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Abstract

In human health research, metabolic signatures extracted from metabolomics data have a strong added value for stratifying patients
and identifying biomarkers. Nevertheless, one of the main challenges is to interpret and relate these lists of discriminant metabolites
to pathological mechanisms. This task requires experts to combine their knowledge with information extracted from databases and
the scientific literature. However, we show that most compounds (>99%) in the PubChem database lack annotated literature. This
dearth of available information can have a direct impact on the interpretation of metabolic signatures, which is often restricted to a
subset of significant metabolites. To suggest potential pathological phenotypes related to overlooked metabolites that lack annotated
literature, we extend the “guilt-by-association” principle to literature information by using a Bayesian framework. The underlying
assumption is that the literature associated with the metabolic neighbors of a compound can provide valuable insights, or an a priori,
into its biomedical context. The metabolic neighborhood of a compound can be defined from a metabolic network and correspond
to metabolites to which it is connected through biochemical reactions. With the proposed approach, we suggest more than 35,000
associations between 1,047 overlooked metabolites and 3,288 diseases (or disease families). All these newly inferred associations are
freely available on the FORUM ftp server (see information at https://github.com/eMetaboHUB/Forum-LiteraturePropagation).

Keywords: literature mining, Bayesian statistics, metabolic network

tity. Indeed, what is known as the Matthew effect [12], which refers
Key Points: to the saying “the rich get richer,” is particularly valid in scien-
tific communications. For instance, as reported in [8], “more than
75% of protein research still focuses on the 10% of proteins that
were known before the genome was mapped,” and as reported in
[11], “all genes that had been reported upon by 1991 (correspond-
ing to 16% of all genes) account for 49% of the literature of the
year 2015.”

While we are getting closer to a complete reconstruction of
the human genome [13], our knowledge of the metabolome (i.e.,
the set of metabolites present in a biological system [14]) is still
Background limited. This is also reflected in the distribution of the number
of articles mentioning each compound present in the PubChem
database. While only a small fraction of them are mentioned in
thousands of articles, the majority remains rarely or never men-
tioned [15]. This imbalance has consequences for the interpre-
tation of the signatures, which can rely solely on a subset of its
members that are sufficiently covered to provide insights. In hu-
man health research, it is therefore critical to bring knowledge to
these overlooked compounds by suggesting diseases that could be
linked to them.

A metabolite is suspected to be impacted or involved in a par-
ticular disease through metabolism when an imbalance in its
abundance has been observed in comparison to control cases.
Moreover, metabolites are linked to each other by biochemical

® Most metabolites have little or no information available
in the literature.

® We propose an original method leveraging information
contained in the literature from metabolic neighbors.

® We provide more than 35000 suggested relations be-
tween overlooked metabolites and disease-related con-
cepts.

Omics experiments have become widespread in biomedical re-
search and are frequently used to study pathologies at the
genome, transcriptome, proteome, and metabolome levels. The
subsequent discriminant analysis leads to a set (a signature) of
genes, proteins, or metabolites, reflecting alterations of the phe-
notype at different levels of postgenomic processes. The inter-
pretation of these signatures requires gathering knowledge about
each of its elements from the scientific literature and dedicated
databases (DisGeNET [1], Uniprot [2], HMDB [3], CTD [4], Mark-
erDB [5], FORUM [6]). However, the scientific literature suffers from
an imbalanced knowledge distribution. This topic has received
much attention for genes and proteins [7-11], showing a highly
skewed distribution of the number of articles mentioning each en-
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reactions, and therefore their abundances are also interdepen-
dent. Among other factors, the abundance of a compound can de-
pend on the concentration of its precursors and, in turn, can also
influence the rate of production of other compounds. Following
the well-known “guilt-by-association” principle, we assume that
if a metabolite has been linked to a particular disease due to an
imbalance in its abundance, metabolites that are connected to
it by biochemical reactions (i.e., its metabolic neighborhood) can
also be suspected of being linked to this disease. Metabolic net-
works [16], built originally for modeling purposes, describe those
substrate-product relations between compounds and thus pro-
vide a suitable support to extend these suspicions to metabolic
neighbors. For humans, the reconstruction of the metabolic net-
work (Humanl v1.7 [17]) contains 13,082 reactions and 8,378
metabolites. In other omics fields, network-based strategies fol-
lowing the “guilt-by-association” principle have been applied to
build several recommendation systems proposing new genes or
proteins that could be related to a given disease from a list of
known genes/proteins [18-20]. We also developed a similar ap-
proach for metabolic signatures using random walks in metabolic
networks [21].

If a compound is rarely or never mentioned, we hypothesize
that the literature in its surrounding neighborhood may provide a
priori knowledge on its biomedical context. To combine both this
a priori and the available literature of the compound (if any) in the
suggestions, we propose a method based on the Bayesian frame-
work. The method returns several predictors to evaluate whether
a metabolite could be related to a disease. In addition, several in-
dicators can be used to highlight the most influential metabolic
neighbors in the suggestions.

Metabolic neighborhoods were defined from the Humanl
metabolic network [17], and co-mention data between metabo-
lites and diseases were extracted from the FORUM Knowledge
Graph (KG) [6]. The detailed workflow is presented in Supple-
mentary Fig. S2. FORUM contains significant associations between
PubChem chemical compounds and MeSH biomedical descriptors
based on their co-mention frequency in PubMed articles. We eval-
uated our hypothesis by testing whether significant associations
between metabolites and diseases could be retrieved solely on the
basis of the literature of their neighbors. We illustrate the behav-
ior of the method in 2 scenarios: a metabolite for which the prioris
the only source of information (hydroxytyrosol) and a rarely men-
tioned metabolite (5a-androstane-3,17-dione with 82 articles). Us-
ing this approach on human metabolic network, we suggested
more than 35,000 new relations between overlooked metabolites
and diseases (and disease families). The code and the data needed
to reproduce the results are available at [22].

Method and Data Description

The core of the method is the construction of a prior distribution
on the probability that an article mentioning a metabolite would
also mention a particular disease. This distribution is estimated
from the literature of its metabolic neighborhood. The metabolic
neighborhood of a compound consists of the metabolites that can
be reached through a sequence of biochemical reactions. It is de-
fined from the Human1 metabolic network [17], which was pruned
from spurious connections using an atom-mapping procedure
[21] (see Supplementary S1.1). In this study, we define a set of over-
looked compounds as compounds with fewer than 100 retrieved
articles mentioning the compound, which correspond to orders
of magnitude below 4,799, the mean number of retrieved articles
per compound (when any), and is close to the median number of

articles, 172. It is worth mentioning that such a threshold serves
solely as a prioritization criterion, since the method applicability
is not restricted to a given range of mentioning corpus sizes (al-
though its relevance is less obvious when a sufficient corpus is
already available). In the following description of the method and
subsequent analyses, a distinction is also made between metabo-
lites without any retrieved articles (1) and metabolites with fewer
than 100 annotated articles (2).

