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ABSTRACT 

Barely a month ago, the IPCC 2021 report made an alarming finding about current and 

future trends in the climate system. With a realistic estimate of the unprecedented rise in global 

climate, a whole number of direct and indirect consequences on our lives and habits are 

questionned. At the same time, the demand for food in the near future is announced as growing 

and exponential, to feed ever more living beings who share the world's resources. In such a 

context, between climate change and growing demand for food, it is necessary to fully 

understand the function of croplands and their impact on biogeochemical cycles. As cultivated 

land appears as part of the problem of GHG emissions but also as part of the solution through 

their high potential for sequestering carbon in the soil, interest in tools allowing the best 

management of these cultivated lands is growing. While it is common to estimate soil - 

atmosphere interactions on a very local scale, it is more difficult to reliably extend these 

estimates to a larger scale.  

It is in this perspective that the SAFY-CO2 model was developed, which, thanks to a limited 

amount of input data, estimates the net CO2 flux components of plots as well as their biomass 

and yield. This simple agro-meteorological model uses high spatial and temporal resolution 

(HSTR) optical remote sensing data provided by Sentinel-2 to estimate these variables. Multi-

temporal Green Leaf Area (GAI) maps derived from images from this satellite are used to 

calibrate light use efficiency and crop specific phenological parameters. Also, data measured 

in-situ or from the literature are used to run the model. In this study, the crop studied was maize 

based on a single year of measurement and on a single plot. The choice of such a crop is 

explained by the desire to extend the analysis of SAFY-CO2 to major French and European 

crops, when winter wheat and sunflower have already been validated in previous studies. In 

particular, we will study here popcorn maize, following the desire of Nataïs company, the 

European popcorn leader, to apply this model on its plots in agroecology and in environmentally 

friendly practices. 

The ability of the model to reproduce the variables was evaluated based on the mean square 

error (RMSE) and the correlation coefficient (R²). The SAFY-CO2 model is able to reproduce 

the GAI (RMSE = 0.28 m².m-² and R² = 0.96) as well as the production of biomass (RMSE = 

80 g.m-² and R² = 0.99), which was relatively expected given that the study is carried out over 

a single crop year of measurements. Also, the components of the net CO2 flux are well estimated 

by the model (RMSE of 1.56, 1.77 and 1.79 gC.m-².d-1 for the GPP, RECO, NEE respectively 

and R² of 0.92, 0.39, 0.88 for GPP , RECO, NEE respectively). These results only reflect a first 

step in the SAFY-CO2 chain process, and will be supplemented by more in-depth studies in the 

future.  
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RESUME (EN FRANÇAIS) 

 Il y a à peine un mois, le rapport du GIEC 2021 établissait un constat alarmant 

concernant les tendances actuelles et futures du système climatique. Avec une estimation 

réaliste de la hausse du climat global sans précédent, c’est tout un nombre de conséquences 

directes et indirectes sur nos vies et nos habitudes qui sont remises en cause. Parallèlement, la 

demande en nourriture dans les années à venir est annoncée comme croissante et exponentielle, 

pour nourrir toujours plus d’êtres vivants qui se partagent les ressources mondiales. Dans un tel 

contexte, entre changement climatique et demande croissante en nourriture, il est nécessaire de 

bien comprendre la fonction des cropland et de leur impact dans les cycles biogéochimiques. 

Comme les terres cultivées apparaissent comme part du problème des émissions de GHG mais 

aussi comme part de la solution à travers leur haut potentiel de séquestration du carbone dans 

les sols, l’intérêt porté à des outils permettant de gérer au mieux ces terres cultivées est 

grandissant. S’il est courant d’estimer des interactions sol – atmosphère à une échelle très 

locale, il est cependant plus difficile d’étendre ces estimations à une échelle plus étendue de 

manière fiable.  

C’est dans cette perspective qu’a été développé le modèle SAFY-CO2, qui grâce à une 

quantité limitée de données d’entrées, estime les flux nets des composantes du bilan de CO2 des 

parcelles ainsi que leur biomasse et leur rendement. Ce modèle agro-météorologique simple 

utilise l’imagerie satellite à haute résolution fournie par Sentinel-2 pour estimer ces variables. 

Des cartes multi-temporelle de Green Leaf Area (GAI) dérivées des images de ce satellite sont 

utilisées pour calibrer l’efficience d’utilisation de la lumière et des paramètres phénologiques 

propres à chaque culture. Aussi, des données mesurées in-situ ou issues de la littérature sont 

utilisées pour faire tourner le modèle. Dans le cadre de cette étude, la culture étudiée a été le 

maïs sur la base d’une seule année de mesure et sur une seule parcelle. Le choix d’une telle 

culture s’explique par la volonté d’étendre l’analyse de SAFY-CO2 aux grandes cultures 

françaises et européennes, quand le blé et le tournesol ont déjà été validés dans des études 

antérieures. Plus particulièrement, il a été question de maïs popcorn, suite à la volonté de 

l’entreprise Nataïs, leader du popcorn européen, d’appliquer ce modèle sur ses parcelles en 

agroécologie et en pratiques respectueuses de l’environnement.  

 La capacité du modèle à reproduire les variables a été évalué en fonction de l’erreur 

quadratique moyenne (RMSE) et du coefficient de corrélation (R²). Le modèle SAFY-CO2 est 

capable de reproduire le GAI (RMSE=0.28 m².m-² et R²=0.96) ainsi que la production de 

biomasse (RMSE=80 g.m-² et R²=0.99) de manière précise, ce qui était relativement attendu 

compte tenu que l’étude se fait sur une seule année culturale de mesures. Aussi, les composantes 

du flux net de CO2 sont bien estimées par le modèle (RMSE de 1.56, 1.77 et 1.79 gC.m-².j-1 

pour la GPP, RECO , NEE respectivement et R² de 0.92, 0.39, 0.88 pour GPP, RECO , NEE 

respectivement). Ces résultats ne reflètent qu'une première étape dans le processus de la chaîne 

SAFY-CO2, et seront dans l'avenir complétés par des études plus approfondies. 
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GLOSSARY 

CESBIO : Centre d’Etudes Spatiales de la Biosphère 

DAM : Dry Aboveground Biomass (g.m-²) 

GAI : Green Index Area (m².m-²) 

GPP : Gross Primary Production (gC.m².d-1) 

HI : Harvest Index 

LAI : Leaf Index Area (m².m-²) 

NEE : Net Ecosystem Exchanges (gC.m².d-1) 

NECB : Net Ecosystem Carbon Budget (gC.m-².d-1) 

NEP : Net Ecosystem Production (gC.m².d-1) 

NPP : Net Primary Production (gC.m².d-1) 

Ra = Autotrophic respiration 

RECO = Ecosystem respiration 

SAFY-CO2 : Simple Algorithm for Yield and CO2 fluxes estimates 

SLA = Specific leaf area (m².g-1) 
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I. INTRODUCTION 

 

1.1. GENERAL CONTEXT 

 

In a context of concern about the impact of agriculture on GHGs emissions, new techniques 

for monitoring agro-ecosystems are necessary and subject to scientific interest. Regarding their 

active participation in global warming and their impact on the modification of natural cycles 

(water, carbon, nitrogen, etc.), there is a need to manage greenhouse gases (GHG) emissions 

and store carbon (C) in the soil. National expertise 4 per 1000 aims to neutralize the annual 

increase in atmospheric carbon in the soil. This makes it more fertile by participating in larger 

amounts of organic matter (Pellerin et al. 2019). According to Pique et al. (2020), croplands 

are part of the problem but also part of the solution: they contribute to GHG emission but thanks 

to the soil ability to store carbon, they can also have a potential to mitigate climate change. 

