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ABSTRACT Lumpy skin disease (LSD) virus, a ruminant poxvirus of the Capripoxvirus
genus, is the etiologic agent of an economically important cattle disease categorized as
a notifiable disease by the World Organisation for Animal Health. The large and complex
enveloped LSD virus (LSDV) particle encloses a double-stranded linear DNA genome
of 151 kbp, comprising 156 predicted ORFs, together with a variety of proteins that
are not yet identified. In parallel with a recent widespread expansion of LSD, many
LSDV whole genomes have been sequenced, but knowledge on protein composition of
the LSDV particle remains missing. In this study, LSD mature virions (MV) from strain
KSGP-0240 were purified through a multistep ultracentrifugation process. The protein
composition of LSD virions was then analyzed using label-free shotgun proteomics,
based upon nano-liquid chromatography (LC) and tandem mass spectrometry. This
procedure resulted in the identification of a total of 111 LSDV proteins. Considering that
this first MV proteome extended beyond packaged proteins into the field of contami-
nants, an analytical methodology was developed and made it possible to select 66
viral proteins as candidates for packaging into MV. These viral proteins were analyzed
comparatively with proteins previously demonstrated to be constitutive of the vaccinia
virus MV particle. Offering for the first time a comprehensive proteomic analysis of
an LSDV strain, this study contributes to our understanding of the structural features
of infectious LSDV MV particles and paves the way for further systematic proteomic
characterization of other LSDV strains.

IMPORTANCE  Lumpy skin disease virus (LSDV) is the causative agent of an economically
important cattle disease which is notifiable to the World Organisation for Animal Health.
Over the past decades, the disease has spread at an alarming rate throughout the African
continent, the Middle East, Eastern Europe, the Russian Federation, and many Asian
countries. While multiple LDSV whole genomes have made further genetic comparative
analyses possible, knowledge on the protein composition of the LSDV particle remains
lacking. This study provides for the first time a comprehensive proteomic analysis of an
infectious LSDV particle, prompting new efforts toward further proteomic LSDV strain
characterization. Furthermore, this first incursion within the capripoxvirus proteome
represents one of very few proteomic studies beyond the sole Orthopoxvirus genus, for
which most of the proteomics studies have been performed. Providing new informa-
tion about other chordopoxviruses may contribute to shedding new light on protein
composition within the Poxviridae family.

KEYWORDS lumpy skin disease, mature virion, viral particle proteome, viral proteins,
Capripoxvirus

he Poxviridae (POXV) is a family of large, complex, enveloped virions enclosing single
linear double-stranded DNA genome (128-450 kbp) (1, 2) that replicates entirely in
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the cytoplasm of a wide range of vertebrate or invertebrate cells (2). The viral parti-
cles enclose proteins with a variety of functions including structural proteins and
enzymes involved in the early steps of virus infection and DNA repair (2). The viral
infection cycle produces sequentially multiple forms of infectious viral particles, all of
which share the same mature virus (MV) at their center (3, 4). Poxviral morphogenesis has
been extensively characterized for the laboratory prototype virus used for the study of
poxvirus, the vaccinia virus (VACV) (5).

Vaccinia (VAC) MV virions, the first infectious form produced during the infection
course, remain mostly within the cell until lysis. As the most basic and the most abundant
infectious form, VAC MV virions have been used for the vast majority of experimental
studies. After its assembly inside cytoplasm, a portion of VAC MV is wrapped with two
additional membrane layers of Golgi membrane to form intracellular enveloped virion or
wrapped virion (WV). VAC WV is then transported to the cell plasma membrane where
it loses one membrane during virion egress to become a cell-associated extracellular
enveloped virion (CEV). The VAC CEV may remain associated to the cell surface or can
be released into the medium to become an extracellular enveloped virion (EEV). The
major infectious forms of VACV, MV, and extracellular virions (EVs), namely CEV and EEV,
display different biological and immunological properties (5) associated to their different
roles in VACV pathogenesis. MV is robust and known to resist environmental and physical
changes, whereas EVs are very fragile and the integrity of their outer membranes can be
altered during purification procedures (6-8). EVs are thought to be involved in cell-to-cell
spread within an organism, while MVs are considered to mediate long-range dissemina-
tion and transmission between hosts in the environment (2, 5).

POXV is divided into the subfamilies Chordopoxvirinae and Entomopoxvirinae based
on vertebrate and arthropod host range (2). The subfamily Chordopoxvirinae consists
of 18 genera, among which the Capripoxvirus (CaPV) genus comprises three members:
sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV) (2).
LSDV is responsible for an economically important disease in cattle and Asian water
buffalos (Bubalus bubalis), which is notifiable to the World Organisation for Animal Health
(WOAH,). Over the past decades, this disease has spread around the world at an alarming
rate throughout most of the African continent, the Middle East, the Balkan region, the
Caucasus, Kazakhstan, parts of the Russian Federation, and recently affecting many Asian
countries (9-20). The different measures to control and eradicate LSD include the early
detection of outbreaks, feasible stamping out policy, quarantine, trade and movement
restrictions, and vector control as well as vaccination relying mostly on homologous
attenuated LSDV vaccine strains (21).

With the recent expansion of LSD, multiple sequences of whole genomes have
been made available from different affected countries, including virulent field strains
and attenuated vaccine strains. Despite a very high level of sequence identity at the
genomic level [at least 98% (22-25)], some strains may exhibit distinct in vitro and
in vivo biological patterns. Considering the information gaps existing between strains,
an important characterization effort must be made, especially in terms of molecular
description such as protein composition and interactions.

Among the viral strains whose genome was recently fully sequenced, the attenuated
vaccine KSGP-0240 strain draws specific attention (26, 27). Longtime considered as an
SPPV strain, this strain proved to be actually an LSDV strain (26-29). Displaying only a
two-nucleotide difference with the NI-2490 Neethling field strain (27), this vaccine strain
is phylogenetically grouped within virulent field strains (30). Its parental wild-type strain
was isolated in the field from a sheep during a sheep and goat pox outbreak in a mixed
flock (31). Such an isolation of an LSDV strain from naturally infected sheep in the field is,
to our knowledge, a very unique situation deserving the greatest attention. The parental
wild-type isolate was passed only a limited number of times to obtain the KSGP-0240
vaccine strain (32). Finally, the poor biological characterization of this vaccine strain is
illustrated through the limited number of well-designed studies addressing properly the
in vivo characterization of the KSGP-0240 strain (33-38).
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Owing to these very unique traits, we decided to start our characterization of LSDV
proteome with the KSGP-0240 strain. Viral stocks were produced on Madin-Darby bovine
kidney (MDBK) cells and purified following a multistep purification procedure, includ-
ing, in particular, different continuous gradients (either tartrate or sucrose). To obtain
a comprehensive list of viral and host proteins comprising each LSD MV virion, the
purified viral fractions were analyzed through a label-free shotgun approach, based
on nano-liquid chromatography of the peptides and their analysis with high-resolution
tandem mass spectrometry (MS). In this experiment, a total of 111 viral proteins and
1,473 host proteins were identified. To discriminate the specifically packaged proteins
from the contaminants, an analytical strategy was developed, taking advantage of two
density gradient media (tartrate versus sucrose) used through the purification work-
flow. Applying this analytical methodology on the whole set of identified proteins, we
finally proposed 66 viral proteins as constitutive of the MV virion of the KSGP-0240
strain. In addition, of the 1,473 host proteins, 65 proteins were identified as potential
candidates for packaging. The selected viral proteins were grouped within certain
functional categories (e.g., cell attachment/entry, viral transcription, structural proteins,
and genome integrity) and analyzed comparatively with proteins previously identified as
selectively packaged in the VACV particle (39, 40). Altogether, our results offer for the first
time a comprehensive proteomic analysis of an LSD strain, paving the way for further
systematic proteomic characterization of other LSDV strains.

MATERIALS AND METHODS
Virus and cell lines

The LSD virus strain KSGP-0240 was obtained from commercial producer JOVAC (Jordan
Bio Industries Center, Amman, Jordan) and replicated in MDBK cells (NBL1, ATCC CCL22,
Manassas, United States). MDBK cell lines were grown in Dulbecco’s Modified Eagle
Medium (Eurobio Scientific, Les Ulis, France) and supplemented with Eagle’s non-essen-
tial amino acid (Eurobio Scientific, Les Ulis, France), L-glutamine (Eurobio Scientific, Les
Ulis, France), sodium pyruvate (Eurobio Scientific, Les Ulis, France), and 5% fetal bovine
serum (Dutscher, Bernolsheim, France).

