
HAL Id: hal-04223851
https://hal.inrae.fr/hal-04223851v1

Submitted on 30 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Mathematical modeling at the livestock-wildlife
interface: scoping review of drivers of disease

transmission between species
Brandon H. Hayes, Timothée Vergne, Mathieu Andraud, Nicolas Rose

To cite this version:
Brandon H. Hayes, Timothée Vergne, Mathieu Andraud, Nicolas Rose. Mathematical modeling at the
livestock-wildlife interface: scoping review of drivers of disease transmission between species. Frontiers
in Veterinary Science, 2023, 10, pp.1225446. �10.3389/fvets.2023.1225446�. �hal-04223851�

https://hal.inrae.fr/hal-04223851v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Frontiers in Veterinary Science 01 frontiersin.org

Mathematical modeling at the 
livestock-wildlife interface: 
scoping review of drivers of 
disease transmission between 
species
Brandon H. Hayes 1,2*, Timothée Vergne 1, Mathieu Andraud 2 and 
Nicolas Rose 2

1 IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France, 2 Ploufragan-Plouzané-Niort Laboratory, 
The French Agency for Food, Agriculture and the Environment (ANSES), Ploufragan, France

Modeling of infectious diseases at the livestock-wildlife interface is a unique 
subset of mathematical modeling with many innate challenges. To ascertain 
the characteristics of the models used in these scenarios, a scoping review of 
the scientific literature was conducted. Fifty-six studies qualified for inclusion. 
Only 14 diseases at this interface have benefited from the utility of mathematical 
modeling, despite a far greater number of shared diseases. The most represented 
species combinations were cattle and badgers (for bovine tuberculosis, 14), 
and pigs and wild boar [for African (8) and classical (3) swine fever, and foot-
and-mouth and disease (1)]. Assessing control strategies was the overwhelming 
primary research objective (27), with most studies examining control strategies 
applied to wildlife hosts and the effect on domestic hosts (10) or both wild and 
domestic hosts (5). In spatially-explicit models, while livestock species can often 
be represented through explicit and identifiable location data (such as farm, herd, 
or pasture locations), wildlife locations are often inferred using habitat suitability 
as a proxy. Though there are innate assumptions that may not be fully accurate 
when using habitat suitability to represent wildlife presence, especially for wildlife 
the parsimony principle plays a large role in modeling diseases at this interface, 
where parameters are difficult to document or require a high level of data for 
inference. Explaining observed transmission dynamics was another common 
model objective, though the relative contribution of involved species to epizootic 
propagation was only ascertained in a few models. More direct evidence of disease 
spill-over, as can be obtained through genomic approaches based on pathogen 
sequences, could be a useful complement to further inform such modeling. As 
computational and programmatic capabilities advance, the resolution of the 
models and data used in these models will likely be able to increase as well, with 
a potential goal being the linking of modern complex ecological models with the 
depth of dynamics responsible for pathogen transmission. Controlling diseases at 
this interface is a critical step toward improving both livestock and wildlife health, 
and mechanistic models are becoming increasingly used to explore the strategies 
needed to confront these diseases.
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Introduction

Modeling of infectious diseases at the domestic-wildlife 
interface is a unique niche within mathematical modeling. 
Requiring cross-disciplinary competence in infectious disease 
epidemiology, domestic animal health and livestock production, 
and wildlife ecology, these models seek to unravel the complex 
mechanisms behind both disease transmission between ecosystems 
and disease emergence in novel ecosystems. Developing models at 
this interface carries its own unique set of challenges. Indeed, 
entire articles have been written on the subject (1, 2). Simply 
estimating transmission between species is a burdensome task. 
There exists difficulty even in defining what constitutes an 
epidemiologically-relevant contact, as laboratory-based forced 
contact is different than that experienced under natural 
circumstances, and observing natural contacts to infer model 
parameters is a challenging ecological task (1). Further, spillover 
events are rarely observed but their frequency must be indirectly 
inferred, so as to inform the means of disease transmission in the 
non-reservoir population (2).