Some methods in agriculture allow C to be stored in the soil. For example, reasoned practices 

that conserve and improve the qualities of the soil, and that use fewer inputs in their cropping 

systems as resonating surface tillage. Also, the introduction of intermediate covers between the 

main crop rotations to avoid bare soil and to enrich the soil by burying these covers. This last 

solution is assumed to be the most efficient to store C. To estimate these carbon budgets, 

different method are possible, and models using remote sensing data for agronomic issues are 

now developed. The use of such tools requires constant availability. However, the 

measurements considered depend on climatic factors, instrumented tools and visibility for the 

satellites (clouds). Thus, an approach combining the use of all these resources was developed 

in this project.  

In Europe, agricultural areas cover 38% of the territory. The first European productions are 

represented by horticultural plants (13,6%), milk (13%) and cereals (11,4%) (Ledroit, 2021, in 

touteleurope.eu). In France, agriculture occupy 46% of the land (from statistical data collected 

in 2018 by Agreste) and the share of crops in the used agricultural area (UAA) is predominant 

in certain departments of the North and Southwest. Maize is originated from Central America, 

an came to Europe around the XVIth century. The diversity of maize varieties allows this crop 

to growth under various climates, and China is actually the second global producer. Since the 

XIXe century, maize as the other plants, took benefits from the genetics and has a lot of hybrid 

varieties with higher yield, stronger resistance to disease and higher reliability due to their 

adaptations (from the technical website www.arvalis.fr, 2021). We can distinguish three types 

of maize: forage maize, grain maize (sweat maize, popcorn maize..), and mixed maize. Maize 

represents 10% of the UAA in France. On a European scale, maize production is around 6 

million of tons (from statistical data collected in 2019 by Agreste). This crop needs water during 

its development stages and its maturity because stresses can disturb its growth and final yield, 

and irrigated plot represents 40,6% of the total area of maize crop in France. Popcorn maize 

varieties are part of irrigated grain maize. In France, popcorn maize is mainly cultivated in 

Charente-Maritime and in the Gers on more than 9000 hectares each year, by around 400 
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producers. It represents 0.61% of the global maize crop (from the technical website 

www.passioncereales.fr).  

Soil models or inventory approaches to estimate carbon budget, yield or biomass are 

existing. They require specific information, often very precise, about the soil dynamic 

(nutrients, water, organic matter...) or the plant dynamic (photosynthesis). Despite the 

intervention of precise, complex and numerous data, the models are always limited. For 

instance, these approaches offer inconclusive results in the application on a larger scale in time 

and space, due to their demand for information applicable to one year of culture only and 

specific to a study area. To extend these methods at larger scales, it would be necessary to know 

certain practices such as the crop type, the presence of intermediate cover or tillage, and the 

amendments applied to the crop. The contribution of remote sensing data into agronomic 

models is a way to improve these uncertainties by using another approach. The model studied 

here is defined as simple, since it uses a small number of non-complex equations, with the 

contribution of remote sensing data for monitoring the development of vegetation via simple 

indices (i.e. GAI or NDVI). 

 

1.2. CONTEXT OF THE INTERNSHIP 

 

This internship has to objective the parametrization of the model SAFY-CO2 for the maize 

crop. Also, this internship is part of different projects. The first one is AgriCarbon-EO, a 

European program which has as main objective to encourage the progressive establishment of 

sustainable agriculture techniques, in order to reduce the impact of agriculture in the emission 

of GHG and to promote its usefulness in carbon sequestration. The SAFY-CO2 model is 

involved in the third pillar of this project, which will make it possible to estimate carbon 

balances in crop rotation. 

On a second hand, the data collected on the maize field were made possible by a farmer 

making popcorn maize for Nataïs, the European leader in popcorn. Nataïs is a private company 

based in the Gers department. For several years, Nataïs supported the implementation of 

conservative system and sustainable practices by a bonus for producers with its project 

“Naturellement Popcorn”. Today, they want to go further and pay the producers depending on 

their carbon footprint trough intermediate crops of legumes (faba bean, phacelia). By covering 

the soil during the critical season and being buried before the main crop sowing, intermediate 

cover crop is a great source of organic matter for the soil. It is in this context that Nataïs called 

on CESBIO to apply the model to popcorn maize.  Today, SAFY-CO2 has been validated on 

wheat (Pique et al., 2020a) and sunflower (Pique et al., 2020b). Ultimately, the objective is to 

extend the use of this model to crop rotations. It is in this context that the study and the 

integration of maize in the model was selected, regarding its culture in Europe.  

 

http://www.passioncereales.fr/
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1.3. AN AGRO-METEOROLOGICAL MODEL COUPLED WITH REMOTE SENSING 

DATA 

 

Set up by scientific researchers from CESBIO (Toulouse) by using an agro-meteorological 

model combined to spatialized products, the SAFY-CO2 model was developed with the aim of 

studying the main processes of development and growth of crops, in addition to the carbon 

budget components. SAFY-CO2, for “Simple Algorithm for Yield and CO2 fluxes estimates”, 

allows to simulate different variables as the daily biomass production, the annual yield, the 

daily CO2 fluxes or the annual carbon (C) budget of a given plot for a given crop over large 

areas thanks to the assimilation of Grean Area Index (GAI) times series derived from high 

resolution optical remote sensing data. It uses a low number of parameters in order to facilitate 

the spatialisation. SAFY-CO2 may be run with only in-situ meteorological data and parameters 

derived from in-situ data or form the literature. The latter represents parameters extracted from 

the scientific literature. However, it can also use high spatial and temporal resolution (HSTR) 

GAI products derived from remote sensing data, to produce a timely and accurate picture of 

crop development, photosynthesis or net CO2 fluxes (Pique et al., 2020). GAI time series 

provides important information on the phenology and status of the vegetation. These remote 

sensing data are provided by Sentinel-2 satellite. Sentinel 2 is an optical satellite with passive 

sensors that measures surface reflectance through spectral bands in the visible, near and infrared 

wavelengths. The combination of this simple model with remote sensing GAI products can 

improve the modelling and monitoring of agro-ecosystems at the regional scale. The approach 

adopted for SAFY-CO2 is advantageous because of its low need for input data (Ta and Rg),  and 

the fact that few or no external information on technical routes are needed . As a result, 

equations are reduced to a small number and rather simplified but allow for more than adequate 

results in the estimates requested. However, the use of remote sensing data can ask to 

concessions from the point of view of available images and may result in gaps.  

