                                                                        𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝐵𝐵𝐵𝐵(𝑚𝑚) =  −𝜂𝜂 .𝑚𝑚                                                                   (6) 

where η is the backwash efficiency. 

If we consider a control u that takes, by convention values 1 during filtration and -1 during backwash, 
the accumulated mass deposited on the membrane surface can be written as follows: 

                                                                         𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1+𝑢𝑢
2

 𝑓𝑓𝑓𝑓(𝑚𝑚) + 1−𝑢𝑢
2

 𝑓𝑓𝐵𝐵𝐵𝐵(𝑚𝑚)                                                       (7) 

 

According to the resistance in series model, by neglecting the residual fouling, the TMP, can be 
expressed as: 

                                                                          𝑇𝑇𝑇𝑇𝑇𝑇 =  𝜇𝜇  𝐽𝐽𝑣𝑣 (𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                 (8) 

Rcake is proportional to the specific cake resistance α as: 

                                                  𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝛼𝛼 𝑚𝑚                                                                              (9) 

In this study, MATLAB 2014b software was used for simulation and process optimization. Model 
validation and parameters identification were realized by fitting the normalized experimental data 
(TMP/TMP01) to the theoretical normalized ones by the least squares method using Matlab fmincon 
function, defined as an optimization function. The model efficiency was evaluated by determining the 
regression coefficient R2as a performance indicator, calculated by the following expression: 

𝑅𝑅2 = 1 −
∑ �𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗−𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑗𝑗�

2𝑁𝑁
𝑗𝑗=1

∑ �𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗−𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎�
2𝑁𝑁

𝑗𝑗=1
                                                         (10) 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒, 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎 were the experimental, predicted and average transmembrane pressures, 
respectively. j is the measure number and N is the total number of measures.  

4.2 Optimal control approach 

As described in Ref. [27], an optimal control problem was developed to minimize the pumping hydraulic 
energy using a mathematical model describing the process. The control signal u(t) is adjusted based on 
feedback which is dependent on the accumulated mass m and the produced volume V. Pontryagin’s 
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Maximum Principle (PMP) was the mathematical tool applied to determine the analytical solution of 
the optimal control problem. The fundamental contribution of optimal control theory is that the applied 
theoretical tools provided by the PMP enable the calculation of an optimal accumulated mass value, 𝑚𝑚� , 
that minimizes the total hydraulic energy consumed by MBR pump to produce a predefined volume V*. 

The total produced volume V is defined as: 

                                                           𝑑𝑑𝑑𝑑 = ∫ �1+𝑢𝑢
2

 𝐽𝐽𝑣𝑣 −  1−𝑢𝑢
2

 𝐽𝐽𝐵𝐵𝐵𝐵�  𝑇𝑇
0 𝑑𝑑𝑑𝑑                                                              (11) 

Where JBW is the backwash flux and T is the time for which the target permeate volume V* is reached.    
 

The pumping energy demand ET during a time interval [0, T] depends on the deposited mass m as: 

                                                        𝐸𝐸𝑇𝑇 = ∫ � 1+𝑢𝑢
2

 .𝐸𝐸𝑓𝑓(𝑚𝑚) + 1−𝑢𝑢
2

 .𝐸𝐸𝐵𝐵𝐵𝐵(𝑚𝑚) � 𝑇𝑇
0 𝑑𝑑𝑑𝑑                                                      (12) 

 

Ef and EBW are respectively the required pumping energy during filtration and backwash phases.  
 

Ef and EBW can be calculated using Eq. 13.  

                                                                           𝐸𝐸𝑛𝑛 =  𝑞𝑞𝑛𝑛  𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛                                                                              (13) 

Where 𝑞𝑞 is the flowrate and the index n refers to f during filtration and BW for backwash phase. 

From Eq. 8 and 9, En can be rewritten in terms of the attached mass m: 

                                                                       𝐸𝐸𝑛𝑛 =  𝑘𝑘1𝑛𝑛 𝑚𝑚 + 𝑘𝑘2𝑛𝑛                                                                           (14) 

k1n and k2n are parameters relatives to the hydraulic energy their expressions are represented in table 2.  