Virus production and purification

To prepare the viral production batches, the KSGP-0240 strain was passed three times
in MDBK cells after resuspension of the freeze-dried lyophilizate (Jordan Bio Industries
Center, Amman, Jordan). Near confluent monolayers of MDBK cells were infected with
LSDV at a multiplicity of infection (MOI) of 0.2. After 48 hours, the infected cells can
be processed as described below when they have reached around 60% confluence,
and a cytopathic effect (CPE) is evenly distributed around the monolayer. The viruses
were then purified as described in previous studies, with some modifications of the
original protocol (40-44). In brief, cells were harvested when the cytopathic effects
were moderate (around 40% of the monolayer is lysed). The supernatant was discarded.
The cell monolayer was frozen and thawed three consecutive times and then cellular
debris pelleted at 400 g for 15 minutes. The supernatant was thereafter centrifuged at
80,000 g for 1 hour at 4°C (Beckman Optima L70, SW28). The medium was discarded and
the virus pellet resuspended in PBS. The viral suspension was then sonicated (Bioblock
scientific ultrasonic processor, 20 W, 40 seconds), incubated successively with DNase
for 15 minutes, then with trypsin for 15 minutes, and finally sonicated again (Bioblock
scientific ultrasonic processor, 20 W, 40 seconds). The viral suspension was subsequently
layered on top of a double sucrose cushion of 36%-72% and centrifuged at 100,000 g
for 1 hour 15 minutes (Beckman Optima L70, SW41). The visible band of virion at the
interface of the sucrose cushion at 72% and 36% was collected through pinholes. Finally,
the supernatant was pelleted at 150,000 g for 1 hour (Beckman Optima L70, SW41),
resuspended with Tris-EDTA solution, pH 7 (Tris-HCL 50 mM, EDTA 1 mM), and stored
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overnight at 4°C. The collected virus was then split into two halves. The first half was
placed on a continuous sucrose gradient, ranging from 60% to 40% and centrifuged at
58,000 g for 75 minutes (Beckman, Optima L70, SW41). The other half was placed on a
continuous tartrate gradient, ranging from 41% to 8% and centrifuged at 150,000 g for
1 hour 30 minutes (Beckman, Optima L70, SW41). In the sucrose gradient, the viruses
usually formed two diffuse bands about two-thirds of the way down the tube; on
occasions, another band was obtained one-third of the way down the tube. All bands
were collected through pinholes, using a sterile syringe, pooled and centrifuged at
150,000 g for 1 hour (Beckman, Optima L70, SW41) before resuspension in 2-D differen-
tial in-gel electrophoresis(DIGE) solution (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris
Hcl, 0.5% Triton, and complete protease inhibitor cocktail) (45) for final storage. In the
tartrate continuous gradient, the virus formed a single band which had to be collected
through pinholes using a sterile syringe. This band was centrifuged at 150,000 g for
1 hour (Beckman, Optima L70, SW41) before resuspension in DIGE solution (45) for final
storage.

Protein quantification with micro-Bradford

Pierce 660-nm Protein Assay Reagent (ThermoFisher Scientific, Invitrogen, Waltham,
MA, USA) was used for measuring protein concentrations, according to the supplier’s
specifications for microplate procedure.

Viral DNA isolation, PCR and sequencing

DNA was extracted and purified, either from infected MDBK cells or from water-dissolved
lyophylizate of the KSGP-0240 vaccine vial, following the manufacturer’s instructions
(Quick-DNA/RNA-Viral Kit, Zymo research Corp., Tustin, USA). In order to characterize
the presence of capripoxviruses in the extracted DNA, DNA-purified samples were first
analyzed using gel-based PCR methods described previously (46, 47). Further charac-
terization was then undertaken targeting specifically LSDV genes of interest through
PCR: LSDV 011 (28), LSDV 049 (forward primer: ACCTCAATCAAAGGAACTATGGCA, reverse
primer: CCTTTTCTTTGTTCCCGCATAGA), and LSDV 134 (forward primer: TCGTCTGAT-
AGCGGCATTGT, reverse primer: TTGGTGATTAGCCTGTGCCA). Thereafter, the correspond-
ing PCR products were Sanger sequenced (Genewiz-Azenta, Leipzig, Germany), and
sequence analyses were performed using Geneious software, version 10.2.6 (Biomatters,
Newton, New Zealand).

Semi-quantitative determination of viral DNA using real-time PCR

After purification of virion and lysis in the manufacturer’s lysis solution, samples
were processed according to the manufacturer’s instructions (ThermoFisher Scientific,
Invitrogen, Waltham, MA USA), and semi-quantitative PCR was performed as descri-
bed in the application note (“Real-Time PCR Using Platinum Direct PCR Universal
Master Mix") supplied with the kit's manual referred to above. The H3L primers (H3L
forward: AAAACGGTATATGGAATAGAGTTGGAA, H3L reverse: AAATGAAACCAATGGATG-
GGATA) used were developed previously (48).

SDS-PAGE

Viral purified extracts, resuspended and stored in DIGE solution, were applied to a 4%-
12% Bis-Tris gel (Invitrogen, Carlsbad, USA), and a constant voltage of 70 V was applied
for stacking and then a constant voltage of 200 V for migration in NuPage MES-SDS
running buffer (Invitrogen, Carlsbad, USA). Then the gel was stained with SimplyBlue
SafeStain (Life technologies, Carlsbad, USA) and washed three times with Milli-Q water.

Virus titration

Viral stocks of KSGP-0240 were titrated as previously described, following WOAH
recommendations (49). MDBK cells were used for the test and cultured in 96-well
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flat-bottomed tissue-culture grade microtiter plates. The plates were incubated at 37°C,
5% carbon dioxide (CO,) for 9 days. The plates were examined under an inverted
microscope for the presence of a CPE starting from day 4. The final reading, taken on
day 9, is used to determine the titer, which is calculated using the Karber method (49).

Electron microscopy

Samples (viral particles purified from sucrose gradient or from tartrate gradients) were
fixed with 2.5% (vol/vol) glutaraldehyde in PHEM (PIPES, HEPES, EGTA and MgCl2) buffer
and post-fixed in osmium tetroxide 1%/K4Fe (CN)g 0.8%, at room temperature for 1 hour.
The samples were then dehydrated in successive ethanol baths (50/70/90/100%) and
infiltrated with propylene oxide/EMbed812 mixes before embedding. Seventy nanome-
ter ultrathin cuts were made on a PTXL ultramicrotome (RMC, France), stained with
uranyl acetate/lead citrate, and observed on a Tecnai G2 F20 (200 kV, FEG) TEM at the
Electron Microscopy Facility COMET, INM, Montpellier.

Proteomics

Extracted proteins denatured in the lysis buffer were digested in gel with Trypsin
Gold (V5280, Promega, Madison, USA) using 0.011% ProteaseMAX surfactant (V2071,
Promega, Madison, USA) (50, 51). The resulting peptides were quantified using the Pierce
Quantitative Fluorometric Peptide Assay and then a quantity of 220 ng was resolved
on an UltiMate 3000 NanoLC chromatography system coupled to a Q-Exactive HF mass
spectrometer (ThermoFisher Scientific, lkirch-Graffenstaden Les Ulys, France) operated
as previously described (52) for analysis. The peptides were desalted on an Acclaim
PepMap100 C18 precolumn (5 pm particle size, 100 A pore size, 300 um id x 5 mm)
and then resolved according to their hydrophobicity on a nanoscale Acclaim PepMap
100 C18 column (3 um particle size, 100 A pore size, 75 um id x 50 cm) at a flow rate of
200 nL/minute. The gradient was developed from 4% to 22% of CH3CN supplemented
with 0.1% formic acid over 50 minutes and then from 10% to 32% over 20 minutes.
Mass spectrometry was performed in a data-dependent acquisition mode following a
Top20 strategy with full MS scans acquired from 350 to 1,500 m/z at a 60,000 resolution.
After each scan of precursors, the 20 most abundant ions were sequentially selected for
fragmentation and MS/MS acquisition at a 15,000 resolution. An intensity threshold of
8.3 X 10" was applied. A 10-second dynamic exclusion was used to increase the detection
of low-abundance peptides. Only double- and triple-charged ions were selected for
MS/MS analysis.