Figure 1 summarizes all the steps in the proposed method. Fig-
ure 1A introduces the example of a relation between an over-
looked metabolite a and a disease. The prior distribution on the
probability that an article mentioning a would also mention the
disease is built from a mixture of the literature of its close neigh-
borhood in the metabolic network. The weight of the component
of these metabolites in the mixture depends on both their dis-
tance to a and their number of annotated articles (see details in
section Estimating the contributions of metabolic neighbors in Meth-
ods). We also impose that a metabolite cannot influence its own
prior. As an illustration, b shares a quantity t, 4 of its literature to
build the prior of a but does not influence its own prior (cf. Fig. 1B).
The weight of b in the prior of a is then estimated as the number
of articles it had shared with a relative to the other neighbors c,
e, and f (see Fig. 1C). We refer to b, ¢, e, and f as the contributors
to the prior of a. Each contributor has a weight w in the prior of
a (e.g., wy4) proportional to its contribution. By analogy, it is as if
each metabolite spreads its literature in the metabolic network,
and the prior of a was built from the articles it had received from
its contributors.

In Fig. 1D, the contributor f is also an overlooked metabolite
with only 2 annotated articles, including one mentioning the dis-
ease. This results in a small sample size available to estimate the
probability that an article mentioning f also mentions the dis-
ease, which may lead to unreliable and spurious contributions.
To address this, a shrinkage procedure is applied to all contribu-
tors, assuming that a priori, mentioning a metabolite in an article
does not affect the probability of mentioning a particular disease.
In Bayesian settings, a shrinkage estimator integrates information
from the prior to readjusted raw estimates, reducing the effect of
sampling variations (further details in section Mixing neighboring
literature to build a prior in Methods).

Then the prior distribution of a is built as a mixture of the prob-
ability distributions of individual contributors (b, c, e, and f), as
illustrated in Fig. 1E. Recall that the weight of each contributor in
the mixture is w_q, as estimated in the previous step (see Fig. 1C).
The prior mixture distribution is denoted by fy,i,. The constructed
prior distribution for a represents the probability distribution that
an article from one of its contributors would mention the disease.
In the scenario where a has no literature (1), the predictions will
be based solely on f,ir.

However if a is mentioned in few articles (2), we compute the
posterior distribution, thus updating the weights and distribu-
tions of each contributor in the mixture (Fig. 1E). The posterior
mixture distribution is denoted by fpos.

From the mixture distribution, 2 predictors are estimated: Lo-
gOdds and Log,FC. LogOdds expresses the ratio between the proba-
bility of the disease being mentioned more frequently than ex-
pected in the literature of the compound, rather than less fre-
quently. Log,FC expresses the change between the average proba-
bility of mentioning the disease in the mixture distribution, com-
pared to the expected probability in the whole literature. In sum-
mary, both should be considered jointly in the predictions: LogOdds
as a measure of significance and Log,FC as a measure of effect
size.In (2), to get an intuition about the belief of the neighborhood
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Figure 1: A step-by-step description of the proposed method. Compound a has 0 < ng < 100 articles, with some co-occurrence with the disease of

interest (0 < yq < nq). In the blocks A and B, the nodes represent metabolites and the edges substrate-product relationships in the metabolic network.
Dashed lines indicate more distant connections. (A) Imbalance of mentioning literatures within a metabolic network. Compound a has 0 < n, < 100
articles, with some co-occurrence with the disease of interest (0 < yq < nq). Nodes represent metabolites and the edges substrate-product
relationships in the metabolic network. Dashed lines indicate more distant connections. (B) Propagation of literature through a metabolic
neighborhood. (C) Weight of a metabolic neighbor in an overlooked metabolite’s corpus used for prior construction. (D) Contribution of a neighbor,
from assumed independence, mitigated by a neighbor’s literature (observations). (E) Construction of the metabolite’s prior from contributors. (F)

Computation of the metabolite’s posterior from observations and the prior.

only, we also return similar indicators estimated from fp,: prior-
LogOdds and priorLog,FC (see sections Updating prior and selecting
novel associations and Different scenarios in Methods). Finally, given
its primary role in driving predictions, assessing the composition
of the constructed prior is crucial. Essentially, the more contrib-
utors to the prior, close to the target compound, with balanced
weights, the better it captures the neighborhood literature and in-
creases the confidence in predictions. To aid in this evaluation, a
set of diagnostic indicators is presented in Supplementary S1.3.

Analyses

Unbalanced distribution of the literature related
to chemical compounds

The FORUM KG links PubChem compounds to the PubMed articles
that mention them. Among the 103 million PubChem compounds
in FORUM, only 376,508 are mentioned in PubMed articles, rep-
resenting a coverage lower than 0.4%. For these mentioned com-
pounds, the distribution of the literature is highly skewed (Fig. 2A).
The top 1% of the most mentioned compounds (red area) con-
centrates 80% of the links between PubChem compounds and
PubMed articles. Similarly, the blue area indicates that 63% of
compounds (218,291) have only 1 article mentioning them, which,
to give a point of comparison, is cumulatively less than the liter-
ature associated with glucose: 278,277 distinct articles.
Considering only metabolites, Fig. 2B presents the distribution
of the number of articles mentioning the 2,704 metabolites, con-
served in the pruned version of the Human1 metabolic network.

Because of the skewed distribution of the literature and the lack
of external identifiers, 62.09% of the metabolites in the metabolic
network have no annotated articles. Nevertheless, almost 72% of
them have atleast 1 direct neighbor in the metabolic network with
available literature (see Fig. 2C). Moreover, by considering the close
neighborhood (paths up to 3 reactions), almost all the metabolites
(~ 97.26%) without initial literature can reach a described neigh-
bor, showing the availability of nearby literature to build a prior.

Evaluation of the prior computation

The critical step in the proposed method is the construction of a
relevant prior. While its influence on the results will decrease as
the size of the literature of the targeted compound increases, it
will mainly drive the predictions for the rarely mentioned com-
pounds we are interested in [23].

The relevance of the prior was evaluated by testing whether sig-
nificant associations with diseases could be retrieved using only
the literature from the metabolic neighborhood of the metabolite.