The work realized in this internship is about parametrization of the SAFY-CO2 model on 

the flux plot of popcorn maize first, and to apply the parametrization at a larger scale 

encompassing several departments in the Southwest of France. After presenting the materials 

and methods, we will look at the analysis of the results obtained through the various exercises 

carried out as part of this internship. Then, then, we will take a critical look at these results and 

try to make sense of them. Finally, we will conclude on the work carried out during the period. 
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II. MATERIAL 

 

2.1. STUDY AREA 

 

The study area is located in the Southwest of France, near to Toulouse. It covers the 

Haute-Garonne department as far as the Gers, where the head office of Nataïs is located and 

where biomass and yield measurements have been carried out. The climate of the region is 

defined as temperate, with an annual mean temperature about 13,8°C and an annual mean 

precipitation about 638,3 mm (measured by Météo-France at Toulouse-Blagnac between 1891 

and 2010; see http://www.infoclimat.fr/climatologie/index.php). Maize represents 12.95% of 

agricultural land in Occitanie and is the 4th largest crop in the region after soft wheat, sunflower 

and durum wheat (Agreste, 2019; see 

https://draaf.occitanie.agriculture.gouv.fr/IMG/pdf/premiers_resultats_pkgc_2017_cle8ff4e6.

pdf).  

 

Figure 1. Left: Location of the study area in Southwestern France; Right: Location of the Pibrac’s field and of 

the measurement station in 2020 (Source: Google Earth) 

 

 

 

 

http://www.infoclimat.fr/climatologie/index.php
https://draaf.occitanie.agriculture.gouv.fr/IMG/pdf/premiers_resultats_pkgc_2017_cle8ff4e6.pdf
https://draaf.occitanie.agriculture.gouv.fr/IMG/pdf/premiers_resultats_pkgc_2017_cle8ff4e6.pdf
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2.2. IN SITU DATA 

 

 The experimental plot encompasses an instrumented agricultural in Pibrac (Fig. 1). This 

micrometeorological measurement station is an independent flux site created for the project. It 

allows the measurement of air temperature, precipitations, net CO2, latent and sensible heat 

fluxes. The Pibrac site has been instrumented since the 31th of October 2019 and was supposed 

to be monitored over 2 years. Following a proliferation of Datura, the tower had to be displaced 

in November 2020 on a plot near to the first one. The coordinates of the first tower are 

43°38'26.40"N ; 1°16'1.78"E. The plot is 21.57 ha and it is managed based on conservation 

agriculture practices. There is no ploughing, cover crops are grown during fallow (green 

manure) and the biomass of the crop and of the cover crop is returned to the soil after harvest. 

During the cropping year 2019 – 2020, a cover crop of faba bean (Vicia Faba) was sown on 

Octobter 28th and crushed on April 1st. Popcorn maize was sown the same day and the harvest 

date was the 18th of September 2020 (Table 1). The variety used by the farmer is hybrid maize 

N8485B (see https://www.zanggerpopcornhybrids.com/product-guide).  

 

Table 1. Sowing and harvest dates of popcorn maize cultivated on Pibrac field and climatic variables during the 

cropping year. 

Cropping year Sowing Harvest 
Mean temperature 

[°C] 

2020 1st of April 18th of September 13.8 

 

Mineral and organic fertilizers were applied during the early stages of development in 

the form of solid potassium input, granulated urea and compost. Also, pesticides such as anti-

slug and Coragen (insecticide) were applied to prevent corn borer and sesamy at the day of 

sowing. Weed killer were spread at the 2-3 and 6-7 leaf stages. The plot is equipped with a 

central pivot irrigation system which applies 25mm of water by periods of 6 days during the 

most critical growing season, around July and August. In total 200 mm of water were brought 

by irrigation (Fig. 2). According to the Köppen classification, the climate at this location is an 

oceanic climate (‘Cfb’). 

 

 

 

 

 

 

 

https://www.zanggerpopcornhybrids.com/product-guide
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Figure 2: Ombrometric diagram of Pibrac with irrigation on the flux plot. The irrigation is in blue dotted line.  

2.2.1. EDDY COVARIANCE SETUP AND FLUX DATA PROCESSING 

A mast equipped with an eddy-covariance (EC) system (Béziat et al., 2009) is located in the 

center of the plot to ensure that the fluxes measured are representative of the plot (distances 

between the mast and the limits of the plots are X and Y m in the two main wind directions, 

respectively NW and SE). The turbulent fluxes of CO2, water vapour (evapotranspiration and 

latent heat), sensible heat and momentum were measured continuously at 20Hz. The EC system 

was placed at 4.5m above the soil in order to ensure a distance of 2m between the EC system 

and the crop at its maximum development. The EC system is composed a three-dimensional 

sonic anemometer (CSAT 3, Campbell Scientific Inc, Logan, UT, USA) and an open-path 

infrared gas analyser (LI7500, LiCor, Lincoln, NE, USA). The EdiRE software (Robert 

Clement, ©1999, University of Edinburgh, UK) was used to calculate the turbulent fluxes at 30 

min intervals. Footprint analyzes are carried out from these data, which are checked beforehand. 

Finally, the fluxes obtained by EC are filtered to remove erroneous data corresponding to 

technical issues, inappropriate meteorological conditions, low spatial representativeness, and 

violation of EC theory and gapfilled according to the method presented in Béziat et al., 2009 

(Fig.3). 
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Figure 3: In-situ measurement of components of the net CO2 fluxes: Gross Primary Production (top), Ecosystem 

Respiration (middle), Net Ecosystem Exchanges (bottom). The green dotted line represents the sowing of popcorn 

maize and the red dotted line its harvest.  

2.2.2. METEOROLOGICAL DATA 

SAFY-CO2 requires input meteorological data of air temperature (Ta) and incoming global 

radiation (Rg). For the modelling exercices done at the Pibrac site, we use measured Ta 

(HMP45C-ET: Temperature and Relative Humidity Probe, see www.campbellsci.fr) at 1.6m 

and Rg (NR01 net radiometer, Hukseflux) at 6.5m on the EC mast location (Table 1). Other 

variables measured by the micrometeorological station are, relative humidity, precipitation, 

atmospheric pressure, wind speed and direction, surface radiative temperature, albedo, soil 

temperature and soil moisture at 5, 10, 30 cm depth as well as soil heat flux (at 5 cm depth). 

For the spatialised modelling exercices, the SAFRAN meteorological data (Ta at 2m and Rg) 

provided by Météo-France (Durand et al., 1993) is used.  