The MS/MS data were searched against LSDV and Bos taurus protein sequences
(127,411 sequences) using Mascot software, version 2.6.1 (Matrix Science, Boston, USA).
The search parameters included only 2+ and 3+ peptide charges, 5 ppm mass tolerance
for the parention, 0.02 Da mass tolerance for MS/MS ions, and a maximum of two missed
cleavage sites for trypsin. For the database search, the carbamidomethyl (C) modification
was considered as a fixed modification, and the following variable modifications were
considered: oxidation (M) and deamidation (NQ). All peptide matches with a peptide
score associated with a Mascot P-value of less than 0.05 were retained. Proteins were
considered valid when at least two distinct peptides were detected in the same sample.
The MS proteomics data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the data set identifier PXD037293 and 10.6019/
PXD037293.

Protein abundance was estimated using the normalized spectral abundance factor
(NSAF) as previously described (53). The NSAF for each protein was calculated by
dividing their spectral counts (SpC) by their molecular mass expressed in kilodalton.
The percentage of NSAF provides a measure of relative abundance, making it possible to
compare the abundance between different proteins within the same sample.

Month XXXX Volume 0 Issue 0

Journal of Virology

10.1128/jvi.00723-23 5

Downloaded from https://journals.asm.org/journal/jvi on 30 September 2023 by 147.100.179.233.


https://doi.org/10.1128/jvi.00723-23

Full-Length Text

RESULTS
Purification and quality control of LSDV particles

Figure 1 shows the experimental workflow adopted to decipher the proteome of LSDV
particles. The viral particles were obtained from infected MDBK cells and purified
either on sucrose or tartrate continuous gradients. Continuous sucrose gradients allow
nonequilibrium rate zonal velocity sedimentation to be used, while continuous tartrate
gradients allow for equilibrium buoyant density isopycnic banding.

First, the identity of the virus strain provided by the manufacturer, namely LSDV
KSGP-0240, was confirmed using PCR and sequencing (data not shown).

At the development stage of both methods, virions collected from the sucrose
or tartrate bands were tested for infectiousness (titration) and morphology (electron
microscopy). Titration of these viral suspensions demonstrated that purified LSDV
particles were still infectious (data not shown). As indicated in EM micrographs
(Fig. 2), well-organized viral particles were visible in both conditions (tartrate and
sucrose). Elongated brick-shaped viral particles were observed, and, in some fields, even
lateral bodies were visible. The two highly organized brick-shaped viral forms were
observed with two (EV) or one membrane (MV) layers. Contaminant membranes, cellular
organelles, and debris were also identified.

At the production stage of replicates for MS analyses, in order to assess the variability
between replicates, samples of five replicates were taken at two steps of the LSDV
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FIG 1 Schematic representation of the experimental design. Schematic representation of viral production and purification workflow from cell culture to mass

spectrometry. MDBK cells were infected with the LSDV 0240 strain (MOI: 0.2). LSDV virion is thereafter purified through serial centrifugation. Purified viral extracts

resuspended and lysed in DIGE buffer are finally analyzed using nano-LC and tandem MS. The main experimental steps and the output of the analysis are

highlighted.
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FIG 2 LSDV particles observed in purified virus preparations. (A) Sucrose-purified LSDV particles were analyzed using transmission electron microscopy. Both

particle types are present: (a) mature virus particles and (b) enveloped virus particles. (B) Tartrate-purified LSDV particles under transmission electron microscopy

with (a) mature virus particles and (b) enveloped virus particles.

purification procedure and then processed for quality control by real-time PCR and viral
titration. The first sampling was performed at the start of the workflow, immediately after
cell culture lysis and discarding of the supernatant. The second sampling in the workflow
was performed at the end of the procedure, immediately after viral resuspension with
DIGE buffer solution. No significant difference in genome copy number or in viral titer
was demonstrated between the five replicates of each of the two virion purification
conditions (Table S1).

Finally, by considering NSAF as an approximate surrogate of protein abundance, it
is possible to compare the protein quantities between replicates. For each replicate,
the NSAF score is used as a relative quantification method, representing a more
refined version compared to simple spectral counting. Comparison of protein quanti-
ties between replicates for each of the two virion purification conditions (tartrate or
sucrose) confirmed the limited variability highlighted by the above parameters (viral titer,
genome copy number) (Table S1).

Proteome of the lumpy skin disease virion preparation

The proteins of the purified viral extracts (five replicates for each of the two virion
purification conditions) were digested with trypsin, and the resulting peptides were
identified independently using high-resolution tandem MS.

A total of 15,974 specific MS/MS spectra made it possible to identify 111 LSDV
proteins, certified with high confidence. Out of 156 in silico predicted coding sequences
annotated on the LSDV genome (26, 27), 111 LSDV proteins were identified at least once
across all replicates. We noted an average of 14 specific peptides for each protein with a
range of 2 to 91 specific peptides. The peptide coverage varies from 92% to 4% with the
best covered proteins being LSDV 28, 31, 34, 53, 63, 95, and 115 (>80% coverage).
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In addition, NSAF data regarding the five replicates of the two virion purification
conditions show that 25% (mean of total NASF for viral protein in sucrose) and 30%
(mean of total NASF for viral protein in tartrate) of the signal were assigned to viral
proteins in the corresponding viral preparations (Table S1). However, it should be noted
that the dynamic exclusion threshold used for selecting peptides for fragmentation
actually decreases the count of the most abundant proteins, therefore reducing the viral
protein ratio by a significant factor (54, 55).

A thorough description of these proteins is provided in Table 1. In order to assign
functions to proteins identified through our study, we relied on the genomic annotation
work performed previously (26, 27), taking advantage of comparison-based prediction
with viruses of the same POXV family such as VACV and myxoma virus (MYXV). Finally,
Table 1 proposes the corresponding LSDV gene number and, when identified in previous
studies (26, 27), VACV and MYXV orthologs.

Figure 3 (Table S2 in the supplemental material) provides a detailed comparison of
the 111 detected LSDV proteins with the viral proteins detected in the analyses of virion
preparations using a similar shotgun proteomics approach on orthopoxviruses [VACV,
Cowpox virus (CPXV), and Monkeypox virus (MPXV)] (40, 43, 56-60) and leporipoxviruses
(MYXV) (61). Excluding leporipoxvirus for which deficiencies in MS instrumentation
performance were reported (61), the comparison of the proteome of the LSDV prepara-
tion with the proteomes of orthopoxvirus preparations revealed a set of 43 homologous
viral proteins universally detected in all the virion preparations analyzed (Fig. 3; Table
S2 in the supplemental material). In addition, nine LSDV proteins (LSDV002, LSDV004,
LSDVO011, LSDV015, LSD017, LSDV032, LSDV129, LSDV134, and LSDV143), for which no
counterpart was identified in the VACV genome (26, 27), were detected in the LSDV
preparation (Fig. 3; Table S2 in the supplemental material).

A total of 10,573 specific MS/MS spectra made it possible to identify 1,473 bovine
proteins, certified with high confidence. Of at least 22,000 in silico predicted protein
coding sequences (CD29S) annotated on the Bos taurus genome (62), 1,473 bovine
proteins were identified at least once across all replicates. We noted an average of 7.2
specific peptides for each protein excluding the proteins with one single specific
spectrum with a range of 2 to 100 specific peptides. The peptide coverage varies from
1% to 93% with the best covered proteins being seven proteins with 80%, 82%, 84%,
86%, 88%, 89%, and 93% coverage and 56, 47, 27, 6, 46, 25, and 15 specific spectra
attributed to them, respectively. The number of host proteins exceeds the number of
viral proteins by a factor of 12 (sucrose) and 11 (tartrate) (Table S1) due to the high
sensitivity of the tandem mass spectrometer used. Similar results [number of host
proteins and ratio (number host proteins/number of viral proteins)] were reported in the
most recent shotgun proteomic analyses of orthopoxvirus preparations (40, 57, 58).
Additional information is provided in Fig. 4 (Table S3 in the supplemental material)
showing the respective relative abundances (NSAF) observed for the viral proteins
compared to those of the host cell proteins in the current study. In the LSDV preparation,
the detected host proteins had predominantly lower ranking numbers than the detected
virus proteins, as previously reported in the study by Ngo et al. (40).