Table 2 : Hydraulic energy parameters expressions during filtration and backwash 

Parameter Expression  

k1n (m3. Pa. s-1. Kg-1) 𝑞𝑞𝑛𝑛2

𝐴𝐴
 𝜇𝜇  𝛼𝛼  (15) 

k2n (m3.Pa.s-1) 𝑞𝑞𝑛𝑛2

𝐴𝐴
 𝜇𝜇  𝑅𝑅𝑚𝑚   (16) 

*n refers to f during filtration and BW for backwash phase 

The optimal solution depends on the state of membrane fouling and is summarized in [27] as: 

 

𝑢𝑢(𝑚𝑚,𝑉𝑉) = �
+1, 𝑖𝑖𝑖𝑖 𝑚𝑚 < 𝑚𝑚�
𝑢𝑢� , 𝑖𝑖𝑖𝑖 𝑚𝑚 = 𝑚𝑚�       𝑎𝑎𝑎𝑎𝑎𝑎    𝑉𝑉 ≤ 𝑉𝑉�

+1, 𝑖𝑖𝑖𝑖 𝑚𝑚 > 𝑚𝑚�       𝑎𝑎𝑎𝑎𝑎𝑎    𝑉𝑉 >  𝑉𝑉�
                                                (17) 
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In Eq. 17, 𝑚𝑚� , 𝑉𝑉�  and 𝑢𝑢� are the control parameters and depend on the parameters of the fouling model 
described previously. The procedure for calculating 𝑚𝑚� , 𝑉𝑉�  and 𝑢𝑢� is summarized in Appendix.  

A schematic diagram of the optimal solution is represented in Fig 3. 

 

Figure 3: Schematic representation of the optimal control solution developed in [27] 

As we consider that the membrane is initially clean (m0 = 0), the optimal solution begins with u = 1 until 
m reaches  𝑚𝑚�  corresponding to V = Ve. Then, in a second phase, [Ve , 𝑉𝑉�], a constant control  𝑢𝑢� called 
singular arc  is applied to maintain the mass of the cake layer around  𝑚𝑚�  until the switching volume 𝑉𝑉�  
is reached. 𝑢𝑢� takes value between [-1, 1]. Finally, for the last phase [𝑉𝑉� , V*], it is optimal to finish the 
process with filtration cycle (u = 1) until the target volume V*.  

It should be noted that the total operating time of the process depends on the target volume V*. Contrary 
to 𝑉𝑉� , the others control parameters 𝑚𝑚� , 𝑢𝑢� and Ve are independent on V* and remain unchanged whatever 
the total operating time.  

Fig. 3 presents the general optimal control synthesis for the problem considered. Notice that for some 
initial conditions, the optimal control consists in switching from -1 to +1 instead of staying on the 
singular arc [27]. In practice, this case is very particular and, in most cases, it may be neglected, notably 
as long as V* is large enough. 

For the singular arc, the control signal 𝑢𝑢� takes an intermediate value between -1 and 1. However, in 
practical applications, implementing this exact value is not feasible. Nevertheless, it is possible to 
approximate the theoretical optimum by alternating between -1 and 1 in a way that keeps the mass 𝑚𝑚 
close to 𝑚𝑚� . This approximation is detailed in section practical implementation section 5.4. 

5. Results and discussion  

5.1 Water treatment efficiency 

Samples of influents and effluents were taken from the SMBR system. Parameters such as TSS, COD 
and BOD5 were analyzed, and mean values are summarized in table 3. It can be noted that the applied 
strategy didn’t affect the effluent quality. The slight deviations observed are mainly due to fluctuations 
of the influent quality. 
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Table 3 : influent and effluent characteristics and removal efficiency 

 Influent (mg.L-1) Effluent (mg.L-1) Removal efficiency 
(%) 

TSS   2100 ± 84 6 ± 2 99 
COD 250 ± 10 51 ± 10 80 
BOD  240 ± 20 9 ± 3 96 

 

The influent COD was around 250 mgO2.L-1, while the permeate had a lower COD concentration of less 
than 51mgO2.L-1, resulting in COD removal efficiency of approximately 80%. The COD rejection could 
probably be improved to reach higher value by varying the operating conditions, like increasing the 
SRT, but it was not the aim of this study. The DBO rejection rate was higher, reaching 97%. Nonetheless, 
the rejection rates are considered satisfactory and comparable to those reported in Ref. [32]. Regarding 
total suspended solid TSS, a high rejection rate was observed (more than 99%).  The permeate contained 
only trace amounts of suspended matter, below 8 mg.L-1.  

5.2 Model calibration and parameters estimation 

For model validation, the theoretical data were compared to the experimental normalized TMP data 
registered for classical experience. The model parameters determined experimentally are presented in 
Table 4. Others model parameters (table 5) were identified using least square method as described in 
model description section. As the used membrane was not new, an initial deposed mass m0 = 6. 10-3 
kg.m-2 was considered as the initial condition. Rm was determined experimentally from pure water 
permeability and C, the suspended solid concentration, was considered as the TSS concentration in the 
biological reactor. 