Transmission drivers for a wide range of pathogens have been 
well studied among human and domestic animal populations, for 
which specific epidemiological studies were set-up. In contrast, the 
transmission dynamics of infectious agents among wildlife species 
is more difficult to assess (3, 4). Wildlife characteristics ranging 
from descriptions of movement patterns and contact networks to 
simply quantifications of host population size are less certain (3, 
5–8). The difficulty of observing wildlife species further affects the 
ability to obtain accurate measurements of disease frequency—and 
even simply of host population distribution—due to biases among 
sampled and non-sampled subsets of wildlife populations (3, 9). 
These uncertainties inherently affect the ability to quantify the 
transmission potential of a disease among its host population, and 
these uncertainties must be recognized and accounted for when 
developing mechanistic models for infectious agents in the context 
of wildlife populations.

Modeling disease transmission at the interface between domestic 
and wildlife species, therefore, is a complex equation system involving 
multiple distinct host and pathogen factors. Within these 
mathematical models, the modeling frameworks used to represent the 
transmission dynamics in such context need to account for the 
specificities of both host populations. However, models also need to 
remain parsimonious in terms of parameterization, not to add 
unnecessary uncertainty into the system. Therefore, a balance between 
model complexity and host population representation needs to 
be  found to capture the transmission dynamics in regard to the 
available data. This review aims to examine the means of representation 
of livestock and wildlife species, drivers and mechanisms of 
transmission in the models, and the main challenges that are yet to 
be overcome in this field.

Materials and methods

The literature search was conducted via the PubMed and Web of 
Science databases on 28 February 2023 and performed in accordance 
with PRISMA guidelines (10). Constructed to capture all articles of 
mechanistic modeling that accounted for transmission between major 

livestock species and wildlife, the search—within keywords, title, and 
abstract—was comprised of the following query: (livestock OR cattle 
OR cow OR ruminant OR bovine OR swine OR pig OR porcine OR 
sheep OR ovine OR goat OR caprine) AND (wild* OR “wild boar” OR 
buffalo OR bison OR deer OR elk OR ibex OR badger) AND 
transmission AND (simulation OR math* OR stochastic OR estimation 
OR inference) AND model. The search was restricted to mammalian 
species, as the ecological processes behind the drivers of transmission 
of non-mammalian epizootic diseases of major concern, notably 
highly-pathogenic avian influenza, were considered too distinct and 
deserving of their own independent review. No date limitation was 
specified, and the English language was indirectly specified through 
search terminology.

A total of 709 articles were retrieved (PubMed 398, Web of 
Sciences 311) (Figure 1). Following removal of duplicates (149), 560 
articles were considered for preliminary title and abstract screening. 
All original research describing mechanistic models between 
mammalian wildlife and livestock were included.

Preliminary review resulted in the exclusion of 501 articles. These 
articles only considered a single species, did not include interaction 
between livestock and mammalian (i.e., non-avian) wildlife, were an 
exclusively within-host study (i.e., molecular, microbiological, 
immunological, or genomic model), were of phylogenetic or 
phylodynamic models, used purely statistical, economic or decision-
analysis models, were a review or editorial, or were experiments or 
field studies that did not include mechanistic modeling.

Of the 59 articles that qualified for full-text review, four articles 
were excluded following full-text assessment for not modeling 
transmission at the livestock-wildlife interface (11–14). All 10 
calibration articles were captured in the search query (15–24). One 
article not identified in the initial search but previously known to the 
authors was subsequently included (25), yielding 56 articles for data 
extraction. Author, date, domestic and wildlife species, disease, 
location, domestic and wildlife model frameworks, means of domestic 
and wildlife representation, source of model calibration, main driver 
of transmission between species, interaction process between species, 
direction of transmission, primary research objective and main 
hurdles challenges or limitations were extracted.