 

http://www.campbellsci.fr/
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2.2.3. BIOMASS AND YIELD DATA 

The crop development at the instrumented site is regularly monitored by collecting GAI 

observations and biomass samples. The sampling frequency is approximatively once a month, 

but it was disrupted in 2020 by the global Covid-19 pandemic and there are 4 biomass samples 

while those of GAI are only 2. Vegetation plants are collected according to the VALERI 

protocol [http://w3.avignon.inra.fr/valeri/] from five homogeneous square subplot inside the 4 

Elementary Sampling Units (ESU) of 20x20m² (Fig. 4). The total sampling surface area is about 

0.25m² per subplot. The fresh samples are weighed by distinguish three measurements which 

represent the fresh aboveground biomass: leaves, stems, senescent parts. They are also subject 

to a LiCor planimeter (LI3100, LiCor, 28 Lincoln, NE, USA) to define the GAI. They are then 

dried and stored, to be measured later. The exported carbon from the plot during harvest (Cexp) 

correspond to the difference between the carbon content in the aboveground biomass and the 

carbon content in crop residues. An average yield is often obtained by collecting farmer’s data 

at several fields surrounding the instrumented site (Pique et al., 2020). 

Figure 4: Location of the Elementary Sampling Units for biomass sampling and the sampling method. 

 

2.3. SATELLITE DATA AND PRODUCTS 

2.3.1. MULTI-TEMPORAL SATELLITE OPTICAL DATA 

This study uses HSTR satellite products derived from the Sentinel-2 satellites 

(www.esa.int). The Sentinel-2 mission is part of the Copernicus European program, and is based 

on the constellation (ie. two or more satellites) of two identical satellite on the same orbit: 

Sentinel-2A (S2A) and Sentinel-2B (S2B). They have the same Multi Spectral Imager captor 

(MSI) and allow a revisit time reduced to 5 days, for a spatial resolution of about 10m. This 

makes it possible to obtain 13 spectral band in the visible and mid infrared, especially used to 

observe land and vegetation (Fig. 5). 
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Figure 5: Spectral bands of Sentinel-2 (Source: CESBIO) 

 

As all optical satellites, the Sentinel-2 satellites are very sensitive to clouds and 

atmospheric conditions (water vapour, aerosols). The Sentinel images are processed with the 

MAJA processing chain (Baetens et al., 2019) for geometric and radiometric corrections, 

detection of clouds and of their shadow. To calibrate some of the model parameters, remote 

sensing image at some key dates are needed. In the case of popcorn maize, the critical periods 

are around March-April during the development of the first leaves of the crop, which depend 

on the sum of the degree day, and the availability of satellite data during this period can be 

restrictive about weather conditions. Another critical period is in summer because it is the 

maturation stage where the plant has a strong need for water, and where this resource is 

becoming scarcer. With satellite images, it is possible to observe the states of development and 

senescence (yellowing of the leaves), because the images in summer are rather available due to 

the general absence of clouds, but may be biased depending on the years. Figure 7 shows that 

during the key phases of maize development, clear (cloudless) images may be missing. 
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2.3.2. FROM IMAGE REFLECTANCE TO GAI ESTIMATES 

The GAI time series are derived from the reflectances measured from the Sentinel 2 

satellites. For this, the BV-NNET tool for Biophysical Variables Neural NETwork (Baret et al., 

2007) is used. Globally, it is a trained artificial neural network (ANN) which uses the outputs 

of a radiative transfer model. There may be a margin of error in estimating the GAI during the 

significant growth phases (dense foliage) because the BV-NNET procedure does not consider 

the aggregation of the leaves (Claverie et al., 2012). This “effective GAI” may tend to an 

underestimation of the “true GAI” during these periods. Finally, the GAI estimates are averaged 

regarding the different pixels obtained on the studied plot, with an application of an offset of 

10 m to avoid edge effects and to consider only the GAI of the studied crop (Pique et al., 2020). 

The figure 7 shows the product from satellite data when modelized. 

Figure 7: Time course of GAI derived from satellite images (red dots) and estimated using the agro-meteorological 

model (blue dotted curve on a plot cultivated with an intermediate crop (faba bean) and a main crop (popcorn 

maize). The period between the green axis represents the intermediate cover crop. The period between the orange 

axis represents the studied period with popcorn maize as main crop. 

 

III. METHODS 

 

3.1. THE SAFY-CO2 MODEL 

 

SAFY-CO2 model (Fig.8) is defined by its users as a “daily time step crop model that 

simulates the temporal evolution of green area index (GAI), dry aboveground biomass (DAM) 

final grain yield (YLD), CO2 fluxes and C budget by considering two climatic input data: 

incoming radiation (Rg) and mean air temperature at 2m (Ta)” (Pique et al., 2020). The model 

is characterized by simple formalisms, based on a limited number of equations and parameters 
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(calibrated or fixed), from which the variables of interest are derived. For the simulation of the 

plant processes, two types of parameters are found: fixed and calibrated. The fixed parameters 

are taken from the literature or from in-situ data. The calibrated ones are related to the crop 

phenology (Pla,Plb, Sena, Senb, SLA and Do) that can be observed by remote sensing or to the 

light use efficiency (ELUEa) of the plant. ELUEa allows to calculate the amount of light (PAR) 

absorbed converted in photosynthesis (GPP). It is related to the intensity of development of the 

vegetation. This approach is based on the light use efficiency model proposed by Monteith and 

Moss (1977), which define the light use efficiency of a plant canopy as the ratio of net primary 

productivity (NPP) to absorbed photosynthetically active radiation (APAR). Under LUE, there 

is an implicit hypothesis which determine the ratio PT / Ra as constant over the seasons. 

However, in SAFY-CO2 LUE relates the amount of light to photosynthesis and not to biomass. 

With this approach, LUE may be constant over a year but is not within a season. SAFY-CO2 is 

using the Monteith approach, but it bypasses it in order to get values of 1) photosynthesis, 2) 

respiration, 3) biomass as the difference between photosynthesis and autotrophic respiration.  

 

Figure 8: Scheme of the SAFY-CO2 model 

 

 The GPP [eq. 1], defined as the amount of CO2 absorbed by the plants. It is calculated 

as a function of the incoming radiation (Rg), the climatic efficiency (εc) wich is the share of 

useful solar energy converted by the plant cover for photosynthesis, the fraction of absorbed 

photosynthetically active radiation of the plant (APAR), a temperature stress function (fT), the 

effective efficiency of the conversion of absorbed radiation to fixed CO2 through plant 

photosynthesis (fELUE), and of a multiplicative coefficient which represents the decline in 

canopy photosynthesis capacity during senescence (sR10).  
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GPP = Rg * εc * fAPAR * fT * fELUE * sR10    [eq. 1] 

 

The calculation of sR10 requires the computation a corrective factor (Cs) for senescence based 

on in-situ data, which represents the difference between the true phenological status of the crop 

and the one detected by satellite observation. Senescence represents the degeneration of plant 

cells, which can lead to the degradation of one or several of its organs. In the case of maize, for 

example, the current senescence may be observed in the form of yellowing of the leaves which 

dry and then fall.  sR10 is equal to 1 from sowing to senescence beginning, and then equal to 

GAIn-1/GAImax * Cs (with n-1 = the previous day). Also, fELUE, is calculated based on ELUEa 

which is a calibrated parameter through other fixed or meteorological parameters as shown in 

eq. 2: 

fELUE = ELUEa * exp(ELUE
b* R

df
 / R

g) [eq. 2] 

 

ELUEb is an important factor which will represent the diffuse and direct radiation. The ratio 

Radirect/Radiffuse have a large incidence on photosynthesis, since the efficiency of using light in 

a plant is more efficient in RAdiffuse, which will then have a lower value. Once calibrated, ELUEa 

will allow to simulate the correct amplitude of the GAI curve.   