Table 4 : Experimental model parameters 

Parameters Value 
Jv (m3.m-2.s-1) 2.71 10-6 
JBW (m3.m-2.s-1) 5.66 10-6 
PTM01 (Pa) 7892.4 
Rm (m-1) 1.79 10+12 
C (Kg.m-3) 2184 10-3 

 

Table 5 : Model parameters identified by least squares method 

Parameters Value 
β (m2.kg-1) 10-6 
α (m.kg-1) 2.02 10+14 
η (s-1) 4.9 10-3 



11 
 

  

Figure 4 : Model fitting with experimental data obtained for the classical strategy 

The comparison of model simulation and experimental normalized data shows satisfactory fitting with 
an important coefficient regression 86.25 % (Fig.4). The discrepancy observed is mainly due to 
hypothesis assuming no irreversible fouling in the model. In fact, from Fig.4, it can be observed that the 
model fit mainly the linear rise of the TMP corresponding to cake fouling.  

Despite its simplicity, the proposed model reproduces in satisfactory way the experimental TMP of the 
classical experience. Hence, the identified model parameters can now be used for computing the optimal 
control. 

As the main objective of this study is the minimization of the permeate pump hydraulic energy ET, the 
parameters (k1i et k2i) related to the energy were calculated according to the equations 14 and 15 and 
represented in table 6. 

Table 6 : Pumping Energy parameters values  

Parameters Value  
k1f (m5. Pa. s-1. Kg-1) 2.0769  
k2f (m3. Pa. s-1) 0.0185  
k1BW (m5. Pa. s-1. Kg-1) 9.0551  
k2BW (m3. Pa. s-1) 0.0807  

 

5.3 optimal control strategy 

To evaluate the efficiency of the optimal solution, the optimal control parameters (𝑚𝑚� , 𝑉𝑉�  and 𝑢𝑢�) were 
calculated with the identified model parameters (α and β) using the appropriate mathematical design 
model (cf. Appendix). The target volume V* was chosen equal to 0.04 m3.m-2 corresponding 
approximatively to the volume collected after 5h of operation with the classical strategy. Fig.5-A and B 
shows theoretical optimal solution of the control (u) and the deposed mass (m) on the membrane, 
respectively, as a function of the volume produced for a predefined volume V* = 0.04 m3.m-2.  

1 
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Figure 5 : (A) The theoretical optimal operating strategy over V* = 0.04 m3/m2; (B) The corresponding mass accumulated on 
the membrane surface. 

 

As the initial condition m0 = 6 10-3 kg/m2 is less than 𝑚𝑚�  = 1.17 10-2 kg.m-2, our system operates initially 
in filtration (u = 1) up to a volume Ve = 0.0027 m3.m-2 corresponding to a filtration time of 16 min. Once 
the required mass at the surface of the membrane reaches the value 𝑚𝑚� , the singular control ū is applied 
until reaching the volume 𝑉𝑉�  = 0.0321 m3.m-2. The value of ū in this case study is equal to 0.8189. The 
cake mass (m) was maintained at 𝑚𝑚�  during the singular arc volume interval [Ve , 𝑉𝑉� ] which corresponds 
to a filtration/backwash duration of 4 hours and 12min. A final filtration cycle (u = 1) for 48 min is set 
up when V = 𝑉𝑉� . Fig.5 shows that the durations of the first and last cycle are shorter compared to the time 
spent on the singular arc defined by m(t) = 𝑚𝑚� . Filtration times corresponding to the collected volumes 
Ve, 𝑉𝑉�  and V* were calculated using Eq.11. 

This optimal solution was simulated with Matlab to estimate theoretically the pump energy consumption 
for a targeted volume of 0.04m3.m-2. Fig. 6 represents the evolution of simulated ET for the classical and 
optimal strategies. 

A 

B 
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Figure 6: Simulated hydraulic pump energy for the classical and optimal strategy 

As shown in Fig.6, the model predicts an energy consumption of 1056 W.s when simulating data of 
classical strategy to collect V* = 0.04 m3.m-2. However, the optimal strategy requires less energy 
consumption of about 1042 W.s compared to the classical one. The gap between both consumption is 
observed from about 12000s and became more pronounced over time filtration. 

At this stage, the optimal solution has no physical signification as in the singular arc 𝑢𝑢� is different from 
1 and -1. In the next section, an approximation of the optimal solution is constructed to convert 𝑢𝑢� = 
0.8189 into filtration (u = 1) and backwash periods (u = -1). 