The validation dataset includes 10,000 significant relations be-
tween metabolites and disease-related MeSH extracted from the
FORUM KG and 10,000 random metabolite-MeSH pairs to serve
as negative examples. The method is evaluated by considering ei-
ther the direct or a larger neighborhood (metabolites that can be
reached through a path of 2 or more reactions). We therefore fo-
cused on 2 specific settings: « = 0, where solely the direct neigh-
bors contribute to the prior, and « = 0.4, where contributions be-
tween direct or indirect neighbors are relatively balanced. The im-
pact of the parameter « on the construction of the prior and the
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in descending order. The red area represents the proportion of the most mentioned compounds required to attain 80% of the total number of
annotations, while the blue area represents the fraction of compounds with only one annotated article. (B) Distribution of the number of annotated
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precision-recall trade-off is extensively evaluated in Supplemen-
tary Material S4.3.

We decided to compare the proposed method against 2 differ-
ent baselines (more details in Supplementary S4.2). Baseline-Freq
is the most naive approach in which the predictions are solely
based on the overall probability of mentioning the disease, such
that a metabolite is more likely to be related to frequently men-
tioned diseases in the literature. Hence, Baseline-Freq ignores the
network information (metabolic neighborhood). On the contrary,
the predictions with Baseline-DN are based on the average prob-
ability of mentioning the disease in the direct neighborhood and
thus closer to the proposed approach. It is worth noting that, if all
direct neighbors have relatively the same number of annotated
articles and are well covered (negligible shrinkage), the method
parameterized with « = 0 behaves like the simple Baseline-DN for
metabolites without literature. We used Log,FC as a predictor for
the proposed method in Fig. 3.

The evaluation results on the validation dataset for all de-
scribed approaches are presented in Fig. 3. All tested approaches
outperform Baseline-Freq, showing the benefit of examining the
neighboring literature. When considering the direct neighborhood
(method with « = 0), the method is more efficient than Baseline-
DN. However, as previously shown in Fig. 2C, the direct neighbor-
hood cannot bring information for more than 28% of metabolites
without literature. Therefore, considering a larger neighborhood
can be essential for some overlooked metabolites, and the ap-
proach achieves solid performances (area under the curve [AUC]
= 0.78) on the validation dataset with « = 0.4. Applying a thresh-
old on Log,FC > 1 results in a true-positive rate (TPR) = 0.35 and

a false-positive rate (FPR) = 0.05. Using LogOdds as predictor, the
method achieved slightly lower performances (AUC = 0.76), with
TPR = 0.22 and FPR = 0.04 when applying a threshold on Lo-
gOdds > 2. Beyond the validation, LogOdds is more robust to out-
lier contributions than Log,FC, and when examining predictions,
they should be considered together as complementary indicators
of significance and effect size. These results suggest that the prior
built from the neighboring literature alone holds relevant infor-
mation about the biomedical context of metabolites and could
be efficient to drive predictions for rarely mentioned compounds.
To evaluate the performances of predictions based on the pos-
terior distribution and the behavior of the method on challeng-
ing cases, a supplementary analysis was conducted using simu-
lated overlooked metabolites in Supplementary S4.4. Finally, as
mentioned in the Method summary, the metabolic network was
pruned from spurious connections using an atom-mapping proce-
dure (see Supplementary S1.1). This results in a compound graph,
built by linking 2 compounds when they share at least 1 carbon
and have a substrate-product relationship in at least 1 reaction.
The impact of the carbon skeleton graph on the predictions is
evaluated in Supplementary S4.5.

Suggesting relations with diseases for
overlooked metabolites

In the FORUM KG, 80% of the significant associations with biomed-
ical concepts are observed for the 20% of compounds with more
than 100 annotated articles. This manifestation of the Pareto
principle [24] reflects the need for additional knowledge for
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compounds that are less frequently mentioned. Therefore, in this
analysis, we applied the proposed method on all metabolites in
the human metabolic network with fewer than 100 annotated ar-
ticles (see Table 1). According to the experiments on the validation
dataset (see previous section Evaluation of the prior computation),
we applied a threshold on LogOdds > 2 and Log,FC > 1. Predic-
tions for which the prior was biased toward 1 dominant contrib-
utor and thus failed to capture the neighborhood literature were
excluded by filtering the diagnostic indicator Entropy > 1. Entropy
is the Shannon entropy computed on the contributors’ weights in
the prior: the more contributors with balanced weights, the higher
the entropy. (See details in Method and Supplementary S1.3.)

In total, 1,863 predictions correspond to relations that are not
novel, since they are already supported by 1 or several publi-
cations in the literature (co-mention:yes in Table 1). However,
by reevaluating them using the same workflow as in FORUM
[6] (a standard overrepresentation analysis [ORA] using a right-
tailed Fisher exact test, Benjamini-Hochberg (BH) correction, and
threshold on q < 0.05), we found that ~ 50% of these associations
(925) would not have been highlighted. While only a few articles
support these relationships and half of them were discarded by
a standard ORA, the method showed their consistency with the
literature of metabolic neighbors. A total of 7,286 novel relations
have also been suggested with disease-related MeSH, without hav-
ing been mentioned in their literature already (co-mention:no).
Finally, for 793 metabolites without literature, 26,436 relations
have been suggested only by exploiting the neighborhood liter-
ature. All the results are available on the FORUM ftp server (see
[22]), filling a gap when it comes to the interpretation of signatures
with these overlooked metabolites.

Case study

In this section, we will describe the behavior and benefits of the
method through 2 test cases. As mentioned in the previous sec-
tion Method and Data Description, hydroxytyrosol is an example of
a metabolite without literature (1) and Se-androstane-3,17-dione

of a metabolite with only a few annotated articles (2) and with a
weakly supported association.

Hydroxytyrosol and its potential link with Parkinson’s dis-
ease

Hydroxytyrosol is a metabolite that is known for its antioxi-
dant properties [25] and mentioned by 856 publications in FO-
RUM. However, its literature will only serve as ground truth, and
hydroxytyrosol will be considered a metabolite without litera-
ture in this analysis. Consequently, the predictions are solely de-
rived from the neighboring literature (f,,). The top 10 predic-
tions ranked by LogOdds are presented in Supplementary Table
S1. Parkinson’s disease is the most suggested disease, followed
by broader descriptors also related to neurodegenerative disor-
ders. This suggestion is mainly driven by the literature of close
metabolic neighbors: dopamine and 3,4-dihydroxyphenylacetate
(Fig. 4). Both compounds’ literature frequently mention Parkin-
son’s disease (Supplementary Table S2), suggesting that hydrox-
ytyrosol may also be related to this disease. Other contributors
such as 3.4-dihydroxyphenylacetaldehyde or homovanillate also
seem to be related to the pathology but only contribute ~ 5% to
the prior as they are more distant neighbors or have less literature.
In the actual literature of hydroxytyrosol, 2 articles [26, 27] explic-
itly discuss its therapeutic properties on Parkinson'’s disease.