Model frameworks were classified either by the author classification 
or, if not specified, the classification that best approximated the 
described model. Individual-based models (IBMs)—synonymous with 
agent-based models but chosen for its nomenclature preference in 
ecology—were those where populations are simulated through the 
complex interactions of individuals with distinct properties (26, 27). 
Whether individual animals or herds, in these spatially-explicit models 
each individual unit interacts with its environment. Conversely, 
population-based models—commonly referred to as compartmental 
models—reflected the dynamics at a population scale without 
accounting for individual heterogeneity. Geographic automata were a 
generalization of the cellular automata structure, relying on the same 
principles of local grid-based neighbor interactions, but no longer 
constraining animal populations to a uniformly-spaced lattice (28, 29). 
Metapopulation models were defined as those models that connect 
multiple subpopulations, where in the simplest form infectives in one 
patch can simply transmit disease to susceptibles in either their or 
another patch (30). Lastly, models were classified as network models 
when the framework relied on individual or herd connectivity through 
explicit networks. Of note, no standard methodology for describing 
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individual-based epidemic models exists, which has led to irregularities 
and inconsistencies among model descriptions (31). Though protocols 
have been proposed for describing model structures in a standardized 
way, they are not specific to disease modeling nor are they consistently 
followed (31, 32).

Results

Epidemiological characteristics

Publication dates ranged from 2001 to 2023 
(Supplementary Table S1). Cattle were the predominant domestic 
species represented—being included in 32 models—followed by 
pigs (14), sheep (9), nonspecific livestock (5), and goats (4) 
(Figure 2). Combinations of livestock species (cattle, goats, pigs and 
sheep or cattle, goats, and sheep, or cattle and sheep, or goats and 
sheep) were present in four models. Among explicitly modeled 
wildlife, wild boar (16), badgers (13), nonspecific wildlife (9), deer 
(6), and buffalo (3) were most commonly represented with one 

model including both wild boar and deer (Figure 2). Additional 
wildlife was represented only once each: bharal, bighorn sheep, 
bison, feral cats, feral pigs, impala, possums, Saiga antelopes, stray 
dogs, wildebeest, and zebra.

Viral, bacterial, and parasitic diseases were represented among 
the models (Figure 3). Bovine tuberculosis (bTB) was the most 
frequently modeled disease (19) followed by African swine fever 
(ASF) (8), foot-and-mouth disease (FMD) (7), brucellosis (3), 
classical swine fever (CSF) (3), trypanosomiasis (3), and 
nematodiasis (2) (Supplementary Table S1). Babesiosis, 
echinococcosis, louping ill, neosporosis, toxoplasmosis, 
trichostrongylosis, and paratuberculosis were each represented a 
single time (Supplementary Table S1). Of the locations explicitly 
modeled, the United Kingdom (UK) and United States of America 
(USA) were represented the most frequently (13 and 10, 
respectively), and a total of 19 unique countries or regions across 
Africa, Europe, North America, and Oceania were represented 
among the studies (Supplementary Table S1). One set of studies 
occurred on a fictitious island for the purposes of the ASF modeling 
Challenge (3) (33), and nine models were not of a specific location.

FIGURE 1

PRISMA flow diagram for article selection.
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Model objectives, frameworks, and 
representation of hosts

The majority of primary objectives were to assess control 
strategies in a multihost population (26), estimate transmission 
risk to livestock from wildlife (9), or explain observed 
transmission dynamics while considering the effects of multiple 
hosts (8), though estimating transmission parameters (4), 
determining consequences of hypothetical outbreak scenarios (4), 

nowcasting of multihost epidemics (3), and comparing the impact 
of model assumptions on transmission in a multihost environment 
(1) were also represented (Supplementary Table S2). Models that 
assessed control strategies were mostly concerned with the 
outcomes of control strategies on livestock, whether the strategy 
was applied to wild hosts (10) (16, 20, 22, 34–40) or wild and 
domestic hosts (5) (23, 41–44). These studies were heavily focused 
on bTB (11) in the UK (7), ascertaining the outcomes of control 
strategies applied to badgers on either cattle (4) or cattle and 
badgers (5). Other studies examined the outcomes on domestic 
hosts of interventions applied to domestic hosts while accounting 
for transmission from wildlife, as for babesiosis, louping-ill, 
nematodiasis, and CSF (45–48).