These results taken together highlight the need to distinguish the proteome of the
virion preparation from the proteome of the virion itself.

Which proteins are packaged?

Considering the 111 viral proteins detected (Table 1) in the LSDV preparation, of the 156
possible hypothetical ORFs of the LSDV genome, it seemed that not all of them are
packaged “on purpose” in the infectious viral particles and that numerous contaminants,
of host and viral origin, may have co-purified despite efforts made in the purification
processes. In line with observations from Ngo et al. (40), low abundance packaged
proteins may overlap in abundance with medium to low abundance contaminants.
Analysis of the relative abundance distributions of viral and cellular proteins (Fig. 4; Table
S3 in the supplemental material) emphasizes the difficulty of using rank as the only
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FIG 3 Proteome of vaccinia virus, monkeypox virus, cowpox virus, myxoma virus, and lumpy skin disease
virus. Visual impression based on Table S2 in the supplemental material. Proteins detected in the different
proteomics studies are represented in the various columns. Studies are ordered as follows: from left to
(Continued on next page)
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FIG 3 (Continued)

right, the oldest study [Chung et al. (56)] on vaccinia to the most recent one [Ngo et al. (40)] followed
by three non-vaccinia-based studies ordered again chronologically [respectively, myxoma virus (61),
monkeypox (58), and cowpox (57)]. Colors indicate the studies as follows: the results of the current study
are shown in gray. Other colors indicate previous studies, either published [red for Chung et al. (56),
mauve for Yoder et al. (60), blue for Resch et al. (59), brown for Manes et al. (58), dark blue for Matson et
al. (43), pink for Doellinger et al. (57), orange for Ngo et al. (40), and greenish yellow for Zachertowska et
al. (61)] or unpublished [green for the Gershon laboratory study from Ngo et al. (40)]. The table is taken
directly from reference (40) with permission and supplemented with the results of proteomic studies

carried out on viruses other than vaccinia virus.

parameter to sort packaged proteins from contaminating proteins. Indeed, the simple
ranking through NSAF did not appear sufficient to stipulate whether or not proteins are
actively packaged in virion particles. There was a need to provide further insight into the
selective protein packaging. With this in mind and in line with the Ngo et al. study (40),
we designed our virus purification protocol, taking advantage of two types of centrifugal
separations, relying on distinct density gradient media, namely a rate-zonal (or nonequi-
librium) separation in a continuous sucrose gradient (sucrose) and an isopycnic (or
equilibrium buoyant density) separation in a continuous potassium tartrate gradient.
Therefore, unlike packaged proteins, which would show a proportional distribution
between the two ultracentrifugation conditions, unpackaged proteins would preferen-
tially contaminate one condition or the other and exhibit a skewed distribution toward
either condition. Under our protocol, it was therefore expected that we would observe
two different distribution patterns between the two ultracentrifugation conditions: a
skewed distribution for contaminants alongside proportional distribution for packaged
proteins. In practice, under our protocol, the distribution pattern of a given protein,
skewed or proportional toward one condition or the other, seems to be reasonably
approached by calculating the tartrate/sucrose NSAF ratio (Q ratio).

In order to address the question about which protein is packaged or not, we procee-
ded in three steps.

First, the tartrate/sucrose NSAF (Q ratio) was used to achieve an overview on the
distribution pattern of the whole set of detected proteins according to the Q ratio. Since
our experimental setting used five replicates per condition, we have summed the NSAF
corresponding to each of the replicates of the tartrate condition and divided this total by
the sum of the NSAF corresponding to each of the replicates of the sucrose condition.
This was implemented for each protein (viral and host) comprising our purified viral
extracts and the ratios obtained for each protein were placed along Fig. 5's x-axis,
defining contiguous tartrate/sucrose ratio class intervals (bins). Considering thereafter
every protein, for which the Q ratio falls within the same bin on the x-axis, the NSAF of
both conditions (sucrose and tartrate) was then summed up to build Fig. 5's y-axis.
Applying this procedure to all the identified proteins, we obtained an overview on the
distribution of viral (blue line) and host proteins (orange) represented in Fig. 5. A major
viral peak comprises almost all viral proteins with a tartrate/sucrose ratio bin located
between >-0.25 and >1 (log; scale). Two host protein peaks are also clearly identified;
one is clearly separated from the viral protein peak (tartrate/sucrose ratio bin below 0 on
the log; scale) while the other overlaps the viral protein peak (tartrate/sucrose ratio bin
between >0.25 and >0.75 on the log; scale).

Second, once we had this overview on the distribution pattern of the whole set of
detected proteins according to the Q ratio, it was then possible, in line with Ngo et al.
(40), to try to define bin limits separating actively packaged proteins from likely contami-
nant proteins. We considered that bin limits, ranging from >0 to >1 (log; scale), would
correspond to a proportional distribution pattern for a given protein between the two
ultracentrifugation conditions. As illustrated in Fig. 5, these limits (vertical red lines)
include almost all of the viral protein peak as well as one of the two host proteins peak.
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FIG 4 Relative abundance (NSAF) of lumpy skin disease and host proteins identified in our viral
preparations (sucrose and tartrate). Visual impression based on Table S3 in the supplemental material. On
the left, proteins identified in sucrose gradient-purified virus preparation. On the right, proteins identified
(Continued on next page)
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FIG 4 (Continued)

in tartrate gradient-purified virus preparation. Proteins were ranked by descending NSAF score (the
highest protein on the y-axis being the protein with the highest score and therefore the highest relative
abundance). For each condition (sucrose and tartrate), ranking numbers were split into two groups,
namely “LUMPY” (blue for lumpy skin disease virus proteins) and “BOS” (red for bovine proteins). Proteins
which could not be certified (less than two spectra detected) are shown in gray.

Third, once these limits were defined, it was then possible to analyze individually each
protein, characterizing its tartrate/sucrose NSAF values for each of the five replicates and
assessing the number of replicates for which these values were within/outside the
defined limits (hereinafter referred to as “packaged region”). As a selection criterion, we
considered that a protein demonstrating a proportional and stable distribution between
the two conditions would display values inside the packaged region for at least three out
of five replicates. Conversely, proteins with at least three values outside the packaged
region would be considered as a contaminant protein exhibiting a skewed affinity
toward one condition or the other.

In conclusion, following the procedure described above, protein analysis was first
undertaken for the 111 viral proteins and resulted in the selection of 66 proteins (59%)
which were considered, under our standards, as candidates for packaging into MV virion.
Of these 66 proteins, we found nine that fell within the packaged region throughout all

—@=Host =@=\iral
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Sum of NSAF
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0 :\.—0—0—0—0—0—-0

>-3,5 >»-3,25 >-3 >-2,75>-2,5>-2,25 >-2 >-1,75>-1,5 >1,25 >-1 »-0,75>-05>-0,25 >0 »0,25 >0,5 >0,75 >1 >125 >15 >175 >2 >225 >25 >275 >3

Log(2) Q ratio

FIG 5 Selection of the “packaged region!” Line histogram showing relative quantification of proteins present in sucrose versus tartrate purified LSD virion
preparations based on label-free quantification. Only proteins quantitated with multiple peptides are shown. LSDV proteins are shown in blue and host proteins
in orange. The log, quantitation ratio (Q ratio), shown on the x-axis, is obtained by dividing the sum of the tartrate NSAF score across all replicates by the
sum of the sucrose NSAF score across all replicates. This was implemented for each protein (viral and host) comprising our viral preparations, and the ratios
obtained for each protein were placed along Fig. 5's x-axis, defining contiguous tartrate/sucrose ratio class intervals (bins). For example, “>0.5" corresponds to
a tartrate/sucrose ratio from 2°° to 2°” (log, scale). Considering thereafter every protein for which the Q ratio falls within the same bin on the x-axis, the NSAF
of both virion purification conditions (sucrose and tartrate) were then summed up to build Fig. 5's y-axis. Proteins in bins falling between the red vertical lines
(“packaged region”) were considered packaged.
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five replicates (LSDV 18, 28, 38, 43, 45, 59, 72, 94, and 97). In addition, 18 proteins were
stably detected within the packaged region in four out of five replicates (LSDV 1, 17, 37,
41, 42, 50, 53, 58, 63, 70, 73, 83, 91, 104, 113, 132, 137, and 139). Furthermore, we found
39 proteins falling within the packaged region in three out of five replicates (LSDV 3, 4, 7,
12,13, 31, 40, 44, 52, 57, 60, 64, 65, 69, 71, 74, 79, 80, 81, 84, 89, 90, 93, 95, 98, 101, 102,
105,107,108,111,117,118,119, 121,131, 133, 144, and 148).