Highlighting the role of 5a-androstane-3,17-dione in poly-
cystic ovary syndrome

Since 82 articles are available for 5«-androstane-3,17-dione (5-
aA), the predictions are derived from both its literature and that
of its metabolic neighborhood. The top 25 predictions ranked by
LogOdds are presented in Supplementary Table S3, along with
the P value from a right-tailed Fisher exact test using the same
data for comparison. The highest-ranked associations are sup-
ported by several mentions of the compound and by the neigh-
borhood (high priorLogOdds). They correspond to mildly interesting
predictions as the literature of the compound alone would have
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Table 1: Summary table of the number of disease-related MeSH predicted for metabolites in the network with fewer than 100 annotated
articles. The results are separated between the 2 major scenarios: (1) metabolites without literature and (2) metabolites poorly described
in the literature (<100 articles). In the second case, results are also arranged according to whether the metabolite already co-mentions
the MeSH (co-mention column). Only predictions with LogOdds > 2, Log,FC > 1, and Entropy > 1 are considered. For the 1,863 predictions
where the metabolite co-mentions the MeSH, 938 (~ 50%) are also retrieved using a right-tailed Fisher exact test (BH correction and q <
0.05). Only 793 metabolites among the 1,679 without literature and 254 among those with literature have significant results according

to the used thresholds.

No. metabolites Co-mention No. predictions
Metabolites without literature 793 No 26,436
Metabolites with few articles (<100 articles) 254 No 7,286
Yes 1,863

dopamine

Contributions

0 0.2 0.4

LogOdds: 9.99
Log2FC: 3.55 g e
8

100 =>

3,4-dihydroxyphenylacetaldehyde homovanillate

0.6 0.8 1
Weights in the prior mixture

3,4-dihydroxyphenylacetate others

= ]
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=<

001

Contributor Odds (in log scale)

Figure 4: Profile of the contributors for the association between hydroxytyrosol and Parkinson’s disease. This shows the repartition of the literature
received by hydroxytyrosol from its neighborhood to build its prior. Contributors are organized in blocks by increasing weights in the prior mixture
(wy, ), from left to right. The weights also give the width of the block. The color of each block associated with a contributor depends on its individual
LogOdds, from blue to red, for negative (less likely) to positive (more likely) contributions, respectively. Weights and LogOdds are also detailed in

Supplementary Table S2.

been sufficient (significant Fisher P value): the neighborhood only
strengthens the relation. Instead, we choose to focus on the re-
lation with polycystic ovary syndrome (PCOS), which has a non-
significant Fisher P value and only 1 article supporting the relation
[28]. The priorLogOdds (5.47) indicates that the literature gathered
from the metabolic neighborhood seems highly related to the dis-
ease (Fig. 5). While the literature of the compound alone is insuf-
ficient to highlight an association with PCOS, the posterior distri-
bution, combining information available from the compound and
its neighbors, strongly suggests one (LogOdds = 6.23 and Log,FC =
3.14). Androsterone, a direct neighbor of 5-aA through the reac-
tion 3(or 17)-a-hydroxysteroid dehydrogenase, is the main contribu-
tor supporting the prediction (Fig. 5). Additional contributors such
as testosterone, testosterone-sulfate, estradiol-178, and proges-
terone are more distant metabolically (2-3 reactions) but are also
frequently mentioned in this context [29-35]. Also, PCOS is much
more frequently mentioned in the literature of 4-androstene-3,17-
dione compared to the other metabolites in the neighborhood,
makingit an outlier among the contributors. Interestingly, its con-
tribution significantly drops in the posterior distribution (see de-
tails in Supplementary S4.6 and Supplementary Table S4). A view
of the metabolic neighborhood of 5-aA is also presented in Sup-
plementary Fig. S4.

To illustrate the influence of the observations on the poste-
rior distribution, we reevaluated the relation by removing the sin-
gle co-occurrence between the 5-aA and PCOS. By suppressing
this mention, the LogOdds drops to 3.67, Log,FC to 2.80, and the
weights in the posterior mixture change according to the new ob-

servations (see Supplementary Fig. S3). For instance, the weight
of androsterone, for which the literature mentions PCOS less fre-
quently than the other top contributors (testosterone, estradiol,
etc.), increased while those of the others decreased. More signifi-
cantly, the weight of 16«-hydroxydehydroepiandrosterone, which
is never mentioned with the disease, increases from 0.38% to 3%.
By removing this mention, the likelihood of the evidence for each
contributor changed, favoring those for whom the disease is less
likely to be mentioned in an article. Although the relation is still
suggested by the neighborhood, this result shows the impact of
the available literature on the predictions.

Discussion

The interpretation of experimental results in metabolomics re-
quires an intensive dive in the scientific literature. In a biomedical
context, researchers often seek studies that mention metabolites
from an observed signature, as well as report variations in their
concentration in similar phenotypes. However, we have shown
that there is a strong imbalance in the distribution of the liter-
ature among metabolites, suggesting that this research could be
restricted to a subset of the initial metabolic signature. Even if this
imbalance is accentuated by technical limitations, it also reflects
biological facts: some metabolites are more central and sensitive
to phenotypic alterations and would therefore be more frequently
reported. Nonetheless, they do not necessarily provide key infor-
mation when interpreting results, because they do not point to
dysregulations on specific pathways. To extend the available data
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Figure 5: Profile of the contributors for the association between Sa-androstane-3,17-dione and polycystic ovary syndrome in the prior mixture (A) and
in the posterior mixture (B). Contributors are organized in blocks by increasing weights in the mixture from left to right, and the weights also give the

width of the block. The color of each block associated with a contributor depends on its individual LogOdds, from blue to red, for negative (less likely) to
positive (more likely) contributions, respectively. Details in Supplementary Table S4.

to help interpret results, we propose a method to suggest relations
between overlooked metabolites and diseases. Most metabolites
(62%) in the network have no literature available, and many can-
not be mapped to their corresponding PubChem identifier. It is
a common issue when dealing with metabolic networks, as they
are initially built for modeling purposes [36]. The absence of an-
notations also indicates that a compound is not widely described
and studied, which may suggest that little literature has actually
been lost.