Five model frameworks were used among domestic or wildlife 
species in the included articles: individual-based models (IBMs), 
population-based models (PBMs), cellular or geographic automata 
(CA), metapopulation, and network models. Individual-based 
models were the most popular framework for domestic hosts (25), 
whereas population-based models were the most prominent 
framework for wildlife species (25). The majority of models used the 
same frameworks for both the domestic and wildlife populations, 
though five articles used different model frameworks for each species. 
Here, network models for domestic species were used in combination 
with a wildlife metapopulation model (49) or PBM (50), or domestic 
IBMs were used with a wildlife metapopulation model (51) or wildlife 
PBMs (39, 52).

Among individual-based frameworks, a variety of approaches 
were taken to represent hosts, with point locations of farms, herds 
or production sites being the most common epidemiological unit 
for both domestic species (9) and raster cells being the most used 
method for wildlife (17). Indeed, representing domestic species by 
point locations and wildlife through a raster was the most 
common model combination seen in the included articles (7). 
Among wildlife, raster cells were predominantly based on habitat 
(10), though home ranges (43), host density (21, 53), and 
contiguous social groups (23, 41, 42, 44) were also used to define 
them. The models in ten articles represented species through 
mobile agents across a simulated landscape, with five of them 
using individual mobile agents for both domestic and wildlife 
models. In these models, mobile agents were programmed to roam 
over home-range polygons (54), a habitat raster (17, 45), or a 
lattice of cells without habitat characteristics (20, 55). 
Alternatively, five studies provided movement attributes to only 
one host, with four studies representing domestic hosts through 
raster cells or polygons while wildlife were represented via mobile 
agents (22, 34, 35, 40).

Population-based frameworks were used for a variety of diseases, 
including ASF, brucellosis, bTB, CSF, FMD, louping ill, and multiple 
parasitic diseases (echinococcosis, nematodiasis, neosporosis, 
toxoplasmosis, trichostrongylosis, and trypanosomiasis). These 
models represented domestic and wildlife species through 
parameters quantifying host abundance, though population density 
(16, 47, 56, 57), host presence (58), and recruitment rate (59) were 
also used.

Three studies used metapopulation approaches to represent 
wildlife, two of which were designed explicitly for the ASF Modeling 
Challenge (49, 60). Here, wildlife was represented through a habitat 
raster (49), home range polygon (51), or host-presence patches (60), 

FIGURE 2

Frequency of represented species in the included models. “Other” 
category includes singularly-represented species consisting of 
bharal, bighorn sheep, bison, feral cats, feral pigs, impala, possums, 
Saiga antelopes, stray dogs, wildebeest, and zebra.

FIGURE 3

Frequency of represented diseases in the included models. “Other” 
category includes singularly-represented diseases of babesiosis, 
echinococcosis, louping ill, neosporosis, toxoplasmosis, 
trichostrongylosis, and paratuberculosis. Abbreviations: African swine 
fever (ASF), bovine tuberculosis (bTB), classical swine fever (CSF), foot 
and mouth disease (FMD).
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while domestic species were represented through network models, 
metapopulation models, or IBMs using farms as location-specific 
network nodes (49, 60) or polygons of herd locations (51), 
respectively.

Cellular automata models—or their complexification to 
geographic automata models—were used to model FMD in 
Australia and the USA (19, 29, 61). A density distribution over a 
cellular lattice (19, 29) or a raster of herds (61) was used to 
represent domestic species, while wildlife species were represented 
via seasonal habitat or land cover density over a cellular lattice (19, 
29) or habitat raster (61).

Network models were used to simulate ASF (49), bTB (50, 62) and 
brucellosis (63) transmission. Network nodes were used to represent 
farms, pastures, or herd types of domestic hosts and home ranges or 
statistic reservoirs of wildlife hosts.