Based upon previously predicted functions (26, 27), the 66 selected viral proteins,
candidates for packaging, were divided between seven functional categories (Fig. 6).

According to such grouping, 22 proteins (60% of the total NSAF of viral proteins) may
be identified as maintaining viral structure through the membrane or viral core (LSDV 28,
31,37, 38,40, 41, 50, 53,57, 63, 65, 80, 81,90, 94, 95,97, 101, 102, 104, 105, and 107).

Thirteen proteins (7% of the total NSAF of viral proteins) were involved in viral
transcription, most with early transcription functions but also with intermediate and late
transcription functions too (LSDV 3, 58, 69, 71, 79, 84,89, 91,98, 111,119, 131, and 139).

Five proteins (10% of the total NSAF of viral proteins) were associated with genome
integrity with DNA folding and packing, and with DNA reparation (LSDV 43, 45, 83, 121,
and 133).

Twelve proteins (15% of the total NSAF of viral proteins) were identified for virus entry
in host cells and virus attachment regulation (LSDV 44, 52, 59, 60, 64, 70, 73, 74, 108, 113,
117, and 118), and five proteins (4% of the total NSAF of viral proteins) were identified as
potential immunomodulatory effectors (LSDV 1, 7, 13, 72 and 144). Finally, three proteins
(1% of the total NSAF of viral proteins) may be grouped within putative proteins/others
(LSDV 12, 18, and 148) and seven proteins (2.6% of the total NSAF of viral proteins) within
hypothetical proteins with no postulated function per homology with vaccine (LSDV
4, 7,17, 42, 93, 132, and 137). While these latter proteins were hitherto annotated as
hypothetical, their identification through tandem MS certified their existence, and they
should no longer be considered hypothetical.

The LSDV proteins, selected in this study as candidates for packaging and classified
into functional groups, were then analyzed against a list of well-characterized proteins
for which there are consistent data demonstrating their incorporation into the viral
particle (39). These non-omics data were produced in studies using fundamentally
distinct approaches (39). In addition, because the selection method of the LSDV proteins
developed in the present study is a derivative of that developed by Ngo et al. (40), it was
considered relevant to also include the proteins selected by Ngo et al. in this comparative
analysis.

This comparative analysis was first performed on 29 viral proteins listed by Condit et
al. that can be grouped into the category of viral structure and morphogenesis (Table
2) (39). Of these 29 viral proteins: (i) fifteen proteins (A3, A4, A13, A14, A15, D2, D3, E8,
E10, E11, F17, G1, G7, L4, J1, and LSDV counterparts) were jointly selected in the current
study and by Ngo et al. (40), (ii) four proteins (A10, A11, D13, G4, and LSDV counterparts)
were only selected in the current study, (iii) six proteins (A12, A17, A30, F10, 15, 17, and
LSDV counterparts) were only selected by Ngo et al., (iv) three proteins (A9, A14.5, A22,
and LSDV counterparts) were neither selected in the current study nor by Ngo et al,, and
(v) one protein without LSDV counterpart was selected by Ngo et al. (A26) (Table 2). Still
in that same protein group, although not listed by Condit et al,, two proteins (A6, E6,
and LSDV counterparts) were nonetheless selected jointly in this current study and by
Ngo et al., one protein (LSDV028/F13 orthologs) was selected only in the current study,
two proteins (F12, E2, and LSDV counterparts) were selected only by Ngo et al., and one
protein without LSDV counterpart (A25) was selected only by Ngo et al.

The comparative analysis was then performed on three viral proteins listed by Condit
et al. (39) that can be grouped into the category of genome integrity proteins (Table 2).
Of these three proteins: (i) one protein (11 and its LSDV counterpart) was jointly selected
in the current study and by Ngo et al. (40), (ii) one protein (A32 and its LSD counterpart)
was only selected in the current study, and (iii) one protein (16 and its LSD counterpart)
was only selected by Ngo et al. Still in the same viral protein group, although not listed
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Hypothetical proteins : / 7 Proteins/ (13,6)/[
3%]

Putative proteins & other known functions :
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Host immunomodulation : /5 Proleins/

JA7)/14%)

-

Attachment&Entry :/ 12 Proteins /(59,2)/
[15%)

Genome integrity : / 5 Proteins/ (39,6)/[
10%)

Virus structure & morphogenesis : / 22
Proteins/ (245,8)/[ 60%]

Viral transcription :/ 13 Proteins/ (29)/[7%]

FIG 6 Functional characterization of selected MV proteins of purified LSDV preparations. Selected LSDV proteins can be distributed according to functional
groups, and the number of proteins classified in each group is shown in the figure. For each protein, an NSAF protein value (NSAFp) was calculated by adding
the mean of the NSAF values of the five replicates of the tartrate condition to the mean of the NSAF values of the five replicates of the sucrose condition.
This was implemented for each of the 66 selected viral protein. The total NSAF value of the virus preparation corresponding to the 66 selected LSDV proteins
(NSAFyir prep-) was obtained by adding the NSAF, of the 66 selected LSDV proteins. The total NSAF value of a given functional group (NSAF¢goup) Was obtained
by summing the NSAF, of the LSDV proteins grouped within this functional group. For each functional group, the value of the NSAF¢groyp is shown in
parentheses in the figure. In addition, for each functional group, the percentage of NSAF¢groyp relative to the NSAFyj prep. is calculated and indicated in square
brackets in the figure. The size of the pie chart portion associated with each functional group is determined on the basis of this percentage. Information on the
proteins grouped in each functional group is reported below. Some 22 proteins (60% of the total NSAF of viral proteins) may be identified as maintaining viral
structure through the membrane or viral core (LSDV 28, 31, 37, 38, 40, 41, 50, 53, 57, 63, 65, 80, 81, 90, 94, 95, 97, 101, 102, 104, 105, and 107,). Thirteen proteins
(7% of the total NSAF of viral proteins) were involved in viral transcription, most with early transcription functions but also intermediate and late transcription
functions too (LSDV 3, 58, 69, 71, 79, 84, 89, 91, 98, 111, 119, 131, and 139). Five proteins (10% of the total NSAF of viral proteins) were associated with genome
integrity with DNA folding and packing, and with DNA reparation (LSDV 43, 45, 83, 121, and 133). Twelve proteins (15% of the total NSAF of viral proteins) were
identified for virus entry in host cells and virus attachment regulation to avoid superinfection (LSDV 44, 52, 59, 60, 64, 70, 73, 74, 108, 113, 117, and 118), and
five proteins (4% of the total NSAF of viral proteins) were identified as potential immunomodulatory effectors (LSDV 1, 7, 13, 72, and 144). Finally, three proteins
(1% of the total NSAF of viral proteins) may be grouped within putative proteins/other (LSDV 12, 18, and 148) and seven proteins (2.6% of the total NSAF of viral
proteins) within hypothetical proteins with no postulated function per homology with vaccine (LSDV 4, 7, 17,42, 93, 132, and 137).

by Condit et al., two proteins (A50, I3, and LSDV counterparts) were selected jointly in the
current study and by Ngo et al., and one protein (D5 and its LSD counterpart) was only
selected in the current study.

Next, the comparative analysis was performed on 13 viral proteins listed by Condit et
al. (39) that can be grouped into the category of attachment and entry proteins (Table
2). Of these 13 proteins: (i) nine proteins (A16, A21, A27, A28, G3, G9, H3, L1, L5, and
LSDV counterparts) were jointly selected in the current study and by Ngo et al,, (ii) three
proteins (H2, 12, J5, and LSDV counterparts) were only selected in the current study, and
(ii) one protein without an LSDV counterpart (D8) was only selected by Ngo et al. Still in
the same viral protein group, although not listed by Condit et al., one viral protein (FOL)
was only selected by Ngo et al.
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The comparative analysis was then performed on 26 proteins listed by Condit et al.
(39) that can be grouped into the category of viral transcription proteins (Table 2). Of
these 26 proteins: (i) 10 proteins (A2.5, A7, A29, A45, B1, D1, D6, D12, J4, J6, and LSDV
counterparts) were jointly selected in the current study and by Ngo et al,, (ii) 15 proteins
(A5, A18, A24, D7, D11, E1, E4, G5.5, H4, H5, H6, 18, J3, K4, L3, and LSDV counterparts)
were only selected by Ngo et al., and (iii) 1 protein without an LSDV counterpart (O;) was
only selected by Ngo et al. Still in the same viral protein group, although not listed by
Condit et al., (i) one protein (A1 and its LSDV counterpart) was jointly selected in the
current study and by Ngo et al., (ii) three proteins were only selected in the current study
(A19, B9, G8, and LSDV counterparts), and (iii) one protein without an LSDV counterpart
(F8) was only selected by Ngo et al.