The predictions for metabolites without literature are solely
based on their prior distribution, which is built from a mixture of
the neighboring literature. We first evaluated the prior alone on a
validation dataset (AUC ~ 0.78) and showed that it holds relevant
information about the biomedical context of metabolites. Since
the contributors, their weights, and influences in the mixture dis-
tribution (more or less likely to mention the disease in an article)
are known, the prior is transparent by design. In the example of
hydroxytyrosol, the prediction was mainly derived from the litera-
ture of dopamine, 3,4-dihydroxyphenylacetaldehyde (DOPAL), and
3,4-dihydroxyphenylacetate (DOPAC), and these studies all fre-
quently mention Parkinson’s disease in their literature. Hydrox-
ytyrosol and its contributors belong to the dopamine degradation
pathway [37]. The literature supporting the relation with Parkin-
son’s disease mainly discusses the production of hydrogen perox-
ide during dopamine degradation to DOPAL by monoamine ox-
idase (MAO) enzymes. Since DOPAL is then inactivated into ei-
ther DOPAC or hydroxytyrosol, the literature that has been prop-
agated by the contributors is metabolically relevant for hydroxy-
tyrosol. Indeed, [38] shows that hydroxytyrosol can induce a neg-
ative feedback inhibition on dopamine synthesis, resulting in a
decrease of the oxidation rate of dopamine. By indicating which
and how neighbors contributed to the predictions, the contribu-

tion profile thus adds explainability to the predictions, which we
believe is an important quality of the method. It can be quickly
established if there was a clear consensus in the neighborhood or
if the association was only carried by 1 dominant contributor. In
the case of positive suggestions, the associated literature of each
contributor could be examined to understand the nature of their
relation with the disease and assess the consistency of the pre-
diction. Typically, we want to evaluate whether the relationship
between the contributors and the disease can indeed be trans-
ferred to the target compound, whether it may suggest another,
or whether it is irrelevant.

While a consensus is of course preferred (no matter the out-
come of the prediction), some contributors may also have diver-
gent literature for a particular disease. To complete the example
of hydroxytyrosol, we show the profile of the contributors for the
relation between 5-S-cysteinyldopamine (CysDA) and Parkinson’s
disease (see Supplementary Fig. SS5A). CysDA is the S-conjugate
of dopamine and cysteine, and its prior is mainly influenced by
the literature of both of these precursors, at 51% and 45%, respec-
tively. While dopamine is strongly related to the disease, cysteine
is mentioned much less in this context, and the prior is conse-
quently indecisive (priorLogOdds ~ 0.1). In this case, only the ob-
served literature of CysDA can reduce the uncertainty by updat-
ing the prior distribution. In FORUM, 11 articles out of 33 men-
tion CysDA and Parkinson’s disease, which has an important im-
pact on the weights in the posterior mixture in favor of dopamine,
which then becomes the dominant contributor (see Supplemen-
tary Fig. S5B). Indeed, the posterior weights are proportional to
the likelihood of the data according to the prior defined by each
contributor. For CysDA, observations clearly suggest that it should
be frequently mentioned with Parkinson’s disease, like dopamine,
contrary to what is suggested by cysteine. The prediction is highly

£20z Jaquiaydag gz uo 1sanb Aq zyey2z//590pe1b/aousiosebib/ge0 L 0L /10p/a]o1ue/aouaiosebib/woo dnoojwapeoe//:sdyy woly papeojumoq



8 | GigaScience, 2023, Vol. 12, No. 1

significant (LogOdds = 50.7, Log,FC = 3.87) as the literature for
CysDA 1is very indicative. It is noteworthy that even fewer co-
mentions would have already shifted the balance of contributors
in favor of dopamine and highlighted this relationship. Supple-
mentary Fig. SSC shows the contributor profiles in the case where
only 2 articles had mentioned the disease, which would have been
sufficient to highlight the relationship. This emphasizes the sen-
sibility of the method, which may suggest still poorly supported
relations but are consistent with the metabolic neighborhood’s lit-
erature.

Likewise, the literature linking 5-aA to PCOS is not sufficient in
quantity to statistically show a relation. From an expert’s perspec-
tive, only 1 qualitative article could be sufficient to justify a rela-
tion between a metabolite and a disease. But since the literature
and the topics related with metabolomics are broad, highlighting
these weakly supported relations could point to relevant paths of
interpretation that may have been missed. The relation between
5-aA and PCOS is supported by only 1 article but is highly coher-
ent in the metabolic neighborhood, as androgen metabolism dys-
functions are central in this pathology [39]. As the contributors
are widely studied metabolites (androsterone, testosterone, etc.)
that also frequently mention the disease in their literature, the
prior regarding the relationship is strong and strengthens the ob-
servations. We also show that after removing the only supporting
article and computing the posterior distribution accordingly, the
relation is still suggested, but the LogOdds and Log, FC significantly
drop. This illustrates the behavior of the method, where the poste-
rior distribution proposes a compromise between the compound’s
literature and that of its contributors, giving more weight to those
that are the most mentioned and for whom the observations are
the most consistent. The neighborhood literature can also help to
discard suggestions that are supported by secondary or negligible
mentions (see Supplementary S4.7).

With FORUM’s data, relations are evaluated for both disease-
specific MeSH and broader descriptors, representative of disease
families such as Neurodegenerative Diseases (D019636). When there
is no consensus among contributors at the level of specific dis-
eases but they all belong to the same category of disorders, more
coarse-grained relations could be suggested. Although this in-
creases the redundancy of the results, it makes it easier to grasp
the overall biomedical context of some overlooked metabolites.

Limitations

The most evident limitation of the proposed approach is that the
assumption that the literature in the metabolic neighborhood of
a metabolite provides relevant prior knowledge on its biomedi-
cal context is not always accurate. A short path of reactions can
indeed have a major impact on the metabolic activity of com-
pounds, resulting in separate biological pathways and invalidat-
ing the hypothesis. For instance, while dopamine is a derivative of
tyrosine, the former is a neurotransmitter and the latter a funda-
mental amino acid. Their biomedical literature therefore covers
very different topics, and one would not provide a good a priorion
the other. Nonetheless, thanks to the transparency of the contrib-
utors’ profile, such irrelevant contributions can be identified and
the corresponding predictions reevaluated or discarded.