Drivers of disease transmission, 
representations of host interaction 
processes, and model calibration

Disease transmission was predominately driven through the 
overlap of livestock and wildlife habitat, home range, or shared pasture 
(18) (Supplementary Table S3). In some cases, modeled transmission 
was driven through wildlife escaping their home range and contacting 
livestock (64) or from wildlife explicitly seeking food and water 
sources (17). When explicit overlap was not considered, the proximity 
of livestock to wildlife areas or cases was used, as seen in models of 
ASF and CSF (24, 48, 60, 65, 66). Livestock proximity to forests (15) 
or livestock adjacency to hunting areas (35) was also used to drive 
transmission. Population-based models, frequently of parasitic 
disease, relied on host abundance or density to drive transmission 
between species (Supplementary Table S2). Wildlife dispersal in 
response to applied control strategies was also seen to drive 
transmission between species, as modeled in Byrom et al. (34) and 
Lintott et al. (67).

The models in this review examined transmission in all directions, 
with unidirectional transmission from wildlife to livestock (26) or 
bidirectional transmission between wildlife and livestock (25) being 
most frequent (Supplementary Table S3). Two models examined 
unidirectional disease transmission from livestock to wildlife (22, 51), 
and three models looked at transmission of disease between both 
wildlife and livestock to humans (36, 37, 63).

Different functional representations of the interaction 
processes between the different host populations were seen 
throughout the models in the included studies. Transmission rates, 
corresponding to the average number of new infections produced 
by one infectious unit per unit of time, are widely used in the 
literature for all modeling paradigms. This key parameter in 
epidemiology governs the force of infection, which might reflect 
either direct transmission between host or indirect transmission 
through vectors or environment. The transmission rate can also 
be defined as the product of the contact rate and the transmission 
probability whenever a contact occurs with an infectious unit. A 
few studies disentangled these two parameters to evaluate the 
relative impact of external factors on the different mechanisms of 
transmission (15, 29, 53, 61). When transmission rates were not 
used to represent host interaction, if the data was available, 

transmission or contact probability, or contact rate were also used 
to represent the host interaction process.

Of the 56 included studies, 37 models were calibrated via 
published literature. Only 10 of the models were calibrated to a real 
epidemic, and seven of those were specific to bTB (16, 18, 50, 55, 58, 
62, 68). The other two real epidemics modeled were ASF in the 
Republic of Korea (24) and CSF in Japan (48, 65). Three more articles 
did model ASF, but as part of the ASF challenge and with synthetic 
data (49, 60, 66). Four studies included a field component that was 
used in model calibration (25, 34, 57, 69).

Main hurdles

While each model had its own limitations unique to the specific 
scenario for which it was designed, four main classes of hurdles were 
identified: Lack of empirical parameter estimates, limited wildlife 
location data, defining what constitutes livestock-wildlife contact, and 
balancing model complexity with utility (Supplementary Table S3). By 
far, a lack of empirical parameter estimates was the primary limitation 
in 31 studies. The lack of empirical parameter estimates needed for 
model calibration could be further divided between parameters for 
disease transmission (17), wildlife behavior (8), livestock-wildlife 
contact (2), wildlife prevalence (2), interspecies control strategy effects 
(1), and host management (1). Even when an explicit interhost 
transmission study was conducted, its occurrence under controlled 
laboratory conditions limits extrapolation of these parameters to 
natural conditions (25). Limited data on wildlife locations was the 
primary limitation in 14 models. Here, a lack of wildlife density and/
or distribution data (11), lack of environmental reservoir locations (2), 
or uncertainties regarding wildlife habitat use as a function of 
preference versus availability (1) were identified. Indeed, even with 
fine-grain wildlife habitat data, understanding if such habitat is 
preferred or simply available limits the generalizability of a model (45).