Finally, the comparative analysis was performed on the unique viral protein (H1) listed
by Condit et al. (39), which can be classified into the category of immunomodulatory
proteins (Table 2). In this group, H1 was jointly selected in the current study and by Ngo
et al. Still in the same viral protein group of immunomodulatory effectors, although not
listed by Condit et al., four proteins (A55, B15, B16, C10, and LSDV counterparts) were
only selected in the current study.

After applying our selection method to all detected LSDV proteins, this method was
applied to the 1,473 bovine proteins detected in our viral preparation. Table S4 in the
supplemental material shows a total of 65 proteins always found in the packaged region
of the quantitation histogram in the five experiments. Among this set of 65 bovine
proteins, whereas some proteins were previously found to be associated to virus particles
(56, 63, 64), several of these selected host proteins belong to protein classes that
have been previously reported to be associated with low-level contaminations of MV
preparations, including cytoskeletal proteins, chaperones, and mitochondrial proteins as
well as proteins involved in vesicular transport/protein trafficking (RABs) located in a
variety of membrane compartments in the uninfected cell (40, 59, 65).

DISCUSSION

This study aimed to characterize for the first time the list of viral proteins incorporated
into the infectious LSDV particle. To initiate this characterization work, LSDV KSGP-0240
was chosen due to its unique genetic and biological features. MV particles were purified
from MDBK cells infected with the KSGP-0240 strain through a multistep ultracentri-
fugation workflow including either rate-zonal centrifugation in a continuous sucrose
gradient or isopycnic centrifugation in a continuous tartrate gradient. The purified viral
fractions were then analyzed using MS, and a total of 111 viral proteins and 1,473 cellular
proteins were identified. In order to discriminate packaged proteins from contaminant
proteins, a specific analytical methodology was developed, taking advantage of the
differential properties of the two-density gradient media (tartrate and sucrose). Applying
our methodology to the total number of viral proteins detected in our purified viral
preparations, we finally concluded that 66 viral proteins are candidates for packaged viral
proteins.

While Vandenbussche et al. (27) annotating the KSGP-0240 strain genome, theoreti-
cally predicted 156 ORFs, our study actually detected 111 proteins, demonstrating for the
first time their synthesis during the viral infection course. Regarding the total number
of proteins detected, it is important to stress that our study especially targeted MV
infectious particles, differing in particular from studies addressing the viral infectome
(66). The total number of viral proteins detected in our study reaches >71% of the total
number of theoretically predicted ORFs comprising the genome of the KSGP-0240 strain
(26, 27). Ten ORFs, which have been annotated publicly as “putative” or “hypothetical,
but for which no expression had been demonstrated, are now confirmed through the
detection of their protein product. The genome coverage, corresponding to the 111
LSDV proteins detected in this study (number of proteins detected in virus preparations
out of the total number of predicted ORFs in the whole genome) is in line with the
progression of reported genome coverages in poxvirus proteomics studies performed
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over recent decades (Fig. 3; Table S2 in the supplemental material), ranging from 10%
(61) to 82% (40). A critical parameter that has decisively contributed to this evolution is
the progressive improvement in the performance of MS instruments, which has resulted
in a hitherto comprehensive description of the proteome of viral preparations. Regarding
the increase in the genome coverages achieved over recent decades, it is also worth
mentioning the key role played in the present study by the setting of the parameters
(exclusion time for MS/MS acquisition and activation threshold) in maximizing the
number of peptides to monitor and thereby in identifying low-abundance proteins (54,
55).

Poxviral studies, performed on MV virions purified through centrifugation gradients
(40, 56, 60, 65, 67, 68), provided a previous warning against the risk of contaminants and
insisted on the absolute requirement of differentiating between a low level of specific
packaging and non-specific packaging or contamination. The contamination issue was
addressed in our study in line with a previous study performed on VACV (40).

Basically, using two methods of purification that rely on different density gradient
media (tartrate and sucrose) with distinct affinity toward contaminant proteins would
result in observing two distribution patterns between the two conditions. Contrary to
packaged proteins, which would show proportionality between the two conditions,
non-packaged proteins would preferentially contaminate one condition or the other.
Based upon this assumption, we developed a methodology similar to the one previously
proposed by Ngo et al. for VACV MV (40). Applying this methodology to the 111 viral
proteins initially detected under our experimental settings, we selected only 66 viral
proteins which, in our defined standards, could be considered as candidate packaged
viral proteins. These 66 LSDV proteins and their corresponding ORFs represent 42% of
the total number of ORFs comprising the LSDV full genome, which approximates the
percentage achieved for VACV MV proteins selected by Ngo et al. (34%) (40). However,
it is clear that our current effort to exclude contaminants from the specific packaged
virion proteins must be pursued, including complementary experimental approaches
and especially those relying upon alternate purification methods using density gradient
media differentially prone to protein contamination. So, using successively continuous
gradients with density gradient media other than the one used in this study (CsCl,
iodixanol, nycodenz) (57, 65, 69, 70) could extend our results and bring additional
relevant information regarding the contamination issue. Besides, including at the end of
the workflow an additional purification step on a chromatographic column could make
it possible to achieve an even higher purity index and reduce the protein contamination
load (71).

To characterize the functions of the detected proteins of our viral purified extracts,
we had to rely on previous studies (26, 27), which undertook an in-depth annotation
of the LSDV whole genome and proposed theoretical ORFs, corresponding proteins and
their postulated function. Based upon these predicted functions, the 66 selected viral
proteins, candidates for packaging, were divided into seven functional categories (Fig.
6). These 66 LSDV proteins were then analyzed against (i) a list of well-characterized
proteins for which there are consistent data demonstrating their incorporation into the
viral particle (39) and (ii) a list of proteins selected by Ngo et al. (40) using a selection
method directly related to the selection method used in the current study (Table 2).

Among our protein data set, the attachment and entry group is especially remarkable
with 12 proteins (92%) of the 13 VACV proteins previously identified as constitutive of
the VACV MV virion (39), which have their LSDV counterparts selected as constitutive
of the LSDV MV virion (Table 2). Of these 13 VACV proteins, Ngo et al. (40) selected 10
proteins (Table 2). It is noteworthy that two proteins, F9 and O3, constitutive of the entry
fusion complex (EFC) together with A16, A21, A28, G3, G9, H2, J5, L1, and L5 (3), were
not included among the proteins constitutive of the VACV MV virion listed by Condit
et al. (39). All the nine EFC proteins of this entry/attachment group, listed by Condit et
al. (39), had their LSDV orthologs selected in the current study (Table 2). The two EFC
proteins missing from the EFC proteins are either not selected but detected (LSDV024/F9
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ortholog) or undetected (O3). Selecting these nine LSDV orthologs as candidate-pack-
aged viral proteins may advocate in favor of the conservation, throughout the POXV
family, of an EFC embedded in the membrane of MV particle. The lack of detection of O3
among the EFC components constitutive of the LSDV MV particle is expected since this
VACV protein is predicted not to have any ortholog in the LSDV genome (26, 27). The O3
protein is neither detected in the study by Ngo et al. (Table 2) nor detected in any of the
poxvirus proteomics studies (Fig. 3; Table S2 in the supplemental material). Since it has
been recently demonstrated that the small hydrophobic VACV O3 protein seems to be a
key-player protein interacting with each of the EFC proteins (72), this unanimous lack of
detection raises questions and the absence of its LSDV ortholog prompts us to wonder
about a possible LSDV protein substitute. In contrast to O3, F9 orthologs are conserved
throughout the POXV family, including CaPV. Excluding Zachertowska et al., for which
deficiencies in MS instrumentation performance were reported (61), F9 and its ortho-
logs are detected unanimously in poxvirus proteomics studies (Fig. 3; Table S2 in the
supplemental material). This protein is selected in the study by Ngo et al. (40), whereas
the LSDV024/F9 ortholog is detected but not selected in the current study (Table 2).
Regarding these discrepancies, one specific feature of F9 deserves special attention.
Indeed, the F9 protein has been demonstrated to be an EFC-associated protein, i.e.,
peripherally located, rather than a core EFC component (3). Interestingly, detection of
this protein within the EFC, requiring highly sensitive techniques, is suggestive of small
amounts interacting with EFC components in a non-stoichiometric or weak/unstable way
(73). These features (peripheral association and unstable interaction) may have played
some part in the differences observed between studies regarding this protein packaging.
In so far as these properties could also be observed for the LSDV024/F9 ortholog, this
could explain, to some extent, the variation observed in MS results which led us to not
select F9 among candidates for packaging. In particular, in the current study, we could
speculate that the peripheral location of LSDV024/F9 ortholog in the EFC may have
increased its exposure to a proteolytic effect of trypsin during the purification process
(74), resulting in the cleavage of the LSDV024/F9 ortholog and its removal from the virus
preparations. However, it should be noted that these same observations cannot be made
for the LSDV060/L1 ortholog, even though this protein is assumed to be also peripherally
associated to EFC (3). Indeed, converging evidence has demonstrated L1 packaging in
the MV VACV virion (39), and L1 is selected by Ngo et al. (40), and the LSDVO060/L1
ortholog is selected in the current study. Nevertheless, to gain clarity on the lack of
selection of F9, further investigations are clearly required, some of which could rely on
the use of alternative proteolytic enzymes as well as on immuno-affinity purification
techniques that have proven useful for vaccinia MV (73).