5.4 Practical implementation 

To approximate 𝑢𝑢� only by filtration and backwash cycles, such that m remains close to 𝑚𝑚�  during the 
singular arc interval time, we consider that 𝑢𝑢� represents the ratio between the net time production and 
total time cycle as: 

                                                                               𝑢𝑢� =  𝑡𝑡𝑓𝑓 – 𝑡𝑡𝐵𝐵𝐵𝐵
𝑡𝑡𝑓𝑓 + 𝑡𝑡𝐵𝐵𝐵𝐵

                                                                                     (18) 

tf and tBW represent respectively the filtration and backwash duration in each cycle. 

The latter expression means that if  𝑢𝑢� = 1, then all the cycle time will be spent in filtration (tBW = 0) and 
if 𝑢𝑢� = ‒1, the cycle time will be spent in backwash (tf = 0). 

Based on Eq.18, filtration and backwash times can be calculated during the singular arc interval [Ve , 𝑉𝑉�].  
The backwash period was kept the same as the classical strategy i.e 45s to compare the performance of 
the classical and optimal strategies experimentally. In this case, the filtration time was 7.5 min 
corresponding to a commutation number between filtration and backwash equal to 32.  

The optimal strategy sequence which will be applied experimentally is summarized in Fig. 7. 
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Figure 7: the adapted strategy to be carried out during the singular arc 

5.5 Classical vs optimal strategy 

Adapted optimal strategy (Fig.7) was applied on the SMBR, and the experimental results were analyzed 
in terms of fouling and hydraulic pump energy consumption then compared to the classical strategy data. 

5.5.1 Fouling characterization 

TMP analysis provides information on reversible (cake layer) and residual clogging as described in 
experimental section. The calculated resistance Rt, Rcake, Rres, Ri and Re are shown in Fig 8 for classical 
and optimal experiences.  

 

 

Figure 8: Different hydraulic resistances for classical and optimal strategy 

 

Fig.8 illustrates some differences in the fouling profile of classical and optimal experiences. The total 
hydraulic resistance is slightly higher for the classical experience than the optimal one. For both 
strategies the residual fouling exceeds reversible fouling which is in concordance with the works of 
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Jiang et al. and Vera et al. [9, 33]. They showed [9] that the magnitude of the residual resistance is 
greater than the reversible resistance due to pore blocking. Based on the Rir and Rer results, the residual 
fouling caused by pore blocking and particles adsorption was more intensive than that caused by the 
external layer recompression.  

Moreover, it can be observed that Rres is higher for classical experience than the optimal one. 
The residual resistance for the classical experience contributes to 50% of the total resistance against 
45% for optimal experience. McAdam et al. [34] reported on a dead-end filtration MBR applied to 
groundwater that it exists a critical cycle duration, associated to a critical mass deposition, beyond which 
the physical cleaning is less efficient, and so the residual fouling increased. During the singular arc for 
the optimal strategy, 𝑚𝑚�  is probably closer to the critical mass so the physical cleaning is more performant 
reducing the residual fouling. Likewise, Rcake is more important for optimal experience (6.54 10+11 m-1) 
than classical one (5.63 10+11 m-1). In fact, for the optimal experience, the first and last filtration cycles 
are longer than the classical experience. Longer filtration time favors cake layer deposition which can 
protect the membrane surface against pore blocking.  

5.5.2 Hydraulic pump energy consumption 

The optimal strategy was applied experimentally on SBMR and the TMP data were used to calculate 
the pump hydraulic energy during filtration and backwash sequences (Eq.13).  

Fig. 9-A and -B shows, respectively, the collected permeate volume and the pumping energy consumed 
for the two experiences. 
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Figure 9: (A) Cumulative permeate volume (L.m-2) and (B) Cumulative Hydraulic pumping energy consumption for classical 
and optimal strategy over time. The blue and green dotted lines (in B) correspond respectively to the energy consumption to 

produce a net volume of 0.037 m3.m-2 for classical and optimal strategy 

Although the optimal control approach applied in this study does not consider productivity as 
an optimization criterion, it is noteworthy that the total time required to collect the same volume from 
both experiments is quite similar, as seen from Fig. 9-A. The net permeate flux of the optimal experiment 
is 7.46 L.m-2.h-1 which is slightly lower than that of the classical experience at 7.57 L.m-2.h-1. However, 
it is interesting to observe that the optimal strategy has effectively reduce the total consumed hydraulic 
pump energy compared to the classical strategy (Fig.9-B). For the same net permeate produced of 0.0373 
m3.m-2, corresponding to 18 110 seconds of operation, the classical strategy requires a total hydraulic 
energy of 907 W.s with 749 W.s consumed during filtration. However, the optimal strategy consumes 
only 892 W.s (730 W.s during filtration) to produce 0.0393 m3.m-2 of net permeate. For the same volume 
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produced 0.0373 m3.m-2, a 7% reduction in consumed hydraulic pump energy is realized when the 
optimal strategy is applied. 