From this, the net primary production (NPP) defined as the amount of biomass (or CO2) 

produced by a plant per unit of area and time (WAD, 2019) may be estimated by subtracting the 

autotrophic respiration (Ra) to the GPP [eq. 3]. Ra can be calculated as the sum of maintenance 

respiration (Rm) and growth respiration (Rgr). The maintenance respiration [eq. 3.1] is calculated 

as a function of the standing biomass of the previous day (NPPn-1), a maintenance respiration 

coefficient (mR) defined as the fraction of Rm per NPP unit and obtained from the literature. A 

multiplicative coefficient (sR10) depending on a constant maintenance respiration parameter 

(Q10) and the maintenance respiration at a temperature reference of 10°C (R10) obtained from 

the literature is also part of the function. Rgr represents the respiration during the growth of the 

crop, and is calculated [eq. 3.2] using a constant parameter from the literature for the growth 

conversion efficiency (Yg) and is also depending on the difference of GPP minus Rm. This 

relation is taken from the Amthor (1989) method improved by Choudhury (2000) (Pique et al., 

2020). 

NPP = GPP – Ra                   [eq. 3] 

Rm = NPP * mR * sR10          [eq. 3.1] 

Rgr = (1 – Yg) * (GPP – Rm) [eq. 3.2] 

 

Finally, NPP can be divided into two parts: NPProot and NPPaerial. NPPaerial is then used to 

compute the DAM [eq. 4], defined as the ratio between NPPaerial and Cveg , where Cveg represents 

the plant carbon content (i.e the amount of C/amount of dry biomass).   
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DAM = NPPa/Cveg      [eq. 4] 

  

After the biomass computing, it is possible to estimate the green area index (GAI) and 

the yield (YLD). The GAI represents the ratio of green area (leaf and steam) to the area of 

ground (AHDB, 2018). It gives information on the status (phenology, intensity of 

development,) of the vegetation and often reflects the effect of the stresses on the plant 

development. It provides information that can be linked to the NPP based on information 

concerning biomass allocation. It is also a driving factor in regional and global models about 

biosphere/atmosphere (BA) exchanges of CO2 (Bréda, 2008). Here, its estimation is based on 

the GAI of the day before and the positive or negative change on day n [eq. 5]. ΔGAI+
 is a 

function of the daily DAM production and of two calibrated parameters: the leaf partitioning 

(Pl) function and the specific leaf area parameter (SLA). SLA is a physiological characteristic 

defined as ratio between leaf area per plant and aboveground weight per plant in m².g-1. It is 

related to the dynamic of the biomass and may be affected by the stage of N application 

(Amanullah, 2007).  Because it refers to the leaf thickness, it will play a role in the light 

interception (Kumar et al., 2012). Pl is also an important parameter for plant growth because it 

corresponds to the function of biomass allocation to leaves. It depends on two parameters which 

describe the dynamics of allocation during growth. According to Potter et al. (1977), Pl(A and B) 

is the share/partitioning of photosynthesis according to the distribution of leaves, which tends 

to increase during growth. Negative ΔGAI only can be found during the senescence phase (at 

least in the model) and is depending on 2 senescence parameters: SENa and SENb. Pique et al. 

(2020) explained that GAI was decreasing with senescence. This decrease is estimated from the 

day of plant emergence (D0) detected by remote sensing. From that day on, the model uses 

degree-day data to determine the senescence of the culture from the sum temperature for 

senescence (SENa) and the rate of senescence (SENb). Leaf production and senescence are 

depending on a growing degree-day approach in this model. Finally, the yield (YLD) [eq. 6] is 

calculated from the total aboveground biomass production at the end of the vegetative period 

(DAMmax) and a constant harvest index (HI).  

 

ΔGAI = GAI + ΔGAI+ - ΔGAI-     [eq. 5] 

Yield = DAMmax * HI                    [eq. 6] 

 

Once Rh, Ra and GPP have been estimated, the model calculates the net ecosystem 

exchange (NEE) [eq. 7] to obtain the net exchange of C as CO2 between the ecosystem and the 

atmosphere per unit of ground area (Pique et al., 2020). The soil CO2 fluxes are represented by 

the heterotrophic respiration calculated as a simple function of the temperature based on fixed 

parameters from the literature [eq. 8]. (Rh) is the product of a reference respiration at 0°C (Rref 

= a) and a first-order exponential equation where Q10=expb*10. Q10 has to be adapted to the 

soil type and the climate (Pique et al. 2020). In SAFY-CO2, there is no water module. Therefore, 

only the temperature of the soil (Ts) is taken into account to estimate Rh. The ecosystem 

respiration (RECO) [eq. 9] is the sum of Ra and Rh. 
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NEE = NPP – Rh            [Eq. 7] 

=NPP - carbon losses due to heterotrophic respiration (Rh) 

 

Rh = a * expb*Ts [Eq. 8] 

 

RECO = Ra + Rh                 [Eq. 9] 

 

The annual net ecosystem carbon budget (NECB) represents the gain or loss of carbon 

in a given ecosystem over a crop year.  It can be calculated by considering three terms [eq. 10]. 

The annual sum (considering a cropping year) of the daily NEEs simulated by the model (NEP) 

and two additional terms: the amount of carbon imported in the field as organic amendments 

(Cimp) and the amount of C exported at harvest (Cexp). If NEP is positive, it means that the 

cumulated soil and autotrophic respiration is higher than the cumulated photosynthesis, so the 

field has lost CO2 towards the atmosphere (Pique et al., 2020). If NEP is negative, then it is the 

opposite. Cimp is provided by the farmers because it represents the organic fertilizer they chose 

to apply. Cexp is represented by the grain exported from the field, i.e the yield, but also by the 

straw exported. The model only calculates the grain yield. As far as straw is concerned, the 

information comes only from the farmers because their fate (export or not) is not an information 

that we can obtain by remote sensing. 

NECB = NEP + Cexp + Cimp     [Eq. 10] 

 

3.2. MODEL PARAMETRIZATION 

 

3.2.1. BIBLIOGRAPHY OF THE PARAMETERS  

At this stage of the modelling, many parameters have already been researched and 

studied. However, some crop-specific parameters remained to be studied in the literature when 

in-situ measurements are not available. The respiration parameters Q10, R10 and Yg are 

intervening in the equations of growth and maintenance respiration. In the literature, the 

distinction between Rm and Rg is sometimes very thin, as well as some subtleties in the 

nomenclature of these terms which may vary from one article to another. However, this step is 

important because it is necessary to keep a realistic look when modelling, to not exceed extreme 

values imposed by the literature. Table 2 shows the values retained for respiration parameters 

before calibration, thanks to their relevance and consistency with our study. 
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Table 2 

List of SAFY-CO2 model parameters for growth and maintenance respiration for maize. 