Beyond a lack of parameters for quantifying livestock-wildlife 
contact, even defining what constitutes an epidemiological relevant 
contact was the primary hurdle of 3 models (29, 64, 69). Balancing 
model complexity with utility was the main hurdle in 4 models. 
Among multihost models of vector-borne disease, incorporating 
explicit vector population dynamics was the primary limitation even 
when parameterization data was available, due to its effects on model 
complexity and generalizability (36, 37, 68). Conversely, one of the 
ASF challenge models—where all data was synthetic—was more 
limited by the trade-off between model complexity and computational 
time required for real-time modeling than any explicit wildlife 
parameter gaps (60).

Discussion

Modeling disease transmission between wild and domestic species 
is a complex task that has been achieved through a multitude of 
methods but for only a few disease scenarios. Indeed, of the 118 
diseases at the wildlife-livestock interface represented in the literature 
body, only 14 have been explored through mathematical modeling 
(70). From selecting model frameworks and host representations to 
determining the drivers of transmission that are to be included in the 
models, distinct populations—often with drastically differing 
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population dynamics—must be accurately represented. These choices 
of methodology are a reflection of the skill set of the researcher team, 
the research question being addressed by the model and the availability 
of data. Domestic species were defined through explicit herd locations, 
and further delineated by additional parameters of herd density, 
defined pasture area, habitat and abundance. In contrast, wildlife 
species were often modeled through variables of habitat potential, 
density distribution, or population abundance. Only in a few models 
of badgers were the exact burrow locations known, but even then only 
the underground dens were identified and surrounding home ranges 
still had to be  inferred (23, 41, 42). In choosing a paradigm to 
represent a system one must consider the trade-offs between 
complexity, comprehensibility, and underlying assumptions. Though 
a model should be a realistic representation, deciding on the degree of 
realism required—and keeping in mind that models are only synthetic 
representations of a phenomenon—is part of the art of model 
selection. The parsimony principle should always be kept in mind, 
especially in situations involving wildlife where parameters are 
difficult to document, require a high level of data for inference, or are 
highly variable, due to the influence of the interaction of 
multiple factors.

Habitability is often used as a proxy to represent wild host 
populations, as was the case in 11 models (15, 19, 22, 35, 40, 45, 49, 
61, 65, 66, 71). Defining such suitability can involve the 
incorporation of landcover maps, abundance data from hunting 
records, expert opinion, and previously-published species 
distribution models. In the context of models examined in this 
review, species distribution is a means to the end for representing 
disease transmission through multiple populations, and 
simplifications of a species’ true distribution—especially wildlife—
are evident in all livestock-wildlife disease transmission models. 
Combined with data limitations among wildlife species, this 
invariably results in wildlife disease transmission models that 
contain more uncertainties than those of domestic animal species 
(4). Indeed, monitoring infectious diseases in wild populations is 
far more demanding in terms of resources and time required than 
for livestock. Though there are innate assumptions that may not 
be fully accurate when using habitat suitability to represent wildlife 
presence, for the given modeling objectives these assumptions are 
acceptable. While sensitivity analyses within the selected articles 
focused on model parameters (e.g., transmission detection and 
contact rates, mortality, and initial infection location) and not the 
representation of the distribution of wildlife, Birch et al. (50) did 
assess the sensitivity of their model to the number of environmental 
reservoirs—identifying that that parameter was more constrained 
than that of the environment-to-livestock transmission rate.

By far the most-represented transmission driver was that of 
overlapping habitat. Whether livestock were modeled as discrete farms 
or mobile herds, most disease transmission was driven by locations 
that intersected with wildlife habitats or home ranges. Agricultural 
intensification, wildlife habitat fragmentation and encroachment on 
wild animal habitats are known global drivers of disease emergence, 
and these drivers are reflected in these models (72, 73). Local drivers, 
such as water and food-seeking behaviors of wildlife, pasture sharing 
between livestock and native wildlife, and outdoor husbandry, were 
also reflected among the models (73). Control strategies themselves 
can also be implicit in driving transmission, as culling can have an 
opposite-as-intended effect increasing both disease prevalence and 
number of infectious individuals (74, 75). This was reflected in models 

of bTB transmission as when Smith et al. (43) used a perturbation 
parameter to account for the increase in transmission from culling, or 
studied by Lintott et  al. (67) to quantify the impact of dispersal 
following disease control.