Among the 29 VACV proteins previously demonstrated as being part of the LSDV
MV virion (39) and classified within the viral structure group, 19 proteins (61%) have
their LSDV orthologs selected as constitutive of the LSDV MV virion (Table 2). Of the 29
proteins listed by Condit et al. (39), Ngo et al. selected 22 proteins (70%), one of which
does not have an LSDV ortholog (A26).

In the group of selected LSDV proteins, 5 (LSDV031/F17 ortholog, LSDV101/A10
ortholog, LSDV094/A3 ortholog, LSDV105/A14 ortholog, and LSDV095/A4 ortholog) rank
among the 10 most detected/abundant proteins in our experiment. These top 10 most
abundant LSDV proteins represent a total of 54% of the total NSAF of the viral proteins
(Table 1). Interestingly, their VACV orthologs are among the most abundant detected
proteins comprising the VACV MV particle (56). Among these most abundant VACV
packaged proteins, it makes sense to observe three major core proteins, namely A4, A3,
and A10, being an integral part of the vaccinia virion core wall (3, 39).

One other protein, namely LSDV028 (Table 1), selected in the current study (Table
2), is the ortholog of the VACV F13 protein (75). The presence of this protein should be
analyzed in parallel with the presence of the seven other membrane wrapping proteins
(76), namely A56 (77, 78), F12 (79, 80), B5 (81, 82), A34 (83), A36 (84), A33 (85), and
K2 (86). Among the wrapping membrane proteins, LSDV028/F13 ortholog was the only
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protein selected in the present study (Table 2), while a total of five wrapping membrane
proteins (F12, B5, A34, A33, and F13) was detected (Fig. 3). Although not selecting any
(Table 2), Ngo et al. (40) detected all eight wrapping membrane proteins (Fig. 3; Table
S2 in the supplemental material). In other poxvirus proteomic studies (Fig. 3; Table
S2 in the supplemental material), F13 (and its poxvirus orthologs) is unique in that it
is the wrapping membrane protein which is most detected (Fig. 3: all studies except
Zachertowska and Chung), whereas the detection of other wrapping membrane proteins
varies between studies. Interestingly, we observe that the most recent studies, with the
highest genome coverage (number of detected proteins over number of genomic ORFs),
detected the eight wrapping proteins (Fig. 3; Table S2 in the supplemental material).
Therefore, we might speculate that the extent of detection of the wrapping membrane
proteins could be related to the sensitivity of the MS instrumentation used, allowing
for the detection of residual wrapping membrane proteins derived from EV particles.
This hypothesis could be considered plausible in the present study as EV particles
were identified through a qualitative EM approach (Fig. 2). Alternatively, as suggested
previously (59), the predominant F13 (and orthologs) detection could be due to an
interaction of F13 with an MV surface protein, resulting in the presence of F13 on a
minor subset of MV particles derived from disrupted EV, in agreement with the required
involvement of F13 in MV wrapping (87). Further poxvirus proteomic investigations,
using an EM approach that provides accurate quantification of EV particles, would
contribute to a better understanding of the significance that the detection of wrapping
membrane proteins could have.

Among the 29 VACV proteins listed by Condit et al. (39) and grouped in the virus
structure category, it is noticeable that some key-player proteins do not have their LSDV
ortholog selected.

Among these proteins of importance, our result regarding the LSDV A17 ortholog
(LSDV109) may raise questions. As in the vast majority of the poxvirus proteomics
studies for which A17 is detected (Fig. 3; Table S2 in the supplemental material),
the LSDV109/A17 ortholog is also detected in our study (Table 2). However, while
A17 is selected in the Ngo et al. study, the unstable detection of the LSDV ortholog
in our experiment led us to not select it from the candidates for packaging (Table
2). This unstable detection of the LSDV109/A17 ortholog needs to be analyzed with
regard to the stable detection of two other MV membrane proteins (LSDV117/A27
ortholog and LSDV105/A14 ortholog). Indeed, as observed with VACV A14 and A27 in
the Ngo et al. study (Table 2), the LSDV117/A27 ortholog and LSDV105/A14 ortholog
are both selected as candidates for packaging (Table 2). This observation is of partic-
ular interest, given that an interaction between these three MV membrane proteins
is demonstrated for VACV. Indeed, A14 and A17 are two transmembrane proteins,
spanning membrane twice, interacting with each other for the biogenesis of the vaccinia
virion membrane (88). In addition, the integral membrane protein A17 anchors A27
via a cooperative binding mechanism (89-91). VACV envelope protein A27 binding
to A17 affects two important biological stages: the virion assembly/egress stage and
the infection pathway of virus progeny (endocytosis versus plasma membrane fusion)
(91). Based on these known interactions, and in so far as they are similarly maintained
between LSDV orthologs, not selecting the LSDV109/A17 ortholog when its molecular
partners (LSDV117/A27 ortholog and LSDV105/A14 ortholog) are, is quite unexpected.
Although further investigations are required, a plausible and simple explanation could
rely on the specific physical and chemical properties of LSDV109/A17 orthologs (e.g.,
high hydrophobicity, glycosylation, and ionization profile) that may be distinct from A17
(38% of amino-acid sequence identity) and susceptible to making its detection more
variable and challenging using classical shotgun proteomics approach.

Finally, two additional proteins to consider within the virus structure group are other
membrane proteins, LSDV100/A9 ortholog and LSDV046/15 ortholog, which are missing
in our LSDV protein candidates selected for packaging. In fact, these two proteins were
not detected at all inside the purified virus preparations in our study. Ngo et al. selected
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I5 (although detected only once in five replicates) and detected but did not select A9
(Table 2). In the other poxvirus proteomics studies (Fig. 3; Table S2 in the supplemental
material), detection of these two proteins, although variable, remains prominent (Fig. 3;
Table S2 in the supplemental material). While Chung et al. detected 15 and A9 among
the low-abundance proteins (ranked 63rd and 69th, respectively) (56), CWPX A10/A9
ortholog is ranked among the 10 most abundant detected viral proteins (57). Consider-
ing this variability, we cannot rule out that either a low abundance or the physico-chemi-
cal properties of these proteins could explain the lack of detection observed in purified
LSDV preparations and could have made their detection technically challenging. In the
present study, considering that parameter settings were already specifically adjusted
to target low-abundance proteins, another way to improve the detection of these two
LSDV proteins could be to use enzymes other than trypsin (chymotrypsin, ArgC AspN,
GluC) (92), which would offer different cleavage specificities and, therefore, additional
possibilities to better identify proteins that would not have been detected in MS analysis
of trypsin-only digested virus preparations.