Based solely on the metabolic network, we ignore the regula-
tory mechanisms of biological pathways and only focus on bio-
chemistry. We therefore assume that all paths of reactions are ac-
tive and valid when propagating the literature, which is not true
and may vary depending on physiological conditions. The predic-
tions could potentially be improved by integrating a regulation

layer, but this would add major complexity to the method, and we
choose to ignore these constraints by proposing a more general
approach. Although reconstructions of the human metabolism
like Human1 are constantly improving, they remain incomplete,
and some pathways (e.g., lipids [40]) are simplified with missing
or artificially created links, mainly for modeling purposes.

With their overflowing literature, overstudied metabolites
(amino acids, cholesterol, etc.) can erase the contributions of other
neighbors in the construction of a prior. This results in a strong
prior that is only fueled by the literature of 1 dominant contribu-
tor, and in the case of a metabolite without literature, predictions
will therefore be solely based on it. We therefore provide diagnos-
tic indicators like Entropy, CtbAugDistance, and CtbAvgCorporaSize
(see Supplementary S1.3) to identify these unbalanced priors and
flag these predictions. Finally, a part of the biomedical literature of
some influential compounds may not be related to their metabolic
activity. For instance, ethanol is strongly related to bacterial infec-
tions, not as a metabolite but because of its antiseptic properties,
which may suggest out-of-context relations by spreading its liter-
ature to neighbors. To avoid arbitrary filtering, we allow the user
the choice to keep associations with such compounds after review.

Potential implications

Based on the literature extracted from the FORUM KG, we showed
the imbalance in the distribution of the literature related to
metabolites. To overcome this bias, we proposed an approach in
which we extend the guilt-by-association principle in the Bayesian
framework. Basically, we use a mixture of the literature of the
metabolic neighborhood of a compound to build a prior distribu-
tion on the probability that one of its articles would mention a par-
ticular disease. The transparency of the contributor’s profile is es-
sential and helps diagnose and explain the predictions by indicat-
ing which and how metabolic neighbors have contributed. More
than 35,000 relations between metabolites and disease-related
MeSH descriptors have been extracted and are available on the
FORUM ftp. These relations may help interpret metabolic signa-
tures when no or little information can be found in the literature
or databases. In the upcoming release of the FORUM KG, these re-
lations will be integrated as a peripheral graph to supplement the
existing metabolite-disease associations and create new paths of
hypotheses. In this analysis, we restricted our predictions to a
disease-related concept because the metabolic network, although
suitable for propagating this type of relationship, would be less re-
liable for propagating functional relations, for instance. The pro-
cess is also network dependent, which means that using a differ-
ent metabolic network (human or other organisms) could result
in different suggestions. Nonetheless, the approach could be ex-
tended to other entities (genes, proteins) and relations, as long as
the related literature is available and the neighborhood of an in-
dividual can provide a meaningful prior. Finally, as the literature
grows rapidly and metabolic networks become more comprehen-
sive, we hope that this will also improve both the quantity and the
quality of the suggestions in the future.

Methods

Settings

The approach is metabolite-centric, considering all the available
literature for each metabolite and its co-mentions with disease-

related MeSH descriptors as input data. Note that each article
frequently mentions numerous metabolites, and therefore the
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literature related to each metabolite, in terms of publications, is
not exclusive to that chemical but can be shared with others. We
thus call a “mention” the fact that an article mentions a metabo-
lite.

For M metabolites in the metabolic network, we note n; as
the total number of mentions of a metabolite i and then define
N = Y. n; as the total number of mentions in the network. Given
a specific disease-related MeSH descriptor, we also define y; as the
number of articles co-mentioning the metabolite i and the dis-
ease, withm = 3"M, y; the total number of mentions involving that
disease. Details on the extraction of literature data from the FO-
RUM KG are presented in Supplementary S1.2.

For a metabolite k of interest, the random variable p;, denotes
the probability that an article mentioning the metabolite k also
mentions the disease. The aim of the method is to estimate the
posterior distribution of py, given a prior built from the literature
of its metabolic neighborhood. To assess the strength of their re-
lation, py is then compared to the expected probability P = §} that
any mentions of a metabolite in the literature also involve the dis-
ease. Asin the method summary, the scenario in Fig. 1 will be used
to illustrate the different steps.

Estimating the contributions of metabolic
neighbors

Based on the assumption that the literature from the metabolic
neighborhood of a compound could provide a useful prior on its
biomedical context, the first step is to propagate the neighbors’ lit-
erature. A random walk with restart (RWR) algorithm (or Person-
alized PageRank) is used to model a mention, sent by a metabo-
lite i, which moves randomly through the edges in the network
and reaches another compound k. At each step, the mention has
a probability «, named the damping factor, of continuing the walk
and (1 — «) of restarting from the metabolite i. The result is a prob-
ability vector 7, indicating the probability that a mention sent by
1 reaches any metabolites k in the network, noted n; ;. The ex-
pected number of mentions sent by i that reach the compound
k is then m; xn;. However, in this model, a compound can receive
its own mentions (ry > 0), although only those derived from the
neighborhood should be used to build the prior, as the metabo-
lite should not influence itself. A second bias is relative to the
set of neighbors for which a metabolite is allowed to contribute
to their prior. Metabolites with very large corpora (glucose, trypto-
phan, etc.) can propagate their literature to distant metabolites in
the network, even if their probability to reach them is low. In the
case of metabolites with a rarely mentioned direct neighborhood,
they can predominantly contribute to the prior, although they are
not metabolically relevant. This bias is accentuated by the highly
skewed distribution of the literature.

To contribute to the prior of k, we therefore require that a
metabolite i should have a probability of reaching k (without con-
sidering the walks that land on itself) greater than the probabil-
ity of choosing k randomly. The set of metabolites k to which i
is allowed to contribute (namely, the influence neighborhood of i,
noted H;) is therefore defined as

i 1
1- ;_-) ) (1)

According to these probabilities, the quantity of literature sent
by i that reaches k is noted as t; i, such as

keH Vk#£i

Tik - .
Soan T ifk € H;. )

tig = .
0, otherwise.
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These aspects are illustrated in Fig. 1B: b does not share any men-
tions with itself or with z, which does not belong to its influence
neighborhood in this example. However, a receives t, , mentions
from b. Symmetrically, we defined T, as the set of contributors of
k,such thatt; > 0. Each contributor i has a weight w;  in the prior
of k, representing the proportion of literature reaching k that was
sent by i:
Gk

Wik Zi'eTk ti’,k (3)
The weight vector for compound k is noted wy. In Fig. 1C, Wy 4 is
the weight of bin the prior of a and as a cannot contribute toitself,
Wa,a = 0.