Included studies that focused on control strategy assessments 
invariably quantified the number of infected herds, as explicitly stated 
in Pineda-Krch et al. (53), Ramsey et al. (40), and Smith et al. (41, 43), 
but certain methodologies precluded the ability to determine the 
relative contribution of species to overall spread. For instance, when 
foot-and-mouth disease was investigated among feral pigs and 
livestock, a single-layer cellular automata model was used (19). 
Therefore, multiple species had to be mutated into a composite herd 
that varied based on a species-specific infectivity parameter (depending 
on the type and number of each specie). Though effective at discerning 
the overall epizootic spatio-temporal pattern, such a method did not 
allow for the disentangling of individual species’ contribution. Of the 
models that tried to explain observed transmission dynamics, the 
relative contribution of involved species to epizootic propagation was 
only ascertained in a few models (18, 24, 50, 58). Indeed, mechanistic 
models that are based on specific spatio-temporal case data and 
uncertain population distributions (particularly for wildlife), and for 
which inter-species transmission events are not directly observable, 
may be very challenging to estimate relative contributions. More direct 
evidence of disease spill-over, as can be obtained through genomic 
approaches based on pathogen sequences, could be  a useful 
complement to further inform such models (76).

The challenges of multispecies modeling have been extensively 
reviewed in the literature. Whether focused on the human-wildlife 
(2) or the domestic-wildlife (3, 6) interface, or more broadly 
examining modeling of multihost systems (1, 77), all reviews espouse 
that though hurdles have been overcome, many more challenges 
remain in need of address. Huyvaert et al. (3) identified that these 
challenges fall into three broad categories relating to host and 
pathogen distribution and movement, transmission pathways and 
rates, and the effects of disease and mitigation on host populations. 
Five years later, these hurdles continue to be represented in the 14 
included studies published since 2018. Investments in ecological 
research with project planning input from ecological modelers, 
infectious disease specialists (including epidemiologists, 
veterinarians, and virologists) and wildlife managers—among many 
additional critical fields at this interface—may help to overcome these 
challenges, through enabling the studies needed to elucidate the 
parameters needed for modeling this interface.

The need for additional modeling at the livestock-wildlife 
interface is supported by the ever-increasing interactions between 
wildlife and livestock. Livestock production systems constitute the 
largest use of land in the world, and increasing global food demand 
invariably results in the expansion of these systems (73). The 
consequent deforestation that makes room for these enterprises results 
in the juxtaposition of livestock with wildlife, increasing the areas of 
interaction between the two (72, 73). Climate change has had 
profound effects at both global and local scales. Large-scale shifts in 
vector distributions have resulted in outbreaks of diseases that were 
formerly confined to tropical regions, as seen with bluetongue virus 
(73, 78). Locally, water scarcity in arid and semi-arid regions has 
resulted in mixed congregations around available water sources for 
pastoral livestock and wildlife (73).

In the majority of rural communities, backyard farming and 
small-scale animal production systems constitute the primary 
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livelihoods and food sources (79). These low-biosecurity operations 
permit regular contact between livestock and wildlife, and have often 
been central to outbreaks of diseases shared at this interface—
including ASF, CSF, FMD, brucellosis, and rabies (73, 80). Improved 
animal welfare in high-income countries has also resulted in increases 
in the number of outdoor and open-air production systems, which 
also puts livestock at higher risk of wildlife contacts (73). The 
livestock-wildlife interface acts as an important area of infectious 
disease propagation, and mathematical models are able to investigate 
and quantify the involved dynamics, helping to improve our 
understanding of these drivers of transmission and contribute to the 
conception of holistic control strategies.
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