Description Notation Unit Value Method Source 

Maintenance respiration 

parameter 
Q10 - 2 Literature Amthor (2000) 

Reference respiration at 

10°C 
R10 gc/gDM 0.0015 Literature 

Yang et al. (2004) 

Penning De Vries et 

al. (1989) 

Growth conversion 

efficiency 
Yg - 0.70 Literature Ruget (1981) 

 

3.2.2. ROOT-TO-SHOOT 

SAFY-CO2 is applied on many crops over many different areas. The idea is to develop 

a powerful and versatile tool that adapts to the different needs offered by each case. It is with 

this in mind that the different equations representing reality were chosen, sometimes to the 

detriment of certain components. The “root:shoot” (RtS) is not integrated in SAFY-CO2, 

because the bias was to opt for the fraction of biomass allocated to the roots (parameter called 

‘PRT_R’). The root equation is different for all plants but is similar in terms of curve tendency. 

The idea is to have an only equation and to optimize on the curve. However, previous studies 

on maize (M. Battudes, 2017 ; G. Piques, 2020) showed that an equation proposed by Amos 

and Walters (2006) allowed to follow satisfactorily the RtS for the case of maize (Eq.11) 

compared to in-situ measurement (R² = 0.94) (E. Burrel, 2018). 

 

RtS = 0.15 + 0.53 ∗ exp−0.03∗DAE   [Eq. 11] 

with DAE ‘day after emergence’ 

 

The growth rate of roots and shoots during the vegetation cycle are strongly linked, 

since the roots have the fundamental role of taking nutrients and water to the soil, to determine 

the production and tolerance of the plant. The Root:Shoot Ratio which is specific to every plant 

in its own conditions, translate the importance of plant integrity. Maize – e.g. popcorn maize – 

is a C4 plant which requires a higher water use efficiency in comparison to C3 plants, and will 

responds stronger to atmospheric CO2 if the water in the soil is limiting (L. Bláha, 2019). 

Regarding the importance of this ratio in our situation, we decided to add this formula in the 

model for the specific case of maize in the context of this internship, to reach the optimal results. 

3.2.3. MODELLING 

The exercises that were realized during this internship covered different phases. A first 

exercise consisted in doing a sensitivity analysis of the model by using in-situ temperature, 

radiation and precipitation. The objective is to test the sensitivity of the model for simulating 5 

variables of interest: GPP, RECO, NEE, DAM and LAI with SAFY-CO2. Because we had only 

2 data for LAI, we did not consider this variable for this exercise. This exercise allowed to 
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understand the functioning of the model and the effect of each parameter on the variables of 

interest, as well as a sensitivity analysis of the calibrated parameters and a first optimization on 

the flux site data. The optimization process is presented in the next part.  

When the 2 previous step become satisfying, it is possible to apply the model with GAI 

derived from remote sensing: 

 1) On the flux site and to compare the model outputs with in-situ data (CO2 fluxes, DAM), 

 2) On targeted plots, where biomass sampling campaigns have been carried out on specific 

locations, 

3) On targeted plots at pixel scale, for comparison of the model with yield maps obtained 

from combined harvester. 

At the beginning of the internship, we emit the possibility to realize these 3 exercises if the 

modelling progressed correctly without too many obstacles. However, the steps for getting 

started with the model and calibrating the parameters took more time than expected and we had 

to revise our objectives downwards, which will be presented in the “Results” section. 

 

3.3. MODEL OPTIMIZATION AND VALIDATION 

An optimization is needed to verify the realistic aspect of the adjusted boundaries of 

phenological parameters applied to the model by using minimization and comparison processes. 

A sensitivity analysis allows to define parameter bounds to be then calibrated. The model may 

simulate the output variables with only meteorological data (Rg, Ta), soil and plant parameters. 

However, with this low number of parameters and without a proper calibration process, the 

estimates obtained would be probably wrong. Six phenological parameters (PlA, PlB, SENA, 

SENB, SLA, D0) and the parameter A of the light-use efficiency (ELUEA) were optimized first. 

Realistic values of these parameters were taken from the literature, in particular from previous 

studies carried out on maize in earlier versions of SAFY-CO2 (Claverie et. al, 2012 ; Battude 

et. al, 2017, Pique et. al, 2020). We have established ranges for each parameter, with minimum 

and maximum bounds which limit the model, and searched for an optimal mean value to inform 

on the model. For the optimization, the cost function is based on the minimization of the RMSE 

between the satellite GAI and the model GAI. In our case, we used the RMSE as a statistical 

tool instead of likelihood because we do not beneficiate from uncertainties. I used the numerical 

optimization method, by testing a large number of solutions and keeping the best one. To find 

these solutions, I used a simple exploration. A simple exploration is based on a multivariate 

simple sample according to the mean, the standard deviation, the minimum and the maximum 

of each parameter or variable, and on an evaluation of these simulations to find the optimal 

RMSE values. More simply, I ran a LUT on the model, which was doing 2000 or 5000 

simulations at a time, and selected the 20 or even 50 best simulations. For these LUTs, the 

parameters of interest were bounded. A centered average was informed, and a standard 

deviation (std) was granted according to the scale of the values of the parameters, in order to 

allow a certain plasticity to the model. On the selected best simulations, the values of the 
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parameters, the graphical and statistical data were recorded. When these steps are done, a last 

step allows to validate the quality of the simplified version model with the optimal set of 

parameters. It is then a question of comparing the other variables (biomass and fluxes) between 

the observations and the estimates. The validation allows to conclude to a good combination of 

the parameter values on in-situ data as well as on satellite data. 

 

IV. RESULTS  

 

4.1. SENSIVITY ANALYSIS, OPTIMIZATION AND CALIBRATION 

The sensitivity analysis, carried out before the modelling exercises, first allowed me to 

familiarize myself with the Python 3.0 environment, and to handle the phenological parameters. 

This step is necessary to understand the graphical analysis, and to understand how the 

parameters behave between them or in isolation on the target variables, at what stage, and at 

what level of sensitivity. This analysis has been realized on each variable (to remind: GLA, 

GPP, RECO, NEE), for each of the six phenological parameters. The procedure consisted of 

fixing all the phenological parameters first, and then applying a range of +/- 5% to +/- 50% for 

one parameter only. Considering cumulative GPP, Figure 9 shows as an example what this 

sensitivity analysis looked like. We can observe that the phenological parameters do not all 

react the same, some are very sensitive (PLa, PLb), and others are less (SENb). However, it 

should be kept in mind that these parameters do not intervene at the same time (cf. curve in 

Fig.8).  

 

Figure 9: Sensitivity analysis of the six phenological parameters applied to the cumulative GPP target variable in 

the SAFY-CO2 model. The vertical axis represents the values of GPP [gC.m-².d-1] and the horizontal axis the time 

evolution in days. 
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 The optimization of parameter bounds carried out on in-situ measurements of flux and 

DAM, since the LAI collected only included 2 values (as said previously). It was therefore a 

question of manipulating the parameters in order to make the model simulations stick with the 

observations of our in-situ data, while remaining within the imposed and defined limits. Thanks 

to the optimization method expressed in the previous section, I tried to ensure that the values 

of the parameters were centered (neither stuck to a maximum limit, nor to a minimum limit) for 

each of the studied variables (cf. example in Appendix). The value of the phenological 

parameters to be considered for the following sections are presented in Table 4. We can read 

the means and their standard deviations, which constitute an interval of values that the 

parameters can take during the calibration process.  