Turning to VACV proteins listed by Condit et al. (39), comprising the viral transcription
and genomic integrity groups, we observe that among 29 proteins, only 12 (41%) have
their LSDV orthologs selected for packaging in the current study. The others either
have their LSDV orthologs detected or undetected (E4), or have no identified LSDV
orthologs (02) (26, 27). Remarkably, Ngo et al. selected 28 proteins (96%) of the listed
29 VACV proteins (Table 2). A detailed examination of the multicomponent transcription
apparatus may illustrate the difficulties met within this protein group. Considering all
the poxvirus proteomics studies [with the exception of Zachertowscha et al., for which
deficiencies in MS instrumentation performance were reported (61)], the eight subunits
comprising the poxvirus DNA-dependent RNA polymerase were either unanimously
detected (A5, A24, A29, J4, and J6) (Fig. 3; Table S2 in the supplemental material)
or detected in most studies (E4, D7, G5.5, and their orthologs) (Fig. 3; Table S2 in
the supplemental material). In the current study, three LSDV subunits (LSDV119/A29
ortholog, LSDV069/J4 ortholog, and LSDV071/J6 ortholog) are selected for packaging,
while four subunits are only detected (LSDV096/A5 ortholog, LSDV116/A24 ortholog,
LSDV085/D7, and LSDV055/G5.5 ortholog) and only one subunit was not detected
(LSDVO036/E4 ortholog). A similar observation is possible for the other components of
the transcription apparatus either unanimously detected [excluding Zachertowska et
al., for which deficiencies in MS instrumentation performance were reported (61)] or
detected in most poxvirus proteomic studies (H6) (Fig. 3; Table S2 in the supplemental
material). The LSDV orthologs of the two subunits of VACV early transcription factors
(LSD084/D6 ortholog and LSDV098/A7 ortholog) and the LSDV ortholog of the VACV
packaged DNA binding protein (LSDV043/I1 ortholog) were selected in our study as
candidates for packaging. In contrast, the LSDV ortholog of the VACV poly (A) polymer-
ase VP 55 (LSDV032/E1 ortholog), the LSDV ortholog of the VACV poly (A) polymer-
ase small subunit VP39 (LSDV068/J3 ortholog), the LSDV orthologs of the VACV DNA
helicases NPHI and NPHII (LSDV088/D11 ortholog and LSDV049/18 ortholog), the LDV
ortholog of the VACV topoisomerase H6 (LSDV077), and the LSDV ortholog of the VACV
RNA polymerase-associated transcription-specificity factor RAP94 (LSDV75/H4 ortholog)
were all detected but not selected as candidates for packaging. Excluding LSDV036/E4
ortholog which was not detected, all of these LSDV proteins were detected in this
study, consistent with the detection of their poxvirus orthologs in the vast majority of
proteomic studies on poxvirus (Fig. 3; Table S2 in the supplemental material). However,
the observed variation in the level of detection of these LSDV proteins, which led to their
exclusion from packaging candidates in the current study, calls for further investigations
when we consider that many of these proteins play a key role during infection.

Finally, the last protein category regards the immunomodulatory effectors group.
Actually, in the list of proteins demonstrated to be packaged into the VACV MV particle
(39), Condit et al. identified only one single protein, H1, characterized as an immuno-
modulatory effector. Indeed, H1L codes for a dual-specificity phosphatase VH1 that
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down-regulates intracellular anti-viral response (93) and is released after viral entry from
lateral bodies (LB) of the VACV particle (94, 95). H1 is detected unanimously among
poxvirus proteomics studies [excluding the study on MYXV for which deficiencies in MS
instrumentation performance were reported (61)] and is selected for packaging in the
Ngo et al. study (40). The LSDV072/H1 ortholog is also selected in the current study
(Table 2). Detected unanimously through poxvirus proteomics studies (Fig. 3; Table S2
in the supplemental material), two other components of VACV LB with immunomodula-
tory activities, phosphoprotein F17 and oxidoreductase G4, are either selected (F17) or
only detected (G4) in the Ngo et al. study (Table 2). In the current study, LSDV031/F17
ortholog and LSDV053/G4 ortholog rank among the most abundant detected proteins
(1st and 16th respectively) and were both selected (Table 2). The selection of LSDV031,
LSDVO053 ,and LSDV072 as candidates for packaging may suggest the existence of a close
association between these three proteins as observed between their VACV F17, G4, and
H1 orthologs and VACV particles (95), which could represent a preliminary indication
of a possible LB residency of these proteins in LSDV MV particles. Moreover, four other
LSDV proteins, namely LSDV144/A55, LSDV001/B15 ortholog, LSDV013/B16 ortholog,
and LSDV007/C10 ortholog, were all selected in the current study. In contrast, there are
no converging studies demonstrating packaging of the orthologs of these proteins in the
VACV particle (39), and Ngo et al. did not select any of these proteins but detected all
of them (Table 2). In proteomics studies, detection of these four protein orthologs seems
quite variable, either between studies on VACV or between poxviruses (Fig. 3; Table S2
in the supplemental material). For these four proteins, one factor that may contribute to
such a variable detection could be the low abundance of these proteins, as suggested
by a consistent detection mainly in the most recent proteomic studies (Fig. 3; Table
S2 in the supplemental material). Remarkably, this low abundance is also observed in
the present study for LSDV144/A55, LSDV001/B15 ortholog, LSDV013/B16 ortholog, and
LSDV007/C10 ortholog, which rank 110th, 82nd, 104th, and 89th, respectively, among
the 111 proteins detected (Table 1). In the present study, detecting proteins with such
low abundance supports the sensitivity of the experimental set-up used, including
MS instrumentation as well as parameter settings. Clearly, the meaning that could be
attributed to the packaging of this type of protein remains to be elucidated and further
confirmatory work is needed. However, especially for this group of immunomodulatory
effectors, differences between poxviruses of different genera (Orthopoxvirus, MYXV, and
CaPV) should not be viewed as a totally unexpected result since we are analyzing distinct
biological entities here, exhibiting, for instance, in vitro different host cell range requiring
different intracellular modulators.

So, applying our selection method to all detected bovine proteins, a total of 65
bovine cell proteins persistently fell within the packaged region of the quantitation
histogram in the five experiments (Table S2). Although some of these bovine cell
proteins may be effectively packaged as previously evidenced (63, 64), the presence
of these proteins could instead reflect residual contamination of MV preparations. This
alternative hypothesis seems all the more likely since these proteins belong to classes
previously described as having been associated with such types of contamination (40,
59, 65). Indeed, we cannot rule out a commonly observed contamination of purified
virus preparations originating from proteins tightly bound to virions or associated
with intracellular organelles (exosomes, mitochondria, nuclei, or other vesicles) which
co-sediment with virus in both tartrate and sucrose gradient purification procedures (40,
65). In order to address properly the packaging of bovine proteins, it will be necessary
to carry out experiments specifically designed to evidence cell proteins packaged into
particles of enveloped viruses (95-98). The list of host proteins proposed here could
possibly represent a starting point for designing additional studies specifically address-
ing this issue.

In conclusion, this study characterized for the first time the proteome of infectious
viral MV particles of the LSDV KSGP-0240 strain. First, this analysis aims to participate in
the better characterization of this viral strain, which remains, up to now, incomplete. We
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may therefore consider that our study brings a significant additional information layer to
this strain characterization. However, it is clear that in order to provide a comprehensive
insight into the LSDV proteome, that the same proteomic characterization deserves to be
implemented on the other LSDV strains, with the newly emerged ones being of utmost
interest. In particular, deciphering the proteomic profile of recombinant LSDV strains,
recently evidenced for instance in Russia (99, 100) could help in better understanding the
mosaic nature of their genome, including regions from both vaccine and virulent field
LSDV strains. Such larger proteomic characterization of CaPV strains may be especially
enlightening, in particular for the comparison between virulent and attenuated viral
strains, for which we could get possible clues upon the determinants of CaPV virulence.

Finally, our study represents a first incursion into the proteome of CaPV, all the more
informative since currently the vast majority of proteomics studies have focused on the
unique genus of OPV, and especially on VACV. Indeed, the sole exception comprises
the proteomics study of MYXV (61). We may therefore anticipate that providing new
information about other chordopoxviruses will contribute to shedding new light on
protein composition within the POXV family and bridge the proteome differences with
the existing genetic differences between different genera of Chordopoxvirinae.
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