One important point to note is that the optimal control strategy consumes less hydraulic energy 
during filtration, even though it spends more time on the filtration operation (94% of the time versus 
93% for the classical strategy). This indicates that the optimal strategy effectively reduces membrane 
clogging. In conclusion, the optimal strategy provides direct benefits for MBR operation by reducing 
pumping energy consumption and indirect benefits by preserving the membrane against fouling. This, 
in the longer term, could lead to a reduction in additional expenses incurred by membrane cleaning 
and/or replacement. 

6. Conclusion 

MBR is a promising technology for municipal wastewater treatment however fouling control remains 
the main challenge to decrease the operational cost of the system. In this study, an optimal control 
backwash strategy was applied to a MBR to decrease the supplementary operational cost of pumping 
induced by fouling. A simple mathematical model is used to capture the dynamic behavior of the system 
in order to arrive at suitable optimal strategy. The simple used model allowed to describe the dynamic 
system during the filtration and backwash with satisfactory coefficient regression around 86%. The 
optimal backwash strategy consists of applying a filtration phase until reaching a singular arc 
corresponding to an optimal critical accumulated mass onto the membrane. To keep the mass around 
the singular arc the optimal strategy indicates that backwash should be performed more frequently with 
a filtration/backwash cycle times of 7.5 min/45s instead of 10 min/45s for the classical strategy. 
Compared with the classical backwash scheduling, the optimal strategy decreased the total resistance 
particularly the residual fouling of 14% and the energy pumping consumption of 7%. 

The results of this study are very promising and have proven the effectiveness of mathematical tools to 
better control clogging. However, to apply these advanced optimization techniques on an industrial scale 
it would be interesting to extend this work to longer term operation. So as future work, an adaptative 
feedback control can be envisaged over longer term to continuously adjust the parameters of the model 
and thus rectify/adapt the optimal strategy if the filtration system is subjected to variability of influent 
quality, fouling degree or others various operating conditions. 
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Appendix 

The optimal control synthesis for constant flux filtration system was developed in [25, 27] and is 
summarized in this Appendix. 
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Optimal control Analysis 

The optimal control is defined as [27]: 

inf
𝑢𝑢(⋅)

 ∫  𝑡𝑡𝑓𝑓
0  (𝐸𝐸+(𝑚𝑚(𝑡𝑡)) + 𝑢𝑢(𝑡𝑡)𝐸𝐸−(𝑚𝑚(𝑡𝑡)))𝑑𝑑𝑑𝑑

                                                   A.1 

Subject to  

 

�
𝑚̇𝑚 = 𝑓𝑓−(𝑥𝑥) + 𝑢𝑢𝑓𝑓+(𝑥𝑥),  𝑚𝑚(0) = 𝑚𝑚0

𝑉̇𝑉 = 𝐽𝐽− + 𝑢𝑢𝐽𝐽+,  V(0) = 𝑉𝑉0
 𝑢𝑢 ∈ [−1,1] 

 

The process stops at the first time 𝑡𝑡𝑓𝑓 for which the target is reached: 𝑉𝑉�𝑡𝑡𝑓𝑓� = 𝑉𝑉∗. 

For convenience, E+, E-, f+, f-, J+ and J- are defined as: 

𝐸𝐸+(𝑚𝑚) =
𝐸𝐸𝑓𝑓(𝑚𝑚) + 𝐸𝐸𝐵𝐵𝐵𝐵(𝑚𝑚)

2
,  𝐸𝐸−(𝑚𝑚) =

𝐸𝐸𝑓𝑓(𝑚𝑚) − 𝐸𝐸𝐵𝐵𝐵𝐵(𝑚𝑚)
2

 

 

𝑓𝑓+(𝑥𝑥) =
𝑓𝑓𝑓𝑓(𝑥𝑥) + 𝑓𝑓𝐵𝐵𝐵𝐵(𝑥𝑥)

2
,  𝑓𝑓−(𝑥𝑥) =

𝑓𝑓𝑓𝑓(𝑥𝑥) − 𝑓𝑓𝐵𝐵𝐵𝐵(𝑥𝑥)
2

 

