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Abstract

Many real-life decision making problems involve reasoning or optimizing over discrete variables
on ill-defined problems, where exact constraints or parameters are unknown and only indirect
correlated variables are observed together with solutions. In these situations, one may want to
machine learn how to predict a solution directly from the observed variables, learning effectively
”how to reason” or ”how to optimize”. A promising research direction involves the combination of
Machine Learning (ML) and discrete reasoning (DR) [1]: the problem is formulated as the discrete
optimization/reasoning problem whose parameters are predicted from data. Because of the various
types of observed variables and of the complexity of their relationship to hidden constraints and
parameters, Deep Learning (DL) is often considered as a suitable learning tool here. However, DL
requires differentiable loss functions, which are either zero or unavailable for discrete reasoning [2].

Two approaches have emerged to tackle such problems. On the one hand, the Predict-then-
optimize approach learns how to predict the discrete problem to solve and then solves it. The
basic components are well understood, learning can be efficient and exact DR can be performed
during inference. But the effect of errors on parameters on the final solution are not accounted
for [3] which makes the approach sub-optimal in low-data regimes.

For this reason, much of the attention has been focused on the direct integration of optimization
in the loss function, an approach that is often denoted as Predict-and-optimize or Decision-focused
learning [4]. The challenges here is to provide efficient end-to-end differentiable training. Some
approaches rely on efficient differentiable optimization layers that capture the DR problem through
a continuous relaxation [5, 6, 7]. They can tackle complex NP-hard problems at the cost of
approximate solving during inference: even optimally parameterized relaxations will fail to offer
exact solutions. Another family of approaches extracts meaningful gradients out of exact DR
solvers during training [2, 8, 9], enabling exact solving during inference. This however limits
their application to very small instances of NP-hard DR problems (e.g., scheduling with 3 tasks
only [3]) because of the tremendous optimization cost during training, a cost which is worsened by
the essentially randomly parameterized nature of predicted problems in the first training epochs.

We compare a Predict-then-optimize and a Predict-and-optimize approach on a classical Con-
straint Programming (CP) benchmark, the NP-complete sudoku problem. Our goal is to learn
how to solve new grids of sudoku from examples of solved sudoku grids (as we already did using
ML technology [10]), described here as a sequence of 81 numbers, each with an associated grid
coordinate. To relax the Boolean nature of constraints (satisfied or violated), we learn the param-
eters of a weighted CP model (a binary Cost Function Network or CFN [11]) using the CFN solver
toulbar2 [12] during inference and training (in Predict-and-optimize mode).

For Predict-then-optimize, we introduce the Gangster-PLL loss, a variant of the well-established
Pseudo-loglikelihood loss [13] and use the Hinge Loss [9] for Predict-and-optimize, both with reg-
ularization on the CFN parameters learned. We observe that the Predict-then-optimize approach
combines efficient learning with exact reasoning during inference, providing totally accurate so-
lutions even in relatively low regime situations. The far more expensive Predict-and-optimize
approach struggles at learning how to solve a sudoku grid, requiring more tuning of the exact
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solver. Contrarily to the Gangster-PLL approach, it tends to learn minimal CFN models, where
redundant constraints are absent [14].

We conclude that in many situations, the Predict-then-optimize approach has numerous ad-
vantages. It is possibly the only usable approach when it comes to learning how reason from
huge solutions. We are currently applying it with success on a challenging NP-hard problem with
examples having several thousands of variables, a situation that would be clearly out of reach of
Predict-then-optimize approaches relying on exact DR solvers.
Overall, we estimate this presentation would take between 15 and 30 minutes.
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