Table 4. Value of the calibrated parameters for maize 

PARAMETER UNIT MEAN STD BOUNDS 

EMERGENCE Day of the 

year 

115 10 [97 - 135] 

ELUEA gC.MJ-1 1.4 0.2 [1.04 – 1.7] 

SLA m².g-1 0.018 0.005 [0.001 – 0.04] 

PLA - 0.33 0.05 [0.01 – 0.5] 

PLB - 0.0023 0.0005 [0.00001 – 0.01] 

SENA °C 1050 50 [800 – 1600] 

SENB °C.day-1 4750 50 [1000 – 30000] 

 

 

4.2. GAI AND DAM ESTIMATES 

The results presented here take into account the parameters presented previously, and are 

based on RMSE values obtained during the calibration phase on the GAI satellite of the flux 

site. It means that on a LUT of 5000 simulations, the 20 best are represented graphically in 

order to observe their trend and how they organize themselves around the best one (Fig. 10, 11 

and 12). The statistical performance of the best only is taken into account. The LUT analyzed 

here was carried out considering the best solution (ie statistical performance) between the 

satellite and simulated LAI, while ensuring that the other variables were efficient too. 

Figure 10 shows temporal evolution and statistical indicators of GAI and DAM measured 

(red dots) between popcorn maize sowing and harvest. On figure 10a. GAI (top left) start to 

increase one month after the sowing date, at the emergence. The growing phase represents the 

development of the plants, with the growth of the green aerial parts of corn. The plateau of GAI 

around 3 m².m-² between early July and August, indicates the flowering period. Finally, the 

senescence phase begins when the sum of the degree days reaches around 2000-5000 °C, during 

this it is the period and the maturation of the grains occur and the leaves and stem dry. The 

biomass (top right) grows and does not reach a plateau until around the beginning of September 

with a value of around 1950 g.m², then drops suddenly: it is the harvest. We can observe on this 

figure that the best simulation (curve in bold) is centred when compared to the 10 bests 

simulations. This indicates a good variability of the calibrated parameters, which remain in 
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values close to the means despite their variability (std) and do not stick to the minimum and 

maximum limits. Also, despite the 4 biomass observations, the estimation curve seems to start 

at the same time as the GAI observations: overall (see figure 10b), the model is able to 

reproduce both the GAI and the biomass dynamics with root mean square error (RMSE) of 0.28 

m².m-² while the determination coefficient (R²) is 0.96. These results are very satisfying 

regarding the estimations of the model during the main crop period and confirm the ability of 

the model to simulate the biomass as seen in previous studies (Duchemin et al., 2015 ; Fieuzal 

et al., 2011 ; Hadria et al., 2010, Pique et al. a&b, 2020).  

Also, DAM (bottom right) is well estimated by the model with very satisfying performances 

if we compare it with the recent study of Pique et al. (2020) about winter wheat, which has 

similar but less good performances. However, these performances are based on 8 years of 

evaluation and not 1, with very contrasting climatic years. RMSE is equal to 3.2% and R² is 

close to one, not equal as indicated by the graph which commits an abuse of rounding of values 

 

 

Figure 10: a) Graph representing the 10 best simulations on a LUT of 5000 simulations, with optimization on the 

GAI. The observation points on the GAI are taken from satellite images inside the contours of the flux plot  during 

the cropping year 2019-2020: this period correspond to cover crop development followed by  the popcorn maize. 

The DAM observations were collected on site for the cropping period only. The period between the two  vertical 

dashed lines on figure a) and c) correspond to sowing of the maize in green and harvest in red, Scatter-plots b) 

show statistical comparisons between the observed and estimated GAI and DAM variables during the maize 

cropping period. 
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4.3. NET CO2 FLUXES: GPP, RECO, NEE 

The components of net CO2 fluxes simulated by SAFY-CO2: GPP, RECO and NEE, are 

compared to the flux data collected at the Pibrac’s site (Fig. 12). This section resumes the 

performance of these estimations, based on the analysis of errors (RMSE) and correlation (R²) 

during the crop development (between growth and senescence) only (Fig. 11). The cover crop 

and the post-harvest periods are not considered in the statistical analysis of the variables.  

In general, the fluxes are rather well simulated for the three variables studied. If we observe 

the curves of the graphs in Figure 11, we notice that the variability of the 20 best simulations 

covers the observation. If we focus on the NEE (top) and GPP (middle), the best simulation 

tends to be slightly underestimated, but the set of results covers the observation given fairly 

well with an overestimation, in going through simulations close to reality. Only the period 

between sowing and observable emergence, which occurs at the beginning of May, is not well 

covered by the simulations. On the statistical performance side, the GPP is well estimated 

during the cropping year in term of error and correlation with an RMSE of 1.56 gC.m-².d-1 and 

a powerful R² of 0.92. For the NEE, these statistics are slightly worse but still very correct, with 

values of 1.79 gC.m-².d-1 for the RMSE and a R² about 0.88. It is important to contextualize 

these results, which are the result of only one year of measurement, without taking into account 

post-harvest events. For the same situation (from sowing to harvest only), the study about winter 

wheat by Pique et al. (2020) indicates performances from 0.90 to 2.79 gC.m-².d-1 for RMSE 

and between 0.86 and 0.96 for the R². This shows that despite good results, the model is able to 

obtain very satisfactory results with data over a higher number of years and under different 

conditions. The model has an adaptability that we can only observe little here.  

 

Figure 11: Scatter plot of the comparison between observed and simulated components of net CO2 fluxes (GPP, 

RECO and NEE) during the crop period. The red dots represent the priming effect period.  
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Figure 12: Temporal evolution of measured (blue) or estimated (red or pink) GPP, RECO and NEE during the crop 

development of popcorn maize in 2020. The vertical dashed lines (green and orange) represent the crop 

development period as in Figure 5. The grey vertical dashed line represents the priming effect on RECO.  

 

Regarding the RECO
 performances, we can observe a global overestimation of the dynamics 

(Fig. 12) during the cropping period. The RMSE is equal to 1.77 gC.m-².d-1 while the R² is 

equal to 0.39, which is not really satisfying if we compare with the R² obtained on the two other 

flux variables. If we focus on the beginning of the cycle, we notice a period that is poorly 

reproduced by the model in the graphs (Fig. 12) and in the scatter plots (Fig. 11). This concerns 

the effect of heterotrophic respiration of the preceding cover, which is called the 'priming effect' 

and which will be more fully discussed in the next section. Indeed, the model seems too 

simplistic to correctly reproduce heterotrophic soil respiration and its other processes. However, 

the modelling of RECO remains satisfactory and correctly reproduces autotrophic respiration, 

when we know that this can represents 80% of RECO (Béziat, 2009) and considering a calibration 

on the LAI and not on a flux.  
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V. DISCUSSION 

 

5.1. THE SAFY-CO2 APPROACH: ADVANTAGES AND DISADVANTAGES 

 In this study, our objective was to parameterize the SAFY-CO2 model for popcorn 

maize, since its potential was already analyzed in previous studies (Pique et al., 2020). The 

main advantages of a model like SAFY-CO2 are the low need for input data, whether in-situ, 

from the literature or calibrated, as well as the simplistic aspect of the approach. Also, it requires 

little or no external information (mainly imported carbon, straws). With the growing availability 

of satellite data for the benefit of agronomic research, among other things, the future of such 

models looks promising.  