And 

𝐽𝐽+ =
𝐽𝐽𝑣𝑣 + 𝐽𝐽𝐵𝐵𝐵𝐵

2
,  𝐽𝐽− =

𝐽𝐽𝑣𝑣 − 𝐽𝐽𝐵𝐵𝐵𝐵
2

 

For simplicity the simple expressions of the functions 𝑓𝑓𝑓𝑓 ,𝑓𝑓𝐵𝐵𝐵𝐵,𝐸𝐸𝑓𝑓 ,𝐸𝐸𝐵𝐵𝐵𝐵 are re written as: 

𝑓𝑓𝑓𝑓(𝑚𝑚) = −𝑎𝑎𝑝𝑝𝑚𝑚 + 𝑏𝑏𝑝𝑝,  𝑓𝑓𝐵𝐵𝐵𝐵(𝑚𝑚) = 𝑎𝑎𝑟𝑟𝑚𝑚
𝐸𝐸𝑓𝑓(𝑚𝑚) = 𝑘𝑘1𝑓𝑓m + 𝑘𝑘2𝑓𝑓 ,  𝐸𝐸𝐵𝐵𝐵𝐵 = 𝑘𝑘1𝐵𝐵𝐵𝐵𝑚𝑚 + 𝑘𝑘2𝐵𝐵𝐵𝐵

 

where 𝑎𝑎𝑝𝑝, 𝑏𝑏𝑝𝑝,𝑎𝑎𝑟𝑟,𝑘𝑘1𝑓𝑓 ,𝑘𝑘2𝑓𝑓 ,𝑘𝑘1𝐵𝐵𝐵𝐵,𝑘𝑘2𝐵𝐵𝐵𝐵 are non-negative parameters. 

the Hamiltonian of the system is [27]: 

𝐻𝐻(𝑚𝑚, 𝜆𝜆𝑚𝑚, 𝜆𝜆𝑉𝑉 ,𝑢𝑢) = 𝜆𝜆𝑚𝑚[𝑓𝑓−(𝑚𝑚) + 𝑢𝑢𝑓𝑓+(𝑚𝑚)]  + 𝜆𝜆𝑉𝑉[𝐽𝐽− + 𝑢𝑢𝐽𝐽+] + 𝜆𝜆0[𝐸𝐸+(𝑚𝑚) + 𝑢𝑢𝐸𝐸−(𝑚𝑚)]                                            A.2 

where 𝜆𝜆0 is equal to -1 or 0. The Pontryagin’s maximum principal states that for any optimal solution 
𝑢𝑢⋆(⋅) there exists adjoint variables 𝜆𝜆𝑚𝑚(⋅), 𝜆𝜆𝑉𝑉(⋅) solutions of the adjoint system [27] 

�𝜆̇𝜆𝑚𝑚(𝑡𝑡) = −∂𝑚𝑚𝐻𝐻(𝑥𝑥(𝑡𝑡), 𝜆𝜆𝑚𝑚(𝑡𝑡), 𝜆𝜆𝑉𝑉(𝑡𝑡),𝑢𝑢⋆(𝑡𝑡))
𝜆̇𝜆𝑉𝑉(𝑡𝑡) = −∂𝑉𝑉𝐻𝐻(𝑚𝑚(𝑡𝑡), 𝜆𝜆𝑚𝑚(𝑡𝑡), 𝜆𝜆𝑉𝑉(𝑡𝑡),𝑢𝑢⋆(𝑡𝑡))

 

Here, the adjoint equations are 

𝜆̇𝜆𝑚𝑚 = −𝜆𝜆𝑚𝑚𝑓𝑓−′(𝑚𝑚) − 𝜆𝜆0𝐸𝐸+′ (𝑚𝑚) − 𝑢𝑢⋆(𝜆𝜆𝑚𝑚𝑓𝑓+′(𝑚𝑚) + 𝜆𝜆0𝐸𝐸−′ (𝑚𝑚)) 
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𝜆̇𝜆𝑉𝑉 = 0 

with the transversality conditions 

𝜆𝜆𝑚𝑚�𝑡𝑡𝑓𝑓� = 0,  𝜆𝜆𝑉𝑉�𝑡𝑡𝑓𝑓� ≥ 0 

 