Mixing neighboring literature to build a prior

The probability p; that an article mentioning a metabolite also
mentions a disease is modeled with a Beta distribution, flexible
and suitable for modeling proportions [41]. We assume that a pri-
ori, any metabolites and diseases are independent concepts in the
literature, so that mention of the former does not affect the prob-
ability of mentioning the latter and E[p;] = P. Under this assump-
tion, for any contributor i, the prior distribution of p; is modeled
as a Beta distribution parameterized by mean (1 = P) and sample
size (v):

yilni, pi ~ Bin(ni, p;) (4a)
pi ~ Beta(a©, gO) (4b)
a9 = pv, pO = (1—p)pwithp="P (4c)

The sample size v is a hyperparameter and controls the vari-
ance; the higher v, the lower the variance: Var[p;] = 1) More

(
1+v
intuitively, v can be seen as the number of pseudo-observations

that support this prior belief. Since u = P, a relationship would not
be suggested a priori, and the higher v, the more each contributor
i would have to bring new evidence (n;) to change this prior belief
[42]. As the Beta distribution is a conjugate prior of the Binomial
distribution, the posterior distribution of p; can also be expressed
as a Beta distribution:

pilyi. n; ~ Beta(e" ﬂl(l)) (5a)

i

oV =« 4y and BV = O 4+ (n; —y) (5b)

1

For overlooked neighbors that might bring unreliable contribu-
tions, the posterior distribution of p; acts as a shrinkage procedure,
by adjusting the probability distribution toward the overall prob-
ability P of mentioning the disease. This is illustrated in Fig. 1D:
the contributor f has only 2 annotated publications, with 1 men-
tioning the disease. While the raw estimated probability that f
mentions the disease clearly seems overestimated due toits small
number of annotated articles, the posterior distribution of py is
more reliable.

Asillustratedin Fig. 1E, the prior distribution of p, also noted as
Sprior, 1s then defined as a mixture of the distributions Beta(ai(l), ﬂfl))
of each contributor, weighted by w; i:

Yele, pr ~ Bin(n, pr) (62)
pe ~ Y wirBetae”, p) (6b)
€Ty

In summary, the parameters « and v respectively control the av-
erage distance to which a metabolite is allowed to contribute to
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the prior of its neighbors and the strength of the initial prior in
the shrinkage procedure. The impact of these parameters on the
constructed prior and predictions is discussed in Supplementary
S4.3.1n the analyses presented in sections Suggesting relations with
diseases for overlooked metabolites and Case study, we set &« = 0.4 and
v = 1,000.

Updating prior and selecting novel associations

For the compound k, the final posterior mixture distribution of py,
also noted as fyost (cf. Fig. 1F), is thus expressed as a mixture of the
updated posterior distributions of each contributor, reweighted
according to the observed data (n, and yy):

PelYe, Nk ~ ZWi,kBeta(Oli(Z), ﬂi(z)) (7a)
€Ty
Wi kCik

Wik=s—""">-—
T Yier, WikCik

(79)

@) 50
: e\ Bl 7)o
with Cj, = < ># s = (7c
T e pm) T )
and g% = B + (e — ) (7d)

Ci  represents the probability of observing the data (yi, ng) of
the metabolite k, where p; is drawn from the Beta distribution
of the contributor i (Beta(ozl.(l), ﬂim)), as in a Beta-binomial model.
Therefore, the posterior weights in the mixture (W; 1) correspond
to the initial weights (w; x), reweighted according to the likelihood
of the observations from the perspective of the contributor i.

From the mixture distribution, we evaluate the probability that
pr < P, or the posterior error that an article mentioning the
metabolite k would mention the disease more frequently than
expected, noted CDF. We set ¢ = 1 — CDF and then use the log
odds of g, such as LogOdds = log(ﬁ). Therefore, if LogOdds > 0, it
is more likely that the metabolite k is related to the MeSH than
it is not and vice versa. Also, we defined Log,FC = logz(@). As
LogOdds can lead to infinite values (if CDF was not precisely com-
puted and approximated to 0), the Log,FC can in turn provide a
useful estimator to rank the relations. In turn, Log,FC, being pro-
portional to the mean E[fyest], is much more sensitive to outlier
contributors than LogOdds [43]. When evaluating predictions, Lo-
gOdds should be considered a measure of significance and Log,FC
as a measure of effect size. Finally, LogOdds and Log, FC can also be
computed independently for each contributor i using their associ-
ated component in the prior (Beta(ai(l), ﬂl.(l))) and posterior mixture
(Beta(e™, 7).

i

Different scenarios

For metabolites mentioned in few articles and with literature
available in the neighborhood (2), the behavior of the method is
exactly as described above. When the compound k has no anno-
tated articles (1), only the distribution f,, is used to compute Lo-
gOdds and Log,FC. In summary, for metabolites without literature,
LogOdds and Log,FC are derived from fy,, while for metabolites
with literature, they are obtained from fpes:. For the latter, priorL-
0g0Odds and priorLog,FC are computed from the prior distribution
fprior @and aim to represent the belief of the metabolic neighbor-
hood, without the influence of the compound’s literature.

There may be no literature available in the neighborhood of
some metabolites. In this case, the prior distribution is simply
defined by Beta(e®, g©), and then the posterior distribution is
Beta(a,(el), ﬁén). In the worst case, when no literature is available
for the metabolite and its neighborhood, the basic distribution
Beta(e'?), 819) is used, but predictions are automatically discarded.

Since the construction of the prior from the neighborhood’s lit-
erature is critical in the proposed method, several diagnostic val-
ues are also reported to judge its consistency. Those additional
indicators are detailed in Supplementary S1.3.

Availability of Source Code and
Requirements

® Project name: Forum-LiteraturePropagation
® Project homepage: https://github.com/eMetaboHUB/Forum-
LiteraturePropagation

® Operating system(s): Platform independent

® Programming language: Python, bash script

¢ Other requirements: Python 3.7, Pip, Conda

e License: CeCILL 2.1

® RRID: SCR_023874

Data Availability

The dataset(s) supporting the results of this article are available
on the GitHub repository [22].

Snapshots of our code and other data further supporting this
work are openly available in the GigaScience repository, GigaDB
[44].

Additional Files

Supplementary Fig. S1. Example of the galactokinase reaction
in the reconstruction process of the carbon skeleton graph: the
galactokinase is an enzyme that catalyzes the phosphorylation
of galactose into galactose-1-phosphate. Colored circles describe
the carbons shared between each participant of the reaction; their
number is also indicated. The blue square shows the phosphate
transferred from the ATP to the galactose. There is no carbon
shared between galactose and ADP or between ATP and galactose-
1-phosphate.