 On the limitations side, we can first mention the uncertainty of remote sensing 

observations. Climatic conditions are not always favorable to obtaining usable images, even in 

crucial periods for the development of crops. This was not the case in 2020 on our study plot, 

but large periods can sometimes be unusable. Also, we have mentioned it a few times in this 

report, but to go to the end of the model procedure, it is necessary to know the fate of the straws 

(buried, exported ...) or the organic fertilization, in order to correctly estimate the NECB. These 

informations may be limiting to estimate the C budget. 

 

5.2. DATA IMPROVEMENTS 

The collected data depend on the instrumental setup (flow, rain, temperature, radiation, 

etc.), or on the protocols for non-continuous vegetation measurements (LAI, biomass). In May 

2020, the raingauge malfunctioned and stopped working for a approximatively 30 days (we do 

not know exactly). The data collected was thus erroneous and equal to 0 every day. It was 

therefore necessary to gapfill the data with the ones from Météo-France on the Blagnac’s site, 

located 15 km from Pibrac, for the rain in May. Despite the accuracy of the data provided by 

Météo-France (www.infoclimat.fr), there is probably a difference, large or not, between these 

and those specific to Pibrac, which constitutes a certain bias in the input data. If this information 

does not directly impact the operation of SAFY-CO2, this could be the case if we were to add a 

'water' module to it. Also, LAI and biomass data on the experimental plot were scarce in 2020, 

which is mainly due to the Covid-19 pandemic and the difficulty of circulating during this 

period. The person in charge of the collect did not have the required authorizations to visit the 

plot regularly, which directly impacted the availability of these data. In addition, beyond this 

lack of data to constitute reliable observations, the model and its estimates are based in the case 

of maize on a single cropping year. Previous studies on wheat or sunflower (Pique et al., 2020) 

are based on data from more years (eg 8 cropping years for winter wheat), which makes it 

possible to validate the model on different conditions (heavy rains, drought, etc.) and make it 

more robust. However, there are still two years of measurements left on the Pibrac site with 

popcorn maize, which will make future studies more efficient and complete. Finally, as part of 

this internship, we did not consider any regrowth or weeds that could interfere with the results, 

as it has been done in the study of Pique et. al (2020).  In plots in agroecology or tending towards 
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practices more respectful of the environment, it will, in the long term, be not negligible to 

consider these data. 

 

5.3. PRIMING EFFECT 

If we focus on RECO represented in Figure 5 (temporal evolution) and 6 (scatter plot), we 

can observe the evidence of a period that the model cannot reproduce around the emergence 

period of the crop. These high values of RECO at the start of the maize growing phase are not 

caused by the popcorn maize development, but by the burying of the faba bean. Indeed, the 

increase in RECO is caused by an increase in heterotrophic respiration called "priming effect". It 

is caused by the mineralisation of the cover crop incorporated in the soil before maize was 

sown. In other words, this is the increased soil respiration (microbes) when fresh organic matter 

is buried, here following the destruction and burying of the intermediate crop of fabba bean. 

Due to this effect, the statistical performances of RECO are not very satisfying, as the model 

doesn’t simulate those effects. If we reduce the period of comparison by excluding this priming 

effect, RECO performances about errors and correlation are better : RMSE is equal to 1.64 gC.m-

2.d-1 and R² to 0.64 in this case, against 1.77 gC.m-2.d-1 and 0.39 respectively by including the 

priming effect into the statistical indicators. In the future, this type of process should be taken 

into account in the model. 

 

5.4. PERSPECTIVES 

In this study about popcorn maize, the planned exercises went beyond the estimation of 

biomass. Due to lack of time but also due to the particular situation we are currently 

experiencing (pandemic, teleworking), I had to revise downwards the exercises performed. This 

gives way to several perspectives for the work undertaken, such as the extension of the study 

to a spatialized biomass campaign over a larger area. The rest would be a harvest campaign 

with several farmers to check if the model reproduces the yield (‘YLD’) well, which would 

make it possible to estimate the net ecosystem carbon balance (NECB). To hope for such a final 

result, it will be necessary to consider extending in-situ data to imported and exported carbon 

(landfill, straw, amendment).  

Another perspective is directly linked to Nataïs expectations, since it would involve 

simulating intermediate crop. Indeed, at this stage, the model does not take into account the 

intermediate crop nor their potential effects on the main crop (priming effect, regrowth, soil 

enrichment, etc.). This is a possible prospect, since it would ensure the continuous improvement 

of the model, as well as its robustness in the estimates. 

Finally, it would be possible to insert the "water" module to integrate maize (or popcorn 

maize) in SAFYE-CO2, and then make the estimates more efficient. The water requirement has 

a huge influence on the maize crop, since the critical stages in irrigation are when water is 

scarce, i.e. in summer. 
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VI. CONCLUSION 

 

In this study, we initiated the combined use of a simple crop model and temporal remote 

sensing data to estimate maize crop production. Through a dense step of parameterization of 

the model with its optimization and calibration, we obtained satisfactory results on maize. 

SAFY-CO2 was validated at local scale for maize crop. Despite differences in size and therefore 

in final biomass with “classic” maize, popcorn maize shows strong similarities in the 

development cycle and phenological stages observable from space. Thus, the results obtained 

with this study case can be retained and applied on a global scale. With the aim of extending 

SAFY-CO2 modelling to major field crops, this study on popcorn maize demonstrates the 

potential of such an approach to estimate C budget and biomass. The high-resolution remote 

sensing data assimilated in a simple crop model may claim good results in terms of estimating 

components of cropland annual carbon budget, here with net CO2 flux components. The high 

temporal frequency of Sentinel-2 is required to calibrate six phenological parameters of this 

model, which are then used to simulate biomass, vegetation index (GAI) and net CO2 fluxes. 

This approach is based on a low demand for input data, but can sometimes be limited when we 

are interested in the processes linked between intermediate cover and main crops, in particular 

with regard to soil respiration. In future studies with biomass or yield data, or a larger spatial 

campaign, it will be possible and conceivable to extend the application of this model to a 

regional or even more global scale, with greater robustness. Also, new soil and climatic 

conditions will be appreciated for the flux plot analysis. 
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APPENDIX 

 

Appendix A. 

Example of an analysis of the value of the parameters with an optimization on the RMSE of the simple 

LAI (left), or multivariate with LAI-DAM (middle) or LAI-GPP (right). 
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