From Eq. A.2, the switching function is 

𝜙𝜙(𝑡𝑡) = 𝜆𝜆𝑚𝑚(𝑡𝑡)𝑓𝑓+(𝑚𝑚(𝑡𝑡)) + 𝜆𝜆𝑉𝑉𝐽𝐽+ + 𝜆𝜆0𝐸𝐸−(𝑚𝑚(𝑡𝑡)) 

which gives the following maximization conditions 

𝑢𝑢⋆(𝑡𝑡) = � 1  when 𝜙𝜙(𝑡𝑡) > 0
−1  when 𝜙𝜙(𝑡𝑡) < 0  a.e. 𝑡𝑡 ∈ �0, 𝑡𝑡𝑓𝑓� 

For any optimal solution, one has the following properties [27] 

i. 𝜆𝜆0 = −1 i.e. there does not exist abnormal extremal, 

ii. there exists 𝑡𝑡‾ < 𝑡𝑡𝑓𝑓 such that 𝑢𝑢⋆(𝑡𝑡) = 1 is optimal for 𝑡𝑡 ∈ �𝑡𝑡‾, 𝑡𝑡𝑓𝑓� 

iii. 𝜆𝜆𝑝𝑝 is a positive constant. 

Singular arc 

A singular arc is possible only for constant values of 𝑚𝑚 equal to  𝑚𝑚‾ . Then, the corresponding value of 
the control for the trajectory to stay at 𝑚𝑚 = 𝑚𝑚‾  is 

𝑢𝑢‾ = − 𝑓𝑓−(𝑥𝑥‾)
𝑓𝑓+(𝑥𝑥‾)

= −�𝑎𝑎𝑝𝑝+𝑎𝑎𝑟𝑟�𝑚𝑚‾ +𝑏𝑏𝑝𝑝
�𝑎𝑎𝑟𝑟−𝑎𝑎𝑝𝑝�𝑚𝑚‾ +𝑏𝑏𝑝𝑝

                                                                   A.3 

A straightforward computation gives 

𝜙̇𝜙 =
1
2
�𝑎𝑎𝑟𝑟𝑏𝑏𝑝𝑝𝜆𝜆𝑚𝑚 + �𝑎𝑎𝑟𝑟𝑘𝑘1𝑓𝑓 − 𝑎𝑎𝑝𝑝𝑘𝑘1𝐵𝐵𝐵𝐵�𝑚𝑚 + 𝑏𝑏𝑝𝑝𝑘𝑘1𝐵𝐵𝐵𝐵� 

that can be written using the expression of 𝜙𝜙 as follows: 

𝜙̇𝜙 =
𝑎𝑎𝑟𝑟𝑏𝑏𝑝𝑝

�𝑎𝑎𝑟𝑟 − 𝑎𝑎𝑝𝑝�𝑚𝑚 + 𝑏𝑏𝑝𝑝
𝜙𝜙 + 𝜓𝜓(𝑚𝑚, 𝜆𝜆𝑉𝑉) 

where the function 𝜓𝜓 has the expression 

𝜓𝜓(𝑚𝑚, 𝜆𝜆𝑉𝑉) =
1
2

𝑀𝑀(𝑚𝑚, 𝜆𝜆𝑉𝑉)
�𝑎𝑎𝑟𝑟 − 𝑎𝑎𝑝𝑝�𝑚𝑚 + 𝑏𝑏𝑝𝑝

  with 

𝑀𝑀(𝑚𝑚, 𝜆𝜆𝑉𝑉) = �𝑎𝑎𝑝𝑝 − 𝑎𝑎𝑟𝑟��𝑎𝑎𝑝𝑝𝑘𝑘1𝐵𝐵𝐵𝐵 − 𝑎𝑎𝑟𝑟𝑘𝑘1𝑓𝑓�𝑚𝑚2 − 2�𝑎𝑎𝑝𝑝𝑘𝑘1𝐵𝐵𝐵𝐵 − 𝑎𝑎𝑟𝑟𝑘𝑘1𝑓𝑓�𝑏𝑏𝑝𝑝𝑚𝑚  + 𝑎𝑎𝑟𝑟𝑏𝑏𝑝𝑝�𝑘𝑘2𝑓𝑓 − 𝑘𝑘2𝐵𝐵𝐵𝐵 − 2𝜆𝜆𝑉𝑉𝐽𝐽+� + 𝑏𝑏𝑝𝑝2𝑘𝑘1𝐵𝐵𝐵𝐵
 

Therefore, a singular arc 𝑥𝑥 = 𝑥𝑥‾ has to satisfy 
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Γ(𝑚𝑚‾ ) = 𝜓𝜓�𝑚𝑚‾ , 𝜆𝜆‾𝑉𝑉(𝑚𝑚‾ )� = 0 

Finally, a straightforward but lengthy computation (verified with Maple) gives the following expression 
of Γ [27] 