Supplementary Fig. S2. Detailed workflow diagram of the pre-
sented analysis. The left part of the diagram illustrates the process
of extracting co-mention data between PubChem compounds and
disease-related MeSH descriptors from the FORUM KG. Addition-
ally, the upper part outlines the construction of the carbon skele-
ton graph (CSG) from the Human1 metabolic network (v1.7) and
its integration into the FORUM KG, facilitating the linkage of
metabolic species with their co-mention data. The step labeled
“Metabolites’ Influence Matrix Step” denotes the computation of
probabilities 7, using a random walk with restart algorithm on
the resulting CSG (refer to the Method section for further details).
Lastly, the lower part of the diagram demonstrates the combina-
tion of these intermediary data elements to compute the predic-
tions.

Supplementary Fig. S3. Profile of the contributors for the associ-
ation between 5-aA and PCOS without the single co-occurrence
(PMID 8855823). Contributors are organized in blocks from left to
right by increasing contributions. The contributions correspond
to the weight of each contributor in the posterior mixture (W; ;)
and give the width of the block. The color of each block associ-
ated with a contributor depends on its individual LogOdds, from
blue to red, for negative (less likely) to positive (more likely) con-
tributions, respectively. Weights and LogOdds are also detailed in
Supplementary Table S5.
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Supplementary Fig. S4. View of the metabolic neighborhood of 5-
aA (in red). Main contributors of the relation with PCOS are high-
lighted in blue.

Supplementary Fig. S5. Profile of the contributors for the associa-
tion between 5-S-cysteinyldopamine and Parkinson’s disease. The
profile of the contributors from the prior distribution is shown in
A and from the posterior distribution in B, with actual literature
data: 11 supporting articles out of 33. C is the profile of the con-
tributors with only 2 co-occurrences. It represents the minimal
number of co-occurrences necessary to shift the balance of con-
tributors and highlight the relationship.

Supplementary Fig. S6. Boxplot of the average distance of the
contributors, weighted by w; ¢, using different damping factors a.
The red dotted line connects the median of each boxplot, and the
black horizontal line is a threshold at an average distance of 2 re-
actions.

Supplementary Fig. S7. Distribution of the contributors’ weights
in the prior mixtures w; i, at a distance of n reactions, for several
damping factors a. The red dotted line connects the medians, and
the blue dots represent the maximal outliers.

Supplementary Fig. S8. Evaluation of the true-positive rate (TPR),
false-positive rate (FPR), and precision on the validation dataset
obtained with a threshold on LogOdds >2, using different combi-
nations of hyperparameters o and v.

Supplementary Fig. S9. Average receiver operating characteristic
(ROC) curves per tested sample sizes for the method set with «
= 0.4, v = 1,000, and Baseline-DN + Cpd. In A, performances are
evaluated on datasets of simulated overlooked metabolites, with
increasing sample size: 10, 50, and 100. In B, only the Hard cases
have been retained to evaluate the performances of the method
against Baseline-DN + Cpd.

Supplementary Fig. S10. ROC curves using Log,FC as predictor
with the carbon skeleton graph (CSG network) or the original Hu-
manlmetabolic network. The AUCs are respectively 0.78 and 0.74.
The red dotted line corresponds to random strategies.
Supplementary Fig. S11. Detailed prior mixture of the top 10 con-
tributors for the relation between 5-aA and PCOS. The individual
distributions of each contributor in the mixture, along with the
parameters of the associated Beta distribution, are indicated.
Supplementary Fig. S12. Prior (blue) and posterior distributions
obtained with (red) and without (green) the co-mention for the
relation between 5-aA and PCOS.

Supplementary Fig. S13. Profile of the contributors for the associ-
ation between 5-«A and meningioma in the prior mixture (A) and
in the posterior mixture (B). Contributors are organized in blocks
by increasing weights in the mixture from left to right, and the
weights also give the width of the block. The color of each block
associated with a contributor depends on its individual LogOdds,
from blue to red, for negative (less likely) to positive (more likely)
contributions, respectively.

Supplementary Table S1. Top 10 disease-related MeSH suggested
for hydroxytyrosol, ranked by LogOdds.

Supplementary Table S2. The table describes different properties
of the contributors for the association between hydroxytyrosol
and Parkinson’s disease: corpora corresponds to the total number
of mentions associated with the compound; cooc is the number
of co-occurring mentions with the disease; LogOdds indicates the
individual LogOdds of the contributors in the prior mixture, same
for Log,FC; weights indicates the weight of each contributor in the
prior mixture. The values in others correspond to the median for
the remaining contributors.

Supplementary Table S3. Top 25 disease-related MeSH predicted
for 5-aA, ranked by LogOdds. The cooc column indicates the num-

gesting diseases from metabolic neighbors | 11

ber of co-occurring mentions with the disease. P value Fisher
refers to the P value obtained with an overrepresentation anal-
ysis (Fisher right-tailed exact test) using the same literature data
as used for the predictions (see Supplementary S1.2).
Supplementary Table S4. The table describes different properties
of the contributors for the association between 5-aA and PCOS:
corpora corresponds to the total number of mentions associated
with the compound; cooc is the number of co-occurring men-
tions with the disease; prior weights indicates the weight of each
contributor in the prior mixture; posterior weights indicates the
weight of each contributor in the posterior mixture; LogOdds indi-
cates the individual LogOdds of the contributors in the posterior
mixture, same for Log,FC. The values in others correspond to the
median for the remaining contributors. As in Figure 5, contribu-
tors are ordered by posterior weights.

Supplementary Table S5. The table describes different prop-
erties of the contributors for the association between 5-aA and
PCOS without the single co-mention: corpora corresponds to the
total number of mentions associated with the compound; cooc is
the number of co-occurring mentions with the disease; LogOdds
indicates the individual LogOdds of the contributors in the pos-
terior mixture, same for Log,FC; weights indicates the weight of
each contributor in the posterior mixture. The values in others
correspond to the median for the remaining contributors. As in
Figure 5, contributors are ordered by posterior weights.
Supplementary Table S6. Average AUC obtained on the predic-
tions with the proposed method and Baseline-DN + Cpd, by in-
creasing sample sizes, on the full validation datasets (Full) and
only on the Hard cases.

Supplementary Table S7. Average TPR on the predictions ob-
tained with the proposed method and Baseline-DN + Cpd on Hard
cases for an FPR fixed at 0.05 and by increasing sample sizes.
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