Γ(𝑚𝑚) = −
1
2
𝑁𝑁(𝑚𝑚)
Δ(𝑚𝑚)

  with 

𝑁𝑁(𝑚𝑚) = −�𝑎𝑎𝑟𝑟𝑘𝑘1𝑓𝑓 − 𝑎𝑎𝑝𝑝𝑘𝑘1𝐵𝐵𝐵𝐵���𝑎𝑎𝑝𝑝𝐽𝐽𝐵𝐵𝐵𝐵 + 𝑎𝑎𝑟𝑟𝐽𝐽𝑣𝑣�𝑚𝑚2 − 2𝑏𝑏𝑝𝑝𝐽𝐽𝐵𝐵𝐵𝐵𝑚𝑚� + 𝑎𝑎𝑟𝑟𝑏𝑏𝑝𝑝�𝑘𝑘2𝑓𝑓𝐽𝐽𝐵𝐵𝐵𝐵 + 𝑘𝑘2𝐵𝐵𝐵𝐵𝐽𝐽𝑣𝑣� + 𝑏𝑏𝑝𝑝2𝑘𝑘1𝐵𝐵𝐵𝐵𝐽𝐽𝐵𝐵𝐵𝐵
 

And  

Δ(𝑚𝑚) = �𝑎𝑎𝑝𝑝𝐽𝐽𝐵𝐵𝐵𝐵 + 𝑎𝑎𝑟𝑟𝐽𝐽𝑣𝑣�𝑚𝑚 − 𝑏𝑏𝑝𝑝𝐽𝐽𝐵𝐵𝐵𝐵 

Consequently, a singular arc 𝑚𝑚 = 𝑚𝑚‾  is a root of 𝑁𝑁. And an arc 𝑚𝑚 = 𝑚𝑚‾  can be part of an optimal solution 
only if its corresponding adjoint 𝜆𝜆‾𝑝𝑝(𝑚𝑚‾ ) is positive. 

The expression of 𝜆𝜆‾𝑉𝑉 is [27]: 

 𝜆𝜆‾𝑉𝑉(𝑥𝑥) =
𝑃𝑃𝑉𝑉(𝑚𝑚)
Δ(𝑚𝑚)

 

with 

𝑃𝑃𝑉𝑉(𝑚𝑚) = �𝑎𝑎𝑟𝑟𝑘𝑘1𝑓𝑓 − 𝑎𝑎𝑝𝑝𝑘𝑘1𝑊𝑊�𝑚𝑚2 + �𝑎𝑎𝑟𝑟𝑘𝑘2𝑓𝑓 − 𝑎𝑎𝑝𝑝𝑘𝑘2𝐵𝐵𝐵𝐵 + 𝑏𝑏𝑝𝑝𝑘𝑘1𝐵𝐵𝐵𝐵�𝑥𝑥 + 𝑏𝑏𝑝𝑝𝑘𝑘2𝐵𝐵𝐵𝐵 

Finally, if an optimal solution possesses a singular arc, this imposes that the singular arc is left with 𝑉𝑉 =
𝑉𝑉‾  such that [27]: 

𝑉𝑉‾  = 𝑉𝑉⋆ − 𝐽𝐽𝑣𝑣 ∫  𝑚𝑚‾ 𝑓𝑓
𝑚𝑚‾   𝑑𝑑𝑑𝑑

𝑓𝑓𝑓𝑓(𝑚𝑚)

 = 𝑉𝑉⋆ − �

𝐽𝐽𝑣𝑣
𝑎𝑎𝑝𝑝

log � −𝑎𝑎𝑝𝑝𝑚𝑚‾ +𝑏𝑏𝑝𝑝
−𝑎𝑎𝑝𝑝𝑚𝑚‾ 𝑓𝑓+𝑏𝑏𝑝𝑝

�  if 𝑎𝑎𝑝𝑝 > 0
𝐽𝐽𝑣𝑣
𝑏𝑏𝑝𝑝
�𝑚𝑚‾ 𝑓𝑓 − 𝑚𝑚‾ � if 𝑎𝑎𝑝𝑝 = 0

                                                          A.4 

The final state 𝑚𝑚‾𝑓𝑓 = 𝑚𝑚�𝑡𝑡𝑓𝑓� satisfy the condition 𝜆𝜆𝑉𝑉𝐽𝐽𝑣𝑣 − 𝐸𝐸𝑓𝑓�𝑚𝑚‾𝑓𝑓� = 0, thus 

𝑚𝑚‾𝑓𝑓 = 𝜆𝜆𝑉𝑉(𝑚𝑚‾ )𝐽𝐽𝑣𝑣−𝑘𝑘2𝑓𝑓
𝑘𝑘1𝑓𝑓

                                                                             A